首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteopontin (OPN) is a highly modified integrin-binding protein found in all body fluids. Expression of OPN is strongly correlated with poor prognosis in many different human cancers, suggesting an important but poorly understood role for this protein in tumorigenesis and metastasis. The protein exists in a number of different isoforms differing in the degree of post-translational modifications that are likely to exhibit different functional properties. This study examines for the first time the post-translational modifications of OPN from transformed cells and the effects of these modifications on cell biology. We have characterized the complete phosphorylation and glycosylation patterns of OPN expressed by murine ras-transformed fibroblasts (FbOPN) and differentiating osteoblasts (ObOPN) by a combination of mass spectrometric analyses and Edman degradation. Mass spectrometric analysis showed masses of 34.9 and 35.9 kDa for FbOPN and ObOPN, respectively. Enzymatic dephosphorylation, sequence, and mass analyses demonstrated that FbOPN contains approximately four phosphate groups distributed over 16 potential phosphorylation sites, whereas ObOPN contains approximately 21 phosphate groups distributed over 27 sites. Five residues are O-glycosylated in both isoforms. These residues are fully modified in FbOPN, whereas one site is partially glycosylated in ObOPN. Although both forms of OPN mediated robust integrin-mediated adhesion of mouse ras-transformed fibroblasts, the less phosphorylated FbOPN mediated binding of MDA-MD-435 human tumor cells almost 6-fold more than the heavy phosphorylated ObOPN. These results strongly support the hypothesis that the degree of phosphorylation of OPN produced by different cell types can regulate its function.  相似文献   

2.
Osteopontin (OPN), a secreted protein involved in inflammatory processes and cancer, induces cell adhesion, migration, and activation of inflammatory pathways in various cell types. Cells bind OPN via integrins at a canonical RGD region in the full length form as well as to a contiguous cryptic site that some have shown is unmasked upon thrombin or matrix metalloproteinase cleavage. Thus, the adhesive capacity of osteopontin is enhanced by proteolytic cleavage that may occur in inflammatory conditions such as obesity, atherosclerosis, rheumatoid arthritis, tumor growth and metastasis. Our aim was to inhibit cellular adhesion to recombinant truncated proteins that correspond to the N-terminal cleavage products of thrombin- or matrix metalloproteinase-cleaved OPN in vitro. We specifically targeted the cryptic integrin binding site with monoclonal antibodies and antisera induced by peptide immunization of mice. HEK 293 cells adhered markedly stronger to truncated OPN proteins than to full length OPN. Without affecting cell binding to the full length form, the raised monoclonal antibodies specifically impeded cellular adhesion to the OPN fragments. Moreover, we show that the peptides used for immunization were able to induce antisera, which impeded adhesion either to all OPN forms, including the full-length form, or selectively to the corresponding truncated recombinant proteins. In conclusion, we developed immunological tools to selectively target functional properties of protease-cleaved OPN forms, which could find applications in treatment and prevention of various inflammatory diseases and cancers.  相似文献   

3.
Osteopontin (OPN) is a multifunctional protein implicated in cellular adhesion and migration. Phosphorylation has emerged as a post-translational modification important for certain biological activities of OPN. This study demonstrates that adhesion of isolated neonatal rat osteoclasts in vitro was augmented on bovine milk osteopontin (bmOPN) with post-translational modifications (PTMs) compared to human Escherichia-coli-derived recombinant OPN (hrOPN) without PTMs. The difference in adhesiveness between these OPN variants was more pronounced at low coating concentrations (≤ 10 μg/ml). Both OPN forms adhered exclusively using a β3-integrin. Partial (≤50%) dephosphorylation by tartrate-resistant acid phosphatase (TRAP) in vitro reduced osteoclast attachment to bmOPN to the same level as to hrOPN, demonstrating the importance of specific phosphorylations in OPN-dependent osteoclast adhesion.The involvement of PTMs of OPN in migration of primary rat and mouse osteoclasts was assessed on culture dishes coated with the different OPN forms and then overlaid with gold particles. Here, osteoclasts exhibited haptotactic migration on bmOPN but did not migrate on hrOPN. The presence of neutralizing antibodies to TRAP inhibited migration on bmOPN. Moreover, migration of osteoclasts isolated from TRAP-overexpressing transgenic mice was augmented on bmOPN, but not on hrOPN or type I collagen.These data collectively provide evidence in favor of a role for endogenous TRAP in regulating osteoclast migration on post-translationally modified OPN. In a tissue context, modulation of the phosphorylation level of OPN by extracellular phosphatases, e.g., TRAP, could regulate the extent of degradation such as depth and area at each bone resorption site by triggering osteoclast detachment and facilitate subsequent migration on the bone surface.  相似文献   

4.
Osteopontin (OPN) is a secreted protein that has been implicated in diverse physiological and pathological processes. OPN can bind to integrins, via GRGDS or SVVYGLR amino acid sequences, and to other cell surface receptors, and many of OPN's functions are likely mediated via cell adhesion and subsequent signaling. Here we developed and characterized a series of five monoclonal antibodies, raised to distinct internal peptide sequences of human OPN, and have used these sequence-specific reagents, along with the previously described anti-OPN monoclonal antibody mAb53, to map functional epitopes of OPN that are important to cell adhesion and migration. All antibodies were reactive with native as well as recombinant human OPN. One antibody (2K1) raised against the peptide VDTYDGRGDSVVYGLRS could inhibit RGD-dependent cell binding to OPN, with an efficacy comparable to that of mAb53. Furthermore, 2K1 could inhibit alpha9 integrin-dependent cell binding to OPN. The epitope recognized by 2K1 was not destroyed by thrombin digestion, whereas mAb53 has been shown to be unable to react with OPN following thrombin cleavage. The two distinct epitopes defined by 2K1 and mAb53 antibodies are closely related to the SVVYGLR cell-binding domain and the GLRSKS containing thrombin cleavage site, respectively, and are involved in cell binding and cell migration.  相似文献   

5.
A Safran  D Neumann    S Fuchs 《The EMBO journal》1986,5(12):3175-3178
Three peptides corresponding to residues 354-367, 364-374, 373-387 of the acetylcholine receptor (AChR) delta subunit were synthesized. These peptides represent the proposed phosphorylation sites of the cAMP-dependent protein kinase, the tyrosine-specific protein kinase and the calcium/phospholipid-dependent protein kinase respectively. Using these peptides as substrates for phosphorylation by the catalytic subunit of cAMP-dependent protein kinase it was shown that only peptides 354-367 was phosphorylated whereas the other two were not. These results verify the location of the cAMP-dependent protein kinase phosphorylation site within the AChR delta subunit. Antibodies elicited against these peptides reacted with the delta subunit. The antipeptide antibodies and two monoclonal antibodies (7F2, 5.46) specific for the delta subunit were tested for their binding to non-phosphorylated receptor and to receptor phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. Antibodies to peptide 354-367 were found to react preferentially with non-phosphorylated receptor whereas the two other anti-peptide antibodies bound equally to phosphorylated and non-phosphorylated receptors. Monoclonal antibody 7F2 reacted preferentially with the phosphorylated form of the receptor whereas monoclonal antibody 5.46 did not distinguish between the two forms.  相似文献   

6.
Osteopontin (OPN) is an integrin-binding secreted protein that contains an Arg-Gly-Asp (RGD) amino acid sequence and binds to various cell types via RGD-mediated interaction with the αvβ3 integrin. We have identified a cell line whose binding to OPN does not require RGD or αv interactions. We compared the ability of two murine cell lines, L929 fibroblastic cells and B16-BL6 melanoma cells, to interact with OPN (from human milk, and recombinant human and mouse OPN) as well as recombinant OPN prepared to include either the N-terminal or C-terminal halves but lacking the RGD sequence. Both cell lines adhered to GRGDS peptides coupled to BSA, and these interactions were inhibited by addition of GRGDS (but not GRGES) peptides or a monoclonal antibody specific to the αv integrin subunit. Adhesion of L929 cells to OPN was also dependent on the RGD sequence and the αv integrin subunit. However, the binding of B16-BL6 cells was not inhibited by either GRGDS peptides or the anti-αv antibody. B16-BL6 (but not L929) cells were also able to adhere to and spread on both N-terminal and C-terminal OPN proteins that lack the RGD sequence, and these interactions were not inhibited by either GRGDS peptides or anti-αv antibody. Together these results indicate that B16-BL6 cells can adhere to OPN by interactions that are independent of either the RGD sequence or the αv integrin subunit, and suggest that some cells can interact with additional, non-RGD binding sites in OPN. © 1996 Wiley-Liss, Inc.  相似文献   

7.
High throughput approaches to structural genomics requires expression, purification, and crystallization of proteins derived from predicted open reading frames cloned into a host organism, typically E. coli. Early results from this approach suggest that the success rate of obtaining well diffracting crystals from eukaryotic proteins is disappointingly low. A proven method of improving the odds of crystallization is formation of a complex with a conformation-stabilizing partner of known structure that is easily crystallized. Such complexes are also able to engage in different crystal contacts than the original protein by itself. Fab fragments derived from monoclonal antibodies have been successfully used for this purpose for a variety of proteins, however conventional methods for the isolation of monoclonal antibodies from hybridomas are time consuming and expensive. We are exploring the use of phage display to generate recombinant antibodies to target proteins that can be used to obtain co-complexes to facilitate crystallization and structural determination. We are using a large, human single-chain Fv (scFv) library to select for antibodies that bind to a panel of Leishmania major target proteins. Thirteen out of 16 target proteins yielded good binders after three rounds of enrichment. A total of 55 distinct scFvs were identified, with five targets each yielding at least five different scFvs. Individual clones were analyzed for binding specificity and soluble scFv can be readily produced and purified via the appended His6 epitope tag. Using immunoaffinity chromatography, eight scFv target protein pairs were identified that exhibit stable complex formation and are suitable for co-crystallization trials.  相似文献   

8.
Osteopontin (OPN) is a multifunctional phosphorylated protein containing the integrin binding sequence Arg-Gly-Asp through which it interacts with several integrin receptors, such as the α(V)β(3)-integrin. OPN exists in many different isoforms differing in phosphorylation status that are likely to interact differently with integrins. The C-terminal region of OPN is particularly well conserved among mammalian species, which suggests an important functional role of this region. In this study, we show that modification of the extreme C terminus of OPN plays an important regulatory role for the interaction with the α(V)β(3)-integrin. It is demonstrated that highly phosphorylated OPN has a much reduced capability to promote cell adhesion via the α(V)β(3)-integrin compared with lesser phosphorylated forms. The cell attachment promoted by highly phosphorylated OPN could be greatly increased by both dephosphorylation and proteolytic removal of the C terminus. Using recombinantly expressed OPN containing a tag in the N or C terminus, it is shown that a modification in the C-terminal part significantly reduces the adhesion of cells to OPN via the α(V)β(3)-integrin, whereas modification of the N terminus does not influence the binding. The inhibited binding of the α(V)β(3)-integrin to OPN could be restored by proteolytic removal of the C terminus by thrombin and plasmin. These data illustrate a novel mechanism regulating the interaction of OPN and the α(V)β(3)-integrin by modification of the highly conserved C-terminal region of the protein.  相似文献   

9.
As cartilaginous fish are the vertebrates most distal from man to produce antibodies, fundamental information regarding conservation and variation of the antigen binding site should be gained by comparing the properties of antibodies directed against the same antigen from the two species. Since monoclonal cell lines cannot be generated using shark B cells, we isolated antigen binding recombinant single chain Fv antibodies (scFv) comprising of the complete variable regions from shark light and heavy chains. Thyroglobulin was used as the selecting antigen as both sharks and humans express natural antibodies to mammalian thyroglobulin in the absence of purposeful immunization. We report that recombinant sandbar shark (Carcharhinus plumbeus) scFvs that bind bovine thyroglobulin consist of heavy chain variable regions (VH) homologous to those of the human VHIII subset and light chain variable regions (VL) homologous to those of the human Vlambda6 subgroup. The homology within the frameworks is sufficient to enable the building of three-dimensional models of the shark VH/VL structure using established human structures as templates. In natural antibodies of both species, the major variability lies in the third complementarity determining region (CDR3) of both VH and VL.  相似文献   

10.
Oakley GG  Patrick SM  Yao J  Carty MP  Turchi JJ  Dixon K 《Biochemistry》2003,42(11):3255-3264
The heterotrimeric DNA-binding protein, replication protein A (RPA), consists of 70-, 34-, and 14-kDa subunits and is involved in maintaining genomic stability by playing key roles in DNA replication, repair, and recombination. RPA participates in these processes through its interaction with other proteins and its strong affinity for single-stranded DNA (ssDNA). RPA-p34 is phosphorylated in a cell-cycle-dependent fashion primarily at Ser-29 and Ser-23, which are consensus sites for Cdc2 cyclin-dependent kinase. By systematically examining RPA-p34 phosphorylation throughout the cell cycle, we have found there are distinct phosphorylated forms of RPA-p34 in different cell-cycle stages. We have isolated and purified a unique phosphorylated form of RPA that is specifically associated with the mitotic phase of the cell cycle. The mitotic form of RPA (m-hRPA) shows no difference in ssDNA binding activity as compared with recombinant RPA (r-hRPA), yet binds less efficiently to double-stranded DNA (dsDNA). These data suggest that mitotic phosphorylation of RPA-p34 inhibits the destabilization of dsDNA by RPA complex, thereby decreasing the binding affinity for dsDNA. The m-hRPA also exhibits altered interactions with certain DNA replication and repair proteins. Using highly purified proteins, m-hRPA exhibited decreased binding to ATM, DNA pol alpha, and DNA-PK as compared to unphosphorylated recombinant RPA (r-hRPA). Dephosphorylation of m-hRPA was able to restore the interaction with each of these proteins. Interestingly, the interaction of RPA with XPA was not altered by RPA phosphorylation. These data suggest that phosphorylation of RPA-p34 plays an important role in regulating RPA functions in DNA metabolism by altering specific protein-protein interactions.  相似文献   

11.
A strategy is described for production of monoclonal antibodies against recombinant proteins that are produced using the baculovirus expression system and that requires no prior purification of the protein of interest. Crude lysates prepared from cultured Sf9 insect cells infected with recombinant or control baculoviruses are absorbed to nitrocellulose filters and used in a dot-immunobinding assay for screening hybridomas. The monoclonal antibody-producing hybridomas are derived by immunization of mice with a synthetic peptide corresponding to a hydrophilic region in the recombinant protein of interest. By using the baculovirus-produced recombinant protein as the screening antigen and by comparing antibody binding to filters containing control Sf9 lysates, hybridomas are identified that produce monoclonal antibodies with specific reactivity for the recombinant protein of interest and that can then subsequently be used to assist in the large-scale purification of the recombinant protein from baculovirus-infected cells. We applied this method to recombinant 26-kDa human Bcl-2 (B-cell lymphoma/leukemia-2), an integral membrane oncoprotein that regulates programmed cell death ("apoptosis") in hematolymphoid cells through unknown mechanisms. Two mouse monoclonal antibodies were produced that specifically bound the recombinant Bcl-2 baculoprotein in both solution and solid-phase assays.  相似文献   

12.
In mammals, the linker histone H1, involved in DNA packaging into chromatin, is represented by a family of variants. H1 tails undergo post-translational modifications (PTMs) that can be detected by mass spectrometry. We developed antibodies to analyze several of these as yet unexplored PTMs including the combination of H1.4 K26 acetylation or trimethylation and S27 phosphorylation. H1.2-T165 phosphorylation was detected at S and G2/M phases of the cell cycle and was dispensable for chromatin binding and cell proliferation; while the H1.4-K26 residue was essential for proper cell cycle progression. We conclude that histone H1 PTMs are dynamic over the cell cycle and that the recognition of modified lysines may be affected by phosphorylation of adjacent residues.  相似文献   

13.
Recombinant polyclonal antibodies for cancer therapy   总被引:4,自引:0,他引:4  
Although monoclonal antibodies are increasingly used for cancer therapy, remissions are only temporary due to emergence of tumor cell escape variants that are no longer affected by the antibody. The emergence of escape variants could be minimized by multi-targeting of tumor cells with polyclonal antibodies, which would also be more efficient than monoclonal antibodies at mediating effector functions for target destruction. A technology for generating recombinant polyclonal antibodies for cancer therapy has been developed based on the construction and selection of tumor-reactive Fab phage display libraries. The selected Fabs are mass-converted to full-length polyclonal antibody libraries (PCALs) of any isotype and any species. Prototypic PCALs generated against human colorectal cancer cell lines showed that libraries of diverse recombinant antibodies, enriched for reactivity to the cancer cells compared to normal human cells, can be obtained. The success of recombinant polyclonal antibodies as cancer therapeutics will depend on the ability to generate, characterize, and mass-produce PCALs with high ratios of cancer-to-normal reactivities that cross-react with many cancers of the same type.  相似文献   

14.
We have generated synthetic peptides corresponding to various portions of human osteopontin (OPN) and have immunized rabbits and mice with these peptides to generate polyclonal and monoclonal antibodies specific to human OPN. We then generated six distinct sandwich enzyme-linked immunoabsorbent assay (ELISA) systems by using different pairs of polyclonal and monoclonal antibodies against human OPN. These systems allowed us to detect not only various isoforms and truncated forms of recombinant OPN, but also the glycosylated form of native urinary OPN. Most importantly, tumor-derived OPN was differentially detected by the six ELISA systems. The ELISA systems that we have developed will be useful for clarifying the functional roles for OPN in vivo in various physiologic and pathologic conditions.  相似文献   

15.
Trypanosoma cruzi ribosomes from epimastigote forms were purified as determined by electron microscopy and isoelectrofocusing was used to analyse this purified ribosome fraction. Silver stained gels revealed that acidic proteins are present in at least 10 different isoforms, in accord with previous cloning studies. To detect phosphorylation, in vitro phosphorylation assays using the recombinant protein TcP2beta-mbp were carried out. The results showed that T. cruzi cytosolic fraction possesses protein kinase activity able to phosphorylate the recombinant protein. Purified ribosomes contain protein kinases that could also phosphorylate the recombinant protein TcP2beta-mbp. Labelling parasites with [(32)Pi] in a phosphate free medium demonstrated that ribosome proteins, recognised with a specific mouse antiserum against recombinant TcP2beta proteins, are phosphorylated in vivo. All these results suggest that in vivo phosphorylation of ribosome TcP2beta proteins are mediated by protein kinase(s) not yet identified.  相似文献   

16.
《MABS-AUSTIN》2013,5(7):1206-1218
ABSTRACT

Post-translational modifications, such as the phosphorylation of tyrosines, are often the initiation step for intracellular signaling cascades. Pan-reactive antibodies against modified amino acids (e.g., anti-phosphotyrosine), which are often used to assay these changes, require isolation of the specific protein prior to analysis and do not identify the specific residue that has been modified (in the case that multiple amino acids have been modified). Phosphorylation state-specific antibodies (PSSAs) developed to recognize post-translational modifications within a specific amino acid sequence can be used to study the timeline of modifications during a signal cascade. We used the FcεRI receptor as a model system to develop and characterize high-affinity PSSAs using phage and yeast display technologies. We selected three β-subunit antibodies that recognized: 1) phosphorylation of tyrosines Y218 or Y224; 2) phosphorylation of the Y228 tyrosine; and 3) phosphorylation of all three tyrosines. We used these antibodies to study the receptor activation timeline of FcεR1 in rat basophilic leukemia cells (RBL-2H3) upon stimulation with DNP24-BSA. We also selected an antibody recognizing the N-terminal phosphorylation site of the γ-subunit (Y65) of the receptor and applied this antibody to evaluate receptor activation. Recognition patterns of these antibodies show different timelines for phosphorylation of tyrosines in both β and γ subunits. Our methodology provides a strategy to select antibodies specific to post-translational modifications and provides new reagents to study mast cell activation by the high-affinity IgE receptor, FcεRI.  相似文献   

17.
人源抗狂犬病毒单克隆抗体Fab段基因的获得和表达   总被引:2,自引:2,他引:2  
运用噬菌体表面呈现(phage display)技术获得了人源抗狂犬病毒糖蛋白基因工程单克隆抗体Fab段基因及其表达。从狂犬病毒PM株Vero细胞疫苗免疫的人抗凝血中分离获得外周淋巴细胞,提取细胞总RNA,通过RTPCR方法,用一组人IgG Fab基因4特异性引物,从合成的cDNA中扩增了一组轻链和重链Fab段基因,将轻链和重链Fab段基因,将轻链和重链先后克隆入噬菌体载体pComb3,成功地建立了抗狂犬病毒抗原的方法,对此抗体库进行富积筛选表达,成功地获得了抗狂犬病毒的人源单抗Fab段基因及其在大肠杆菌中的有效表达,对其中一株单抗G10进行了较为系统的分析,发现它与一株鼠源中和性狂犬病毒糖蛋白特异性单抗存在竞争,证实该单抗能识别狂犬病毒糖蛋白,其序列资料分析表明,该单抗为一株新的抗狂犬病毒人源基因工程抗体。  相似文献   

18.
The enormous diversity created by gene recombination and somatic hypermutation makes de novo protein sequencing of monoclonal antibodies a uniquely challenging problem. Modern mass spectrometry-based sequencing will rarely, if ever, provide a single unambiguous sequence for the variable domains. A more likely outcome is computation of an ensemble of highly similar sequences that can satisfy the experimental data. This outcome can result in the need for empirical testing of many candidate sequences, sometimes iteratively, to identity one which can replicate the activity of the parental antibody. Here we describe an improved approach to antibody protein sequencing by using phage display technology to generate a combinatorial library of sequences that satisfy the mass spectrometry data, and selecting for functional candidates that bind antigen. This approach was used to reverse engineer 2 commercially-obtained monoclonal antibodies against murine CD137. Proteomic data enabled us to assign the majority of the variable domain sequences, with the exception of 3–5% of the sequence located within or adjacent to complementarity-determining regions. To efficiently resolve the sequence in these regions, small phage-displayed libraries were generated and subjected to antigen binding selection. Following enrichment of antigen-binding clones, 2 clones were selected for each antibody and recombinantly expressed as antigen-binding fragments (Fabs). In both cases, the reverse-engineered Fabs exhibited identical antigen binding affinity, within error, as Fabs produced from the commercial IgGs. This combination of proteomic and protein engineering techniques provides a useful approach to simplifying the technically challenging process of reverse engineering monoclonal antibodies from protein material.  相似文献   

19.
The dual specificity phosphatase PTEN exerts its tumour suppressor and cell-migration regulatory functions by dephosphorylating the phospholipid substrate, phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P(3)), and phosphotyrosine protein substrates. PTEN functions are regulated by phospholipid binding, interactions with other cellular proteins and phosphorylation at multiple sites. Precisely, how the phosphorylation and binding events modulate PTEN activity and structure remains mostly unclear. Detailed studies of this issue require the availability of significant quantity of both the unphosphorylated and phosphorylated forms of purified recombinant PTEN. Here, we describe the successful expression and purification of recombinant rat PTEN using a baculovirus-infected Spodoptera frugiperda (Sf9) cell expression system. The recombinant PTEN was purified to near homogeneity using four sequential column chromatographic steps. The specific enzymatic activity of the purified preparation in dephosphorylating PI(3,4,5,)P(3) and the artificial phosphotyrosine substrate poly(Glu/Tyr) are 6.7 nmol/min/microg and 0.006 pmol/min/microg, respectively. Intriguingly, similar to PTEN expressed in mammalian cells, the recombinant PTEN was phosphorylated in the infected insect cells at Ser-380, Thr-382, and Thr-383 at the C-terminal tail. Treatment with alkaline phosphatase fully dephosphorylated these sites. After the treatment, the unphosphorylated PTEN and alkaline phosphatase could be separated by ion exchange column chromatography. The availability of the phosphorylated and unphosphorylated forms of recombinant PTEN permits future investigations into the three-dimensional structures of the phosphorylated and unphosphorylated forms of PTEN, and the role of phosphorylation in regulating PTEN activity, phospholipid- and protein-binding affinities.  相似文献   

20.
目的:基于B细胞表位制备抗肝细胞生成素(HPO)的抗体。方法:根据HPO的空间结构选择了2个候选B细胞表位,展示在T7噬菌体的表面,将提取的重组噬菌体免疫动物,采用ELISA法检测抗血清的效价,通过杂交瘤技术制备针对HPOC端表位的单克隆抗体。结果:2个候选B细胞表位KDGSCD和DGWKDGSC均能诱导抗相应表位多肽的多克隆抗体的产生,免疫6周后血清中抗体效价均达到1∶103,产生的抗体还能够特异识别HPO全蛋白;针对HPOC端表位KDGSCD的单克隆抗体也能识别HPO全蛋白,且具有良好的特异性。结论:基于T7噬菌体展示的B细胞表位可作为免疫原用于制备识别该B细胞表位来源的全蛋白质的抗体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号