首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Deep accidental hypothermia (core temperature <28 degrees C) is an uncommon medical emergency requiring rapid active core rewarming. Extracorporeal circulation has become the treatment of choice for deep hypothermic patients with cardiac arrest. CASE REPORT: We report on a 30-year-old patient who suffered from deep accidental hypothermia (core temperature 24.8 degrees C) and cardiac arrest by prolonged exposure to a cold urban environment as a consequence of severe ethylalcohol intoxication. The rewarming with the aid of extracorporeal circulation was initiated shortly after his arrival at the hospital. External cardiac massage was maintained until full ECC fl ow was established. The patient was weaned from extracorporeal circulation after 157 min, awaked 4 hours later and consequently extubated within 16 hours after rewarming with no neurological impairment. At 3-week follow-up, the patient was fully re-integrated in his work and personal life. CONCLUSION: This case demonstrates the excellent prognosis of a young victim in the case of deep accidental hypothermia with cardiac arrest, provided that deep hypothermia precedes the cardiac arrest and rewarming by extracorporeal circulation is immediately applied. Simultaneous ethyl alcohol intoxication can be considered a protective factor improving the patient's outcome. Complete recovery was achieved within 24 hours after the accident.  相似文献   

2.
A 15-year prospective study was carried out of 44 patients with accidental hypothermia (mean age 60 years) admitted to an intensive therapy unit. The lowest core temperature recorded in each patient ranged from 20.0 to 34.3 degrees C. The precipitating factors were poisoning (by drugs, alcohol, or coal gas) in 25 cases and various illnesses in 19. Rewarming was achieved in 42 patients by applying a radiant heat cradle over the torso, and in two patients by mediastinal irrigation with warmed fluids. Twelve patients died, but only two during the period of rewarming. Thus rewarming may be consistently and safely achieved irrespective of the cause of hypothermia, and normal body temperature may be regained as rapidly as is compatible with adequate tissue perfusion and oxygenation. Surface rewarming of the torso is perhaps the simplest technique available, but internal rewarming procedures may be desirable or essential in the presence of, for example, profound hypothermia, severe hypotension, or ventricular fibrillation. Mortality was attributable to underlying factors or disease and not to hypothermia.  相似文献   

3.
Walter Zingg 《CMAJ》1967,96(4):214-218
Accidental general hypothermia is defined as an unintentional lowering of the body temperature in a previously conscious patient due to exposure. Even mild degrees of hypothermia may be followed by death if treatment is not instituted promptly. Hypothermic patients who are still conscious may rewarm spontaneously. They should not be left unattended and, if the facilities are available, rapid rewarming appears to be the treatment of choice. Unconscious patients who are presumed to have a lower temperature of prolonged duration may not benefit from rapid rewarming. All hypothermia victims showing signs of life are potential survivors, but even with good facilities the mortality rate may be high.  相似文献   

4.

Background

Severe accidental hypothermia represents a cardiovascular emergency associated with high mortality and poor recovery of cardiac function. The biochemical changes occurring within the heart during the development of hypothermia and subsequent resuscitation are not known.

Methods

By mRNA expression profiling, we have characterized gene expression changes occurring within the myocardium in an intact rat model of accidental hypothermia during cooling to a core temperature of 15 °C and subsequent rewarming to 37 °C. During the rewarming phase, these animals develop a profound low-output cardiac failure.

Results

Hypothermia induces expression of known mediators of thermotolerance, including heat-shock protein 70 and several factors involved in protection against apoptotic cell death. Upregulation of genes involved in autophagy and increased abundance of autophagosomal vesicles suggest involvement of autophagic degeneration in the development of myocardial dysfunction occurring during rewarming from hypothermia. Rewarming from hypothermia also induces expression of several pro-inflammatory genes involved in the nuclear factor kappa B (NFκB) signaling cascade.

Conclusions

Our data demonstrate that rewarming from hypothermia is associated with the induction of a cellular stress–response, including upregulation of autophagy and activation of pro-inflammatory signaling cascades. These data provide a framework for understanding the molecular changes that occur during induction of and rewarming from severe hypothermia, and identifies potential targets for cardioprotective interventions in resuscitation of victims of hypothermia.  相似文献   

5.
6.
Accidental hypothermia has a high mortality and is associated with cardiac arrhythmias. To determine the incidence of arrhythmias and their importance 22 patients with accidental hypothermia (core temperature less than 35 degrees C) were studied by 12 lead electrocardiography and continuous recording of cardiac rhythm. Although 14 of the patients died (64%), only six died while hypothermic. Prolongation of the Q-T interval and the presence of J waves were related to the severity of the hypothermia. Supraventricular arrhythmias, including atrial fibrillation, were common (nine cases) and benign. Ventricular extrasystoles were also common (10 cases), but ventricular tachycardia or fibrillation did not occur during rewarming. In eight patients who died while being monitored the terminal rhythm was asystole. There was no correlation between the severity of hypothermia or the rate of rewarming and the clinical outcome. In the absence of malignant arrhythmias there is no indication for using prophylactic antiarrhythmic treatment in patients with accidental hypothermia. The presence or absence of severe underlying disease is the main determinant of prognosis.  相似文献   

7.
U Rauen  F Petrat  T Li  H De Groot 《FASEB journal》2000,14(13):1953-1964
When incubated at 4 degrees C, cultured rat hepatocytes or liver endothelial cells exhibit pronounced injury and, during earlier rewarming, marked apoptosis. Both processes are mediated by reactive oxygen species, and marked protective effects of iron chelators as well as the protection provided by various other antioxidants suggest that hydroxyl radicals, formed by classical Fenton chemistry, are involved. However, when we measured the Fenton chemistry educt hydrogen peroxide and its precursor, the superoxide anion radical, formation of both had markedly decreased and steady-state levels of hydrogen peroxide did not alter during cold incubation of either liver endothelial cells or hepatocytes. Similarly, there was no evidence of an increase in O2-/H2O2 release contributing to cold-induced apoptosis occurring on rewarming. In contrast to the release/level of O2- and H2O2, cellular homeostasis of the transition metal iron is likely to play a key role during cold incubation of cultured hepatocytes: the hepatocellular pool of chelatable iron, measured on a single-cell level using laser scanning microscopy and the fluorescent indicator phen green, increased from 3.1 +/- 2.3 microM (before cold incubation) to 7.7 +/- 2.4 microM within 90 min after initiation of cold incubation. This increase in the cellular chelatable iron pool was reversible on rewarming after short periods of cold incubation. The cold-induced increase in the hepatocellular chelatable iron pool was confirmed using the calcein method. These data suggest that free radical-mediated hypothermia injury/cold-induced apoptosis is primarily evoked by alterations in the cellular iron homeostasis/a rapid increase in the cellular chelatable iron pool and not by increased formation of O2-/H2O2.  相似文献   

8.
Peripheral blood flow during rewarming from mild hypothermia in humans   总被引:2,自引:0,他引:2  
During the initial stages of rewarming from hypothermia, there is a continued cooling of the core, or after-drop in temperature, that has been attributed to the return of cold blood due to peripheral vasodilatation, thus causing a further decrease of deep body temperature. To examine this possibility more carefully, subjects were immersed in cold water (17 degrees C), and then rewarmed from a mildly hypothermic state in a warm bath (40 degrees C). Measurements of hand blood flow were made by calorimetry and of forearm, calf, and foot blood flows by straingauge venous occlusion plethysmography at rest (Ta = 22 degrees C) and during rewarming. There was a small increase in skin blood flow during the falling phase of core temperature upon rewarming in the warm bath, but none in foot blood flow upon rewarming at room air, suggesting that skin blood flow seems to contribute to the after-drop, but only minimally. Limb blood flow changes during this phase suggest that a small muscle blood flow could also have contributed to the after-drop. It was concluded that the after-drop of core temperature during rewarming from mild hypothermia does not result from a large vasodilatation in the superficial parts of the periphery, as postulated. The possible contribution of mechanisms of heat conduction, heat convection, and cessation of shivering thermogenesis were discussed.  相似文献   

9.
Temperature variations in cells, tissues and organs may occur in a number of circumstances. We report here that reducing temperature of cells in culture to 25°C for 5 days followed by a rewarming to 37°C affects cell biology and induces a cellular stress response. Cell proliferation was almost arrested during mild hypothermia and not restored upon returning to 37°C. The expression of cold shock genes, CIRBP and RBM3, was increased at 25°C and returned to basal level upon rewarming while that of heat shock protein HSP70 was inversely regulated. An activation of pro-apoptotic pathways was evidenced by FACS analysis and increased Bax/Bcl2 and BclXS/L ratios. Concomitant increased expression of the autophagosome-associated protein LC3II and AKT phosphorylation suggested a simultaneous activation of autophagy and pro-survival pathways. However, a large proportion of cells were dying 24 hours after rewarming. The occurrence of DNA damage was evidenced by the increased phosphorylation of p53 and H2AX, a hallmark of DNA breaks. The latter process, as well as apoptosis, was strongly reduced by the radical oxygen species (ROS) scavenger, N-acetylcysteine, indicating a causal relationship between ROS, DNA damage and cell death during mild cold shock and rewarming. These data bring new insights into the potential deleterious effects of mild hypothermia and rewarming used in various research and therapeutical fields.  相似文献   

10.
An attempt was made to demonstrate the importance of increased perfusion of cold tissue in core temperature afterdrop. Five male subjects were cooled twice in water (8 degrees C) for 53-80 min. They were then rewarmed by one of two methods (shivering thermogenesis or treadmill exercise) for another 40-65 min, after which they entered a warm bath (40 degrees C). Esophageal temperature (Tes) as well as thigh and calf muscle temperatures at three depths (1.5, 3.0, and 4.5 cm) were measured. Cold water immersion was terminated at Tes varying between 33.0 and 34.5 degrees C. For each subject this temperature was similar in both trials. The initial core temperature afterdrop was 58% greater during exercise (mean +/- SE, 0.65 +/- 0.10 degrees C) than shivering (0.41 +/- 0.06 degrees C) (P < 0.005). Within the first 5 min after subjects entered the warm bath the initial rate of rewarming (previously established during shivering or exercise, approximately 0.07 degrees C/min) decreased. The attenuation was 0.088 +/- 0.03 degrees C/min (P < 0.025) after shivering and 0.062 +/- 0.022 degrees C/min (P < 0.025) after exercise. In 4 of 10 trials (2 after shivering and 2 after exercise) a second afterdrop occurred during this period. We suggest that increased perfusion of cold tissue is one probable mechanism responsible for attenuation or reversal of the initial rewarming rate. These results have important implications for treatment of hypothermia victims, even when treatment commences long after removal from cold water.  相似文献   

11.
It has now been firmly established that, not only ischemia/reperfusion, but also cold itself causes damage during kidney transplantation. Iron chelators or anti-oxidants applied during the cold plus rewarming phase are able to prevent this damage. At present, it is unknown if these measures act only during the cold, or whether application during the rewarming phase also prevents damage. We aimed to study this after cold normoxic and hypoxic conditions. LLC-PK1 cells were incubated at 4 degrees C in Krebs-Henseleit buffer for 6 or 24h, followed by 18 or 6h rewarming, respectively. Cold preservation was performed under both normoxic (95% air/5% CO2) and hypoxic (95% N2/5% CO2) conditions. The iron chelator 2,2'-DPD (100 microM), anti-oxidants BHT (20 microM) or sibilinin (200 microM), and xanthine oxidase inhibitor allopurinol (100 microM) were added during either cold preservation plus rewarming, or rewarming alone. Cell damage was assessed by LDH release (n=3-9). Addition of 2,2'-DPD and BHT during cold hypoxia plus rewarming did, but during rewarming alone did not prevent cell damage. When added during rewarming after 6h cold normoxic incubation, BHT and 2,2'-DPD inhibited rewarming injury compared to control (p<0.05). Allopurinol did not prevent cell damage in any experimental set-up. Our data show that application of iron chelators or anti-oxidants during the rewarming phase protects cells after normoxic but not hypoxic incubation. Allopurinol had no effect. Since kidneys are hypoxic during transplantation, measures aimed at preventing cold-induced and rewarming injury should be taken during the cold.  相似文献   

12.
Concern is growing about the number of elderly people dying of hypothermia. A register was compiled of patients over 75 on a general practitioner''s list who were identified from their medical records as being at risk of hypothermia, having two or more established risk factors. Twenty four patients from this register were visited early in winter by a doctor to discuss how hypothermia could be prevented. They were then revisited during very cold weather to see whether they had made any changes. Several improvements to heating arrangements were noted, but the median temperature in the bedrooms of houses with no central heating was 10 degrees C below the World Health Organisation''s recommended temperature. In addition, eight patients were not visited daily. Even with media publicity and visits from carers and a doctor, 17 of the 24 elderly people studied continued to live in an environment in which they were at risk of developing hypothermia.  相似文献   

13.
J. W. Martyn 《CMAJ》1981,125(10):1089-1096
Mild or moderate hypothermia may be underdiagnosed in Canada. This paper presents five cases of treated hypothermia, describes the pathophysiologic aspects of cold injuries and discusses the rationale and techniques of rewarming. An orderly series of specific clinical and laboratory observations is proposed to ensure prompt and accurate diagnosis and treatment, and to improve the management of hypothermia.  相似文献   

14.
Rewarming from accidental hypothermia is often complicated by "rewarming shock," characterized by low cardiac output (CO) and a sudden fall in peripheral arterial pressure. In this study, we tested whether epinephrine (Epi) is able to prevent rewarming shock when given intravenously during rewarming from experimental hypothermia in doses tested to elevate CO and induce vasodilation, or lack of vasodilation, during normothermia. A rat model designed for circulatory studies during experimental hypothermia and rewarming was used. A total of six groups of animals were used: normothermic groups 1, 2, and 3 for dose-finding studies, and hypothermic groups 4, 5, and 6. At 20 and 24 degrees C during rewarming, group 4 (low-dose Epi) and group 5 (high-dose Epi) received bolus injections of 0.1 and 1.0 microg Epi, respectively. At 28 degrees C, Epi infusion was started in groups 4 and 5 with 0.125 and 1.25 microg/min, respectively. Group 6 served as saline control. After rewarming, both CO and stroke volume were restored in group 4, in contrast to groups 5 and 6, in which both CO and stroke volume remained significantly reduced (30%). Total peripheral resistance was significantly higher in group 5 during rewarming from 24 to 34 degrees C, compared with groups 4 and 6. This study shows that, in contrast to normothermic conditions, Epi infused during hypothermia induces vasoconstriction rather than vasodilation combined with lack of CO elevation. The apparent dissociation between myocardial and vascular responses to Epi at low temperatures may be related to hypothermia-induced myocardial failure and changes in temperature-dependent adrenoreceptor affinity.  相似文献   

15.
It has been postulated that unsuccessful resuscitation of victims of accidental hypothermia is caused by insufficient tissue oxygenation. The aim of this study was to test whether inadequate O2 supply and/or malfunctioning O2 extraction occur during rewarming from deep/profound hypothermia of different duration. Three groups of rats (n = 7 each) were used: group 1 served as normothermic control for 5 h; groups 2 and 3 were core cooled to 15 degrees C, kept at 15 degrees C for 1 and 5 h, respectively, and then rewarmed. In both hypothermic groups, cardiac output (CO) decreased spontaneously by > 50% in response to cooling. O2 consumption fell to less than one-third during cooling but recovered completely in both groups during rewarming. During hypothermia, circulating blood volume in both groups was reduced to approximately one-third of baseline, indicating that some vascular beds were critically perfused during hypothermia. CO recovered completely in animals rewarmed after 1 h (group 2) but recovered to only 60% in those rewarmed after 5 h (group 3), whereas blood volume increased to approximately three-fourths of baseline in both groups. Metabolic acidosis was observed only after 5 h of hypothermia (15 degrees C). A significant increase in myocardial tissue heat shock protein 70 after rewarming in group 3, but not in group 2, indicates an association with the duration of hypothermia. Thus mechanisms facilitating O2 extraction function well during deep/profound hypothermia, and, despite low CO, O2 supply was not a limiting factor for survival in the present experiments.  相似文献   

16.
Cold preservation results in cell death via iron-dependent formation of reactive oxygen species, leading to apoptosis during rewarming. We aimed to study cold-induced damage (i.e., injury as a consequence of hypothermia itself and not cold ischemia) in proximal tubular cells (PTC) in various preservation solutions presently applied and to clarify the role of mitochondria in this injury. Primary cultures of rat PTC were incubated at 4 degrees C for 24 h in culture medium, UW, Euro-Collins or HTK solution with and without the iron chelator desferal and rewarmed at 37 degrees C in culture medium. Cell damage, morphology, and apoptosis were studied and mitochondrial membrane potential was assessed by fluorescence microscopy. Cold incubation of PTC in culture medium followed by rewarming caused marked cell damage compared to warm incubation alone (LDH release 39+/-10% vs. 1.6+/-0.3%). Cold-induced damage was aggravated in all preservation solutions (LDH release 85+/-2% for UW; similar in Euro-Collins and HTK). After rewarming, cells showed features suggestive for apoptosis. Desferal prevented cell injury in all solutions (e.g., 8+/-2% for UW). Mitochondrial membrane potential was lost during rewarming and this loss could also be inhibited by desferal. Trifluoperazine, which is known to inhibit mitochondrial permeability transition (MPT), was able to prevent cold-induced injury (LDH 85+/-5% vs. 12+/-2%). We conclude that cold-induced injury occurs in PTC and is aggravated by UW, Euro-Collins, and HTK solution. Iron-dependent MPT is suggested to play a role in this damage. Strategies to prevent cold-induced injury should aim at reducing the availability of "free" iron.  相似文献   

17.
Ultra profound hypothermia (4 to 10 degrees C) is an experimental method aiming at safely prolonging organ and total body preservation. For this purpose, Hypothermosol (HTS), an investigational acellular solution for blood substitution, was demonstrated to be beneficial in animal models undergoing cardiopulmonary bypass. We investigated the beneficial versus deleterious effects of cold preservation and the role of HTS on isolated coronary arteries (CA) during cold exposure, rewarming, and post-rewarming exposure to anoxia. Newborn lamb CA rings were studied using a tissue bath technique. CA were subjected to cold (7 degrees C for 3 h) and treated with either Krebs' buffer (Krebs/hypothermia) or HTS (HTS/hypothermia) (n = 15 each). A third group maintained at 37 degrees C (Krebs/normothermia) (n = 18) served as a time control. After rewarming (37 degrees C), precontracted CA were exposed to anoxia. In Krebs/hypothermia a substantial hypercontraction (g) occurred during rewarming (1.21+/-0.07) (mean +/- SEM) but not in HTS/hypothermia (0.79+/-0.03); P<0.05. Precontraction force generated by indomethacin/U46619 was identical in all three groups. However, Krebs/hypothermia vessels demonstrated a significantly higher relative vasoconstriction (percentage) in the early (approximately 10 min) and late (30 min) anoxia exposure than the HTS/hypothermia and time control (119.5%+/- 3.7 vs. 109.5%+/-4.4 and 101.5%+/-3, and 71%+/-7.6 vs. 38.9%+/-7 and 51.5%+/-5.9, respectively; P<0.05). In conclusion, Ultra profound hypothermia promotes coronary vasoconstriction upon rewarming, which is detrimental to relaxant response to hypoxia. Both phenomena are alleviated by performing ultra profound hypothermia under HTS protection.  相似文献   

18.
Trunk-only bath rewarming has often been recommended over whole-body bath rewarming as a method for the treatment of immersion hypothermia. At present, no report of a direct comparison of the relative merits of these techniques has been made. Authorities in favor of trunk-only bath rewarming base their proposal on the assumption that core temperature afterdrop would be minimized by preventing peripheral vasodilation when the subject's limbs are not immersed in the rewarming bath. In the present study, trunk-only and whole-body bath rewarming are compared by rewarming eight mildly hypothermic male subjects twice, once via each technique. It was concluded that trunk-only rewarming is not superior to whole-body bath rewarming as a therapy for mild immersion hypothermia, based on the findings that no significant differences existed between the two techniques, either in size or duration of core temperature afterdrop, or in rate of rewarming.  相似文献   

19.
The aim of this study was to evaluate the effect of mild hypothermia on the coagulation-fibrinolysis system and physiological anticoagulants after cardiopulmonary resuscitation (CPR). A total of 20 male Wuzhishan miniature pigs underwent 8 min of untreated ventricular fibrillation and CPR. Of these, 16 were successfully resuscitated and were randomized into the mild hypothermia group (MH, n = 8) or the control normothermia group (CN, n = 8). Mild hypothermia (33°C) was induced intravascularly, and this temperature was maintained for 12 h before pigs were actively rewarmed. The CN group received normothermic post-cardiac arrest (CA) care for 72 h. Four animals were in the sham operation group (SO). Blood samples were taken at baseline, and 0.5, 6, 12, 24, and 72 h after ROSC. Whole-body mild hypothermia impaired blood coagulation during cooling, but attenuated blood coagulation impairment at 72 h after ROSC. Mild hypothermia also increased serum levels of physiological anticoagulants, such as PRO C and AT-III during cooling and after rewarming, decreased EPCR and TFPI levels during cooling but not after rewarming, and inhibited fibrinolysis and platelet activation during cooling and after rewarming. Finally, mild hypothermia did not affect coagulation-fibrinolysis, physiological anticoagulants, or platelet activation during rewarming. Thus, our findings indicate that mild hypothermia exerted an anticoagulant effect during cooling, which may have inhibitory effects on microthrombus formation. Furthermore, mild hypothermia inhibited fibrinolysis and platelet activation during cooling and attenuated blood coagulation impairment after rewarming. Slow rewarming had no obvious adverse effects on blood coagulation.  相似文献   

20.
Rewarming patients from accidental hypothermia are regularly complicated with cardiovascular instability ranging from minor depression of cardiac output to fatal circulatory collapse also termed “rewarming shock”. Since altered Ca2+ handling may play a role in hypothermia-induced heart failure, we studied changes in Ca2+ homeostasis in in situ hearts following hypothermia and rewarming. A rat model designed for studies of the intact heart in a non-arrested state during hypothermia and rewarming was used. Rats were core cooled to 15 °C, maintained at 15 °C for 4 h and thereafter rewarmed. As time-matched controls, one group of animals was kept at 37 °C for 5 h. Total intracellular myocardial Ca2+ content ([Ca2+]i) was measured using 45Ca2+. Following rewarming we found a significant reduction of stroke volume and cardiac output compared to prehypothermic control values as well as to time-matched controls. Likewise, we found that hypothermia and rewarming resulted in a more than six-fold increase in [Ca2+]i to 3.01 ± 0.43 μmol/g dry weight compared to 0.44 ± 0.05 μmol/g dry weight in normothemia control. These findings indicate that hypothermia-induced alterations in the Ca2+-handling result in Ca2+ overload during hypothermia, which may contribute to myocardial failure during and after rewarming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号