首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA editing in plant organelles is mediated by site-specific, nuclear-encoded factors. Previous data suggested that the maintenance of these factors depends on the presence of their rapidly evolving cognate sites. The surprising ability of allotetraploid Nicotiana tabacum (tobacco) to edit a foreign site in the chloroplast ndhA messenger RNA was thought to be inherited from its diploid male ancestor, Nicotiana tomentosiformis. Here, we show that the same ndhA editing activity is also present in Nicotiana sylvestris, which is the female diploid progenitor of tobacco and which lacks the ndhA site. Hence, heterologous editing is not simply a result of tobacco's allopolyploid genome organization. Analyses of other editing sites after sexual or somatic transfer between land plants showed that heterologous editing occurs at a surprisingly high frequency. This suggests that the corresponding editing activities are conserved despite the absence of their target sites, potentially because they serve other functions in the plant cell.  相似文献   

2.
3.
4.
R Bock  H K?ssel    P Maliga 《The EMBO journal》1994,13(19):4623-4628
The psbF mRNA is edited in spinach plastids by a C to U conversion, changing a serine to a conserved phenylalanine codon. In tobacco at this position a phenylalanine codon is present at the DNA level, and the psbF mRNA here is not edited. To test if the psbF editing capacity is evolutionarily conserved, the tobacco psbF gene was modified to match the corresponding spinach sequence. The endogenous tobacco gene was replaced with the modified copy using biolistic transformation. We report here that the heterologous editing site remains unmodified in transplastomic tobacco plants. The lack of editing is associated with slower growth, lowered chlorophyll content and high chlorophyll fluorescence, a phenotype characteristic of photosynthetic mutants. This finding confirms that the editing of the psbF mRNA is an essential processing step for protein function and thus provides direct proof for the biological significance of plant organellar RNA editing. Given that a mutant phenotype is associated with the lack of editing, it seems likely that the evolutionary loss of the site-specific capacity for psbF editing was preceded by the mutation that eliminated the editing requirement.  相似文献   

5.
6.
7.
RNA editing sites and their site-specific trans-acting recognition factors are thought to have coevolved. Hence, evolutionary loss of an editing site by a genomic mutation is normally followed by the loss of the specific recognition factor for this site, due to the absence of selective pressure for its maintenance. Here, we have tested this scenario for the only tomato-specific plastid RNA editing site. A single C-to-U editing site in the tomato rps12 gene is absent from the tobacco and nightshade plastid genomes, where the presence of a genomic T nucleotide obviates the need for editing of the rps12 mRNA. We have introduced the tomato editing site into the tobacco rps12 gene by plastid transformation and find that, surprisingly, this heterologous site is efficiently edited in the transplastomic plants. This suggests that the trans-acting recognition factor for the rps12 editing site has been maintained, presumably because it serves another function in tobacco plastids. Bioinformatics analyses identified an editing site in the rpoB gene of tobacco and tomato whose sequence context exhibits striking similarity to that of the tomato rps12 editing site. This may suggest that requirement for rpoB editing resulted in maintenance of the rps12 editing activity or, alternatively, the pre-existing rpoB editing activity facilitated the evolution of a novel editing site in rps12.  相似文献   

8.
9.
10.
11.
A computational analysis of RNA editing sites was performedon protein-coding sequences of plant mitochondrial genomes fromArabidopsis thaliana, Beta vulgaris, Brassica napus, and Oryzasativa. The distribution of nucleotides around edited and uneditedcytidines was compared in 41 nucleotide segments and included1481 edited cytidines and 21,390 unedited cytidines in the 4genomes. The distribution of nucleotides was examined in 1,2, and 3 nucleotide windows by comparison of nucleotide frequencyratios and relative entropy. The relative entropy analyses indicatethat information is encoded in the nucleotide sequences in the5 prime flank (–18 to –14, –13 to –10,–6 to –4, –2/–1) and the immediate 3prime flanking nucleotide (+1), and these regions may be importantin editing site recognition. The relative entropy was largewhen 2 or 3 nucleotide windows were analyzed, suggesting thatseveral contiguous nucleotides may be involved in editing siterecognition. RNA editing sites were frequently preceded by 2pyrimidines or AU and followed by a guanidine (HYCG) in themonocot and dicot mitochondrial genomes, and rarely precededby 2 purines. Analysis of chloroplast editing sites from a dicot,Nicotiana tabacum, and a monocot, Zea mays, revealed a similardistribution of nucleotides around editing sites (HYCA). Thesimilarity of this motif around editing sites in monocots anddicots in both mitochondria and chloroplasts suggests that amechanistic basis for this motif exists that is common in thesedifferent organelle and phylogenetic systems. The preferredsequence distribution around RNA editing sites may have an importantimpact on the acquisition of editing sites in evolution becausethe immediate sequence context of a cytidine residue may rendera cytidine editable or uneditable, and consequently determinewhether a T to C mutation at a specific position may be correctedby RNA editing. The distribution of editing sites in many protein-codingsequences is shown to be non-random with editing sites clusteredin groups separated by regions with no editing sites. The sporadicdistribution of editing sites could result from a mechanismof editing site loss by gene conversion utilizing edited sequenceinformation, possibly through an edited cDNA intermediate.  相似文献   

12.
R Bock  H U Koop 《The EMBO journal》1997,16(11):3282-3288
  相似文献   

13.
14.
15.
16.
17.
18.
19.
RNA editing in higher-plant chloroplasts involves C-to-U conversions at specific sites. Although in vivo analyses have been performed, little is known about the biochemical aspects of chloroplast editing reactions. Here we improved our original in vitro system and devised a procedure for preparing active chloroplast extracts not only from tobacco plants but also from pea plants. Using our tobacco in vitro system, cis-acting elements were defined for psbE and petB mRNAs. Distinct proteins were found to bind specifically to each cis-element, a 56-kDa protein to the psbE site and a 70-kDa species to the petB site. Pea chloroplasts lack the corresponding editing site in psbE since T is already present in the DNA. Parallel in vitro analyses with tobacco and pea extracts revealed that the pea plant has no editing activity for psbE mRNAs and lacks the 56-kDa protein, whereas petB mRNAs are edited and the 70-kDa protein is also present. Therefore, coevolution of an editing site and its cognate trans-factor was demonstrated biochemically in psbE mRNA editing between tobacco and pea plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号