首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important feature of Escherichia coli pathogenesis is an ability to withstand extremely acidic environments of pH 2 or lower. This acid resistance property contributes to the low infectious dose of pathogenic E. coli species. One very efficient E. coli acid resistance system encompasses two isoforms of glutamate decarboxylase (gadA and gadB) and a putative glutamate:gamma-amino butyric acid (GABA) antiporter (gadC). The system is subject to complex controls that vary with growth media, growth phase, and growth pH. Previous work has revealed that the system is controlled by two sigma factors, two negative regulators (cyclic AMP receptor protein [CRP] and H-NS), and an AraC-like regulator called GadX. Earlier evidence suggested that the GadX protein acts both as a positive and negative regulator of the gadA and gadBC genes depending on environmental conditions. New data clarify this finding, revealing a collaborative regulation between GadX and another AraC-like regulator called GadW (previously YhiW). GadX and GadW are DNA binding proteins that form homodimers in vivo and are 42% homologous to each other. GadX activates expression of gadA and gadBC at any pH, while GadW inhibits GadX-dependent activation. Regulation of gadA and gadBC by either regulator requires an upstream, 20-bp GAD box sequence. Northern blot analysis further indicates that GadW represses expression of gadX. The results suggest a control circuit whereby GadW interacts with both the gadA and gadX promoters. GadW clearly represses gadX and, in situations where GadX is missing, activates gadA and gadBC. GadX, however, activates only gadA and gadBC expression. CRP also represses gadX expression. It does this primarily by repressing production of sigma S, the sigma factor responsible for gadX expression. In fact, the acid induction of gadA and gadBC observed when rich-medium cultures enter stationary phase corresponds to the acid induction of sigma S production. These complex control circuits impose tight rein over expression of the gadA and gadBC system yet provide flexibility for inducing acid resistance under many conditions that presage acid stress.  相似文献   

2.
3.
4.
5.
Enterohemorrhagic strains of Escherichia coli must pass through the acidic gastric barrier to cause gastrointestinal disease. Taking into account the apparent low infectious dose of enterohemorrhagic E. coli, 11 O157:H7 strains and 4 commensal strains of E. coli were tested for their abilities to survive extreme acid exposures (pH 3). Three previously characterized acid resistance systems were tested. These included an acid-induced oxidative system, an acid-induced arginine-dependent system, and a glutamate-dependent system. When challenged at pH 2.0, the arginine-dependent system provided more protection in the EHEC strains than in commensal strains. However, the glutamate-dependent system provided better protection than the arginine system and appeared equally effective in all strains. Because E. coli must also endure acid stress imposed by the presence of weak acids in intestinal contents at a pH less acidic than that of the stomach, the ability of specific acid resistance systems to protect against weak acids was examined. The arginine- and glutamate-dependent systems were both effective in protecting E. coli against the bactericidal effects of a variety of weak acids. The acids tested include benzoic acid (20 mM; pH 4.0) and a volatile fatty acid cocktail composed of acetic, propionic, and butyric acids at levels approximating those present in the intestine. The oxidative system was much less effective. Several genetic aspects of E. coli acid resistance were also characterized. The alternate sigma factor RpoS was shown to be required for oxidative acid resistance but was only partially involved with the arginine- and glutamate-dependent acid resistance systems. The arginine decarboxylase system (including adi and its regulators cysB and adiY) was responsible for arginine-dependent acid resistance. The results suggest that several acid resistance systems potentially contribute to the survival of pathogenic E. coli in the different acid stress environments of the stomach (pH 1 to 3) and the intestine (pH 4.5 to 7 with high concentrations of volatile fatty acids). Of particular importance to the food industry was the finding that once induced, the acid resistance systems will remain active for prolonged periods of cold storage at 4 degrees C.  相似文献   

6.
7.
8.
9.
RcsB interacts with GadE to mediate acid resistance in stationary-phase Escherichia coli K-12. We show here that RcsB is also required for inducible acid resistance in exponential phase and that it acts on promoters that are not GadE regulated. It is also required for acid resistance in E. coli O157:H7.  相似文献   

10.
11.
12.
13.
14.
A glutamate-dependent acid resistance gene in Escherichia coli.   总被引:7,自引:0,他引:7       下载免费PDF全文
Stationary-phase cultures of Escherichia coli can survive several hours or exposure to extreme acid (pH 2 to 3), a level well below the pH range for growth (pH 4.5 to 9). To identify the genes needed for survival in extreme acid, a microliter screening procedure was devised. Colonies from a Tn10 transposon pool in E. coli MC4100 were inoculated into buffered Luria broth, pH 7.0, in microtiter wells, grown overnight, and then diluted in Luria broth, pH 2.5, at 37 degrees C for 2 h. From 3,000 isolates screened, 3 Tet(r) strains were identified as extremely acid sensitive (<0.1% survival at pH 2.5 for 2 h). Flanking sequences of the Tn10 inserts were amplified by inverse PCR. The sequences encoded a hydrophobic partial peptide of 88 residues. A random-primer-generated probe hybridized to Kohara clones 279 and 280 at 32 min (33.7 min on the revised genomic map EcoMap7) near gadB (encoding glutamate decarboxylase). The gene was designated xasA for extreme acid sensitive. xasA::Tn10 strains grown at pH 7 to 8 showed 100-fold-less survival in acid than the parent strain. Growth in mild acid (pH 5 to 6) restored acid resistance; anaerobiosis was not required, as it is for acid resistance in rpoS strains. xasA::Tn10 eliminated enhancement of acid resistance by glutamic acid. xasA was found to be a homolog of gadC recently sequenced in Shigella flexneri, in which it appears to encode a permease for the decarboxylated product of GadB. These results suggest that GadC (XasA) participates in a glutamate decarboxylase alkalinization cycle to protect E. coli from cytoplasmic acidification. The role of the glutamate cycle is particularly important for cultures grown at neutral pH before exposure to extreme acid.  相似文献   

15.
Escherichia coli and other enterobacteria exploit the H+ -consuming reaction catalysed by glutamate decarboxylase to survive the stomach acidity before reaching the intestine. Here we show that chloride, extremely abundant in gastric secretions, is an allosteric activator producing a 10-fold increase in the decarboxylase activity at pH 5.6. Cooperativity and sensitivity to chloride were lost when the N-terminal 14 residues, involved in the formation of two triple-helix bundles, were deleted by mutagenesis. X-ray structures, obtained in the presence of the substrate analogue acetate, identified halide-binding sites at the base of each N-terminal helix, showed how halide binding is responsible for bundle stability and demonstrated that the interconversion between active and inactive forms of the enzyme is a stepwise process. We also discovered an entirely novel structure of the cofactor pyridoxal 5'-phosphate (aldamine) to be responsible for the reversibly inactivated enzyme. Our results link the entry of chloride ions, via the H+/Cl- exchange activities of ClC-ec1, to the trigger of the acid stress response in the cell when the intracellular proton concentration has not yet reached fatal values.  相似文献   

16.
17.
In the natural environment, bacterial cells have to adjust their metabolism to alterations in the availability of food sources. The order and timing of gene expression are crucial in these situations to produce an appropriate response. We used the galactose regulation in Escherichia coli as a model system for understanding how cells integrate information about food availability and cAMP levels to adjust the timing and intensity of gene expression. We simulated the feast-famine cycle of bacterial growth by diluting stationary phase cells in fresh medium containing galactose as the sole carbon source. We followed the activities of six promoters of the galactose system as cells grew on and ran out of galactose. We found that the cell responds to a decreasing external galactose level by increasing the internal galactose level, which is achieved by limiting galactose metabolism and increasing the expression of transporters. We show that the cell alters gene expression based primarily on the current state of the cell and not on monitoring the level of extracellular galactose in real time. Some decisions have longer term effects; therefore, the current state does subtly encode the history of food availability. In summary, our measurements of timing of gene expression in the galactose system suggest that the system has evolved to respond to environments where future galactose levels are unpredictable rather than regular feast and famine cycles.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号