首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diabetes mellitus is one of the most common metabolic diseases worldwide and its prevalence is rapidly increasing. Due to its chronic nature (diabetes mellitus can be treated but as yet not cured) and its serious complications, it is one of the most expensive diseases with regard to total health care costs per patient. The elevated blood glucose levels in diabetes mellitus are caused by a defect in production and/or secretion of the polypeptide hormone insulin, which normally promotes glucose-uptake in cells. Insulin is produced by the pancreatic 'beta-cells' in the 'islets of Langerhans', which lie distributed within the exocrine pancreatic tissue. In type 2 diabetes mellitus, the initial defect in the pathogenesis of the disease in most of the patients is believed to be 'insulin resistance'. Hyperglycemia (clinically overt diabetes mellitus) will not develop as long as the body is able to produce enough insulin to compensate for the reduced insulin action. When this compensation fails ('beta-cell failure') blood glucose levels will become too high. In this review, we discuss one of the mechanisms that have been implicated in the development of beta-cell failure, i.e. amyloid formation in the pancreatic islets. This islet amyloid is a characteristic histopathological feature of type 2 diabetes mellitus and both in vitro and in vivo studies have revealed that its formation causes death of islet beta-cells. Being a common pathogenic factor in an otherwise heterogeneous disease, islet amyloidosis is an attractive novel target for therapeutic intervention in type 2 diabetes mellitus.  相似文献   

2.
聂玲玲  缪珩 《生物磁学》2013,(3):582-586,593
糖尿病(DM)是一种慢性终身性疾病,目前已成为严重威胁人类健康的世界性公共卫生问题,2型糖尿病患者也逐渐增加。流行病学调查显示,目前全球大约有近2亿糖尿病患者,其中2型糖尿病占90%~95%。2型糖尿病发病机理是胰岛素分泌的相对或绝对不足伴有或不伴有胰岛素抵抗,持续的高血糖可严重抑制胰岛功能。严格的血糖控制能够延缓糖尿病慢性并发症的发生和发展,延长了患者的预期寿命。但是随着血糖控制达标,发生低血糖的危险性增加了,低血糖不仅严重阻碍了良好血糖控制,而且严重低血糖还是2型糖尿病致死、致残的重要原因。本文探讨2型糖尿病患者治疗中低血糖发生的原因、诱发因素以及可能的解决方案。  相似文献   

3.
PURPOSE OF REVIEW: Low HDL-cholesterol, diabetes mellitus and elevated C-reactive protein as well as various inflammatory diseases are risk factors for coronary heart disease. Both diabetes mellitus and inflammation decrease HDL-cholesterol. We summarize recent findings on the mechanisms underlying low HDL-cholesterol in diabetes and inflammation, as well as on novel functions of HDL that may protect not only from atherosclerosis but also from diabetes mellitus and inflammation-induced organ damage. RECENT FINDINGS: Elevated levels of non-esterified fatty acids and disturbed insulin action contribute to low HDL-cholesterol in diabetes mellitus by modifying lipolysis, apolipoprotein A-I production, as well as the activities of adenosine triphosphate-binding cassette transporter A1 and lipid transfer. Inflammation causes low HDL-cholesterol by increasing the activities of endothelial lipase and soluble phospholipase A2 and by replacing apolipoprotein A-I in HDL with serum amyloid A. HDL and lysosphingolipids therein have been identified as activators of the protein kinase Akt, which in turn is a regulator of apoptosis in beta-cells, endothelial cells, and smooth muscle cells, as well as a regulator of nitric oxide production and adhesion molecule expression in endothelial cells. SUMMARY: The protective properties of HDL in cytokine production, lipid oxidation, cholesterol efflux and reverse cholesterol transport make HDL a protective agent in inflammation-induced organ damage including diabetes mellitus. However, inflammation and diabetes cause a decrease in HDL-cholesterol concentrations and impair HDL function, placing HDL into the centre of a vicious cycle that may escalate into diabetes mellitus, inflammation-induced organ damage and atherosclerosis.  相似文献   

4.
人胚胎干细胞(hESCs)因具有无限增殖能力以及多向分化潜能,使其能为糖尿病的细胞治疗提供充足且功能完备的替代细胞。近年来,虽然有许多成功将人胚胎干细胞诱导为胰岛素阳性细胞的报道,但诱导所得的胰岛素阳性细胞仍存在很多缺陷,如效率较低,细胞功能不完备等。本文将关注人们在提高人胚胎干细胞向胰岛素阳性细胞的诱导效率及获得具有成熟β细胞功能的胰岛素阳性细胞的各种努力和尝试。  相似文献   

5.
Type 2 diabetes mellitus is a complex metabolic disorder resulting from the action and interaction of many genetic and environmental factors. It has been reported that polymorphisms in genes involved in the metabolism of glucose are associated with the susceptibility to develop type 2 diabetes mellitus. Although the risk of developing type 2 diabetes mellitus increases with age, as well as with obesity and hypertension, its prevalence and incidence are different among geographical regions and ethnic groups. In Mexico, a higher prevalence and incidence has been described in the south of the country, and differences between urban and rural communities have been observed.We studied 73 individuals from Santiago Jamiltepec, a small indigenous community from Oaxaca State, Mexico. This population has shown a high prevalence of type 2 diabetes mellitus, and the aim of this study was to analyze the relationship between the Pst I (insulin gene), Nsi I (insulin receptor gene) and Gly972Arg (insulin receptor substrate 1 gene) polymorphisms and type 2 diabetes mellitus, obesity and hypertension in this population. Clinical evaluation consisted of BMI and blood pressure measurements, and biochemical assays consisted of determination of fasting plasma insulin and glucose levels. PCR and restriction enzyme digestion analysis were applied to genomic DNA to identify the three polymorphisms. From statistical analysis carried out here, individually, the Pst I, Nsi I and Gly972Arg polymorphisms were not associated with the type 2 diabetes, obese or hypertensive phenotypes in this population. Nevertheless, there was an association between the Nsi I and Pst I polymorphisms and increased serum insulin levels.  相似文献   

6.
Characteristics of a somatostatin-binding protein   总被引:1,自引:0,他引:1  
The concentrations of a somatostatin-binding protein, found in the cytosol of a number of rat tissues, are similar in both sexes, and hypophysectomy has little or no effect on the level of binding protein in tissue extracts. On the other hand, streptozotocin-induced diabetes mellitus causes a modest decrease. The somatostatin-binding proteins obtained from extracts of several rat tissues are not only similar in molecular weight but also exhibit a similar isoelectric point and electrophoretic mobility. Agents that block thiol groups or prevent the formation of disulfide bridges markedly decrease the binding of somatostatin to the cytoplasmic protein. Studies using thiol reagents and gel filtration suggest that free thiol groups in somatostatin-binding protein are important for the binding of somatostatin.  相似文献   

7.
8.
The term diabetes mellitus describes a metabolic disorder resulting from defects in insulin secretion, insulin action, or both. People with diabetes are at increased risk of cardiovascular, peripheral and cerebrovascular disease. In consequence, it is important to better understand early step in this disease in order to prevent complications. Incretine hormones are defined as intestinal hormones released in response to nutrient ingestion, which potentiate the glucose-induced insulin response. The incretine effect is mainly caused by two peptide hormones, glucose-dependent insulin releasing polypeptide (GIP) and glucagons-like peptide-1 (GLP-1). Analogs of GLP-1 and dipeptidyl-peptidase IV (DPP-IV) inhibitors are actually used as antidiabetic drugs. Adiponectin is an adipokine, which is expressed in adipose tissue and is thought to play an important role in glucose metabolism. Hypoadiponectinemia was related to obesity, insulin-resistance and as a risk factor of diabetes, cardiovascular events and death. Plasmatic quantification of GLP-1 and adiponectin should improve insulin-resistance diagnosis and diabetes prevention.  相似文献   

9.
Alloxan exhibits the most potent diabetogenicity and has been used for induction of experimental diabetes mellitus. Understanding the mechanisms of action of the typical diabetogenic agent is important for elucidating the causes of diabetes. Okamoto (Okamoto, H. (1985) BioEssays 2, 15-21) proposed a model in which DNA fragmentation plays an important role for the development of diabetes. This DNA fragmentation is supposed to result from the accumulation of superoxide or hydroxyl radicals. However, direct evidence for this accumulation is lacking. Using rat pancreatic islets, we demonstrated that alloxan stimulated H2O2 generation, which induced DNA strand breaks. These findings support Okamoto's proposal that alloxan induces diabetes through the following biochemical events: alloxan----H2O2 generation----DNA strand breaks----diabetes mellitus. Perhaps this report constitutes the first demonstration of alloxan-stimulated H2O2 generation which could conceivably act as an intermediate for alloxan-induced DNA strand breaks.  相似文献   

10.
Pancreatic beta-cells in the islet of Langerhans produce the hormone insulin, which maintains blood glucose homeostasis. Perturbations in beta-cell function may lead to impairment of insulin production and secretion and the onset of diabetes mellitus. Several essential beta-cell factors have been identified that are required for normal beta-cell function, including six genes that when mutated give rise to inherited forms of diabetes known as Maturity Onset Diabetes of the Young (MODY). However, the intracellular signaling pathways that control expression of MODY and other factors continue to be revealed. Post-transplant diabetes mellitus in patients taking the calcineurin inhibitors tacrolimus (FK506) or cyclosporin A indicates that calcineurin and its substrate the Nuclear Factor of Activated T-cells (NFAT) may be required for beta-cell function. Here recent advances in our understanding of calcineurin and NFAT signaling in the beta-cell are reviewed. Novel therapeutic approaches for the treatment of diabetes are also discussed.  相似文献   

11.
Mechanisms of magnesium homeostasis intensively studied over the last 10–15 years by means of pathophysiological and molecular genetic approaches have been considered. Impairments of magnesium homeostasis causes the development of magnesium-deficient states, which have been found in many common diseases (diabetes mellitus, cardiovascular diseases, chronic fatigue syndrome, alcoholism, psychiatric and neurologic diseases, etc.), stress condition, effects of some environmental factors as well as therapy with some drugs. Special attention is paid to familial hypomagnesemias caused by genetic defects of magnesium transport systems. The review considers clinical and biochemical characteristics of twelve familial disorders including mechanisms of their development. Deeper understanding of mechanisms of regulation of magnesium homeostasis will results in the development of new approaches in diagnostics, prophylaxis and treatment of magnesium-deficient conditions.  相似文献   

12.
Type 2 (non-insulin-dependent) diabetes mellitus is a progressive metabolic disorder arising from genetic and environmental factors that impair beta cell function and insulin action in peripheral tissues. We identified reduced diacylglycerol kinase delta (DGKdelta) expression and DGK activity in skeletal muscle from type 2 diabetic patients. In diabetic animals, reduced DGKdelta protein and DGK kinase activity were restored upon correction of glycemia. DGKdelta haploinsufficiency increased diacylglycerol content, reduced peripheral insulin sensitivity, insulin signaling, and glucose transport, and led to age-dependent obesity. Metabolic flexibility, evident by the transition between lipid and carbohydrate utilization during fasted and fed conditions, was impaired in DGKdelta haploinsufficient mice. We reveal a previously unrecognized role for DGKdelta in contributing to hyperglycemia-induced peripheral insulin resistance and thereby exacerbating the severity of type 2 diabetes. DGKdelta deficiency causes peripheral insulin resistance and metabolic inflexibility. These defects in glucose and energy homeostasis contribute to mild obesity later in life.  相似文献   

13.
Overproduction of glutamate by Corynebacterium glutamicum is induced by biotin limitation or by the supplementation of specific detergents, sublethal amounts of penicillin, or cerulenin. But, it remains unclear why these different treatments, which have different sites of primary action, produce similar effects.In this study, it was found that the cellular content of mycolic acids--characteristic constituents of Corynebacterineae that are synthesized from fatty acids and form a cell surface layer--decreased under all conditions that induced glutamate overproduction. Furthermore, short mycolic acids increased under conditions of biotin limitation and cerulenin supplementation. These results suggest that different treatments produce the same effect that causes defects in the mycolic acid layer. This is perhaps one of the key factors in overproduction of glutamate by C. glutamicum.  相似文献   

14.
An important role in atherogenesis is played by oxidative stress, which may be induced by common risk factors. Mitochondria are both sources and targets of reactive oxygen species, and there is growing evidence that mitochondrial dysfunction may be a relevant intermediate mechanism by which cardiovascular risk factors lead to the formation of vascular lesions. Mitochondrial DNA is probably the most sensitive cellular target of reactive oxygen species. Damage to mitochondrial DNA correlates with the extent of atherosclerosis. Several cardiovascular risk factors are demonstrated causes of mitochondrial damage. Oxidized low density lipoprotein and hyperglycemia may induce the production of reactive oxygen species in mitochondria of macrophages and endothelial cells. Conversely, reactive oxygen species may favor the development of type 2 diabetes mellitus, mainly through the induction of insulin resistance. Similarly - in addition to being a cause of endothelial dysfunction, reactive oxygen species and subsequent mitochondrial dysfunction - hypertension may develop in the presence of mitochondrial DNA mutations. Finally, other risk factors, such as aging, hyperhomocysteinemia and cigarette smoking, are also associated with mitochondrial damage and an increased production of free radicals. So far clinical studies have been unable to demonstrate that antioxidants have any effect on human atherogenesis. Mitochondrial targeted antioxidants might provide more significant results.  相似文献   

15.
Several studies have shown that the activities of delta-6-desaturase and delta-5-desaturase are depressed in experimental diabetes and in humans with insulin- and non-insulin-dependent diabetes mellitus (type I and type II diabetes mellitus respectively). Furthermore, treatment with insulin is known to correct the defects in desaturases in rats and humans with diabetes, especially in type I. In a recent study, we demonstrated that L-arginine and nitric oxide can prevent alloxan-induced beta cell damage, and the severity of diabetes, and restore the antioxidant status to near normal levels. But, no information is available as to the relationship between L-arginine-nitric oxide system and the metabolism of essential fatty acids in diabetes mellitus. In the present study, it was noted that the plasma levels of saturated fatty acids: stearic and palmitic were increased where as unsaturated fatty acids such as oleic, linoleic, gamma-linolenic and eicosapentaenoic acids (OA, LA, GLA and EPA respectively) were decreased in alloxan-induced diabetic rats. In the liver phospholipid (PL) fraction, GLA, DGLA (dihomo-GLA) and alpha-linolenic acid (ALA) were decreased in the alloxan-treated group; in the muscle PL fraction, LA, GLA and DGLA were low, whereas an increase in the saturated fatty acid content was noted. L-arginine (the precursor of nitric oxide) and sodium nitroprusside (a nitric oxide donor) treatment of alloxan-induced diabetic rats enhanced the levels of LA, GLA and DGLA. Further, nitric oxide synthase inhibitor, L-NMMA, prevented this beneficial action of L-arginine-nitric oxide system on essential fatty acid metabolism. The abnormalities in the essential fatty acid metabolism observed also reverted to normalcy following control of diabetes with insulin. These results indicate that nitric oxide can enhance the activities of delta-6- and delta-5 desaturases, which are depressed in diabetes, and suggests that there is a close interaction between L-arginine-nitric oxide system and the metabolism of essential fatty acids.  相似文献   

16.
Over the last decades, substantial progress has been made in defining the molecular events and relevant tissues controlling insulin action and the potential defects that lead to insulin resistance and later on Type 2 diabetes mellitus (T2DM). Mitochondrial dysfunction has been postulated as a common mechanism implicated in the development of insulin resistance and T2DM aetiology. Since then there has been growing interest in this area of research and many studies have addressed whether mitochondrial function/dysfunction is implicated in the progression of T2DM or if it is just a consequence. Mitochondria are adjusted to the specific needs of the tissue and to the environmental interactions or pathophysiological state that it encounters. This review offers a current state of the subject in a tissue specific approach. We will focus our attention on skeletal muscle, liver, and white adipose tissue as the main insulin sensitive organs. Hypothalamic mitochondrial function will be also discussed.  相似文献   

17.
Diabetes mellitus is a group of metabolic disorders, the incidence of which varies widely throughout the world. The treatment of diabetes mellitus includes insulin, oral antidiabetic agents, and dietary regimens. Although the emphasis is on macronutrients intakes, there is strong evidence that there is an abnormal metabolism of several micronutrients in diabetic individuals. Zinc is one of the essential micronutrients of which status and metabolism is altered in this condition. This work is a short review about the close relation among zinc, glucose metabolism, and insulin physiology, as well as about the few experimental data about zinc absorption and zinc supplementation in diabetes mellitus patients.  相似文献   

18.
Excised rhizome fragments of Helianthus tuberosus ‘Violet de Rennes’ produce roots in vitro; the sequence of morphogenetic phenomena is as follows: proliferation, differentiation of phloem and tracheids, organization of cambiums, and formation of root primordia from cambiums. This rhizogenesis is conditioned by five limiting factors: mineral salts, sugar, auxin, temperature, and light. The optimum level of each of these factors was determined and in certain cases also the threshold of action. For white light the beginning was about 1/1000 lux. These five limiting factors do not represent the same site of action. The mineral salts, especially nitrogen and calcium, have their effect when the cambiums have been organized. The sugars act before the formation of cambiums. Light operates principally upon cambium and this action is independent of photosynthesis. It was not possible to determine whether the auxin has a preferential site of action. A temperature higher than 15 C is essential to obtain the formation of cambiums but further production of roots is possible at 15 C or even less. The variations in temperature more or less around the optimum stimulate rhizogenesis. The supra-optimal temperatures mainly have their effect before the formation of cambiums and infra-optimal temperatures after. The effect of light can be exhibited at low temperature. Gibberellic acid in association with auxin favors root formation in the dark whereas in light it exhibits inhibiting properties. Rhizogenetic potentialities of tissues are reduced when these are cultured in the dark in presence of auxin. On the other hand, if auxin is applied after the isolation of explants, rhizogenesis is stimulated and the tissues are able to produce roots even in the dark. The action of light and of auxin can be dissociated; when the explants having absorbed a small quantity of auxin are transferred to a medium without auxin for 60 days in the dark, they conserve the rhizogenetic potential which is expressible on transferring them to light. Finally, grafting experiments suggested that light could induce the formation of a rhizogenetic factor in the tissues which is transmittable from cell to cell. These experiments have definitely established that the induction of root formation is governed by several factors which have complex interactions.  相似文献   

19.
Deoxyhypusine synthase (DHS) catalyzes the post-translational formation of the amino acid hypusine. Hypusine is unique to the eukaryotic translational initiation factor 5A (eIF5A), and is required for its functions in mRNA shuttling, translational elongation, and stress granule formation. In recent studies, we showed that DHS promotes cytokine and ER stress signaling in the islet β cell and thereby contributes to its dysfunction in the setting of diabetes mellitus. Here, we review the evidence supporting a role for DHS (and hypusinated eIF5A) in cellular stress responses, and provide new data on the phenotype of DHS knockout mice. We show that homozygous knockout mice are embryonic lethal, but heterozygous knockout mice appear normal with no evidence of growth or metabolic deficiencies. Mouse embryonic fibroblasts from heterozygous knockout mice attenuate acute cytokine signaling, as evidenced by reduced production of inducible nitric oxide synthase, but show no statistically significant defects in proliferation or cell cycle progression. Our data are discussed with respect to the utility of sub-maximal inhibition of DHS in the setting of inflammatory states, such as diabetes mellitus.  相似文献   

20.
Recent advances in osteoclast biology and pathological bone resorption   总被引:19,自引:0,他引:19  
The osteoclast is a bone-degrading polykaryon. Recent studies have clarified the differentiation of this cell and the biochemical mechanisms it uses to resorb bone. The osteoclast derives from a monocyte/macrophage precursor. Osteoclast formation requires permissive concentrations of M-CSF and is driven by contact with mesenchymal cells in bone that bear the TNF-family ligand RANKL. Osteoclast precursors express RANK, and the interaction between RANKL and RANK (which is inhibited by OPG) is the major determinant of osteoclast formation. Hormones, such as PTH/PTHrP, glucocorticoids and 1,25(OH)2D3, and humoral factors, including TNFalpha, interleukin-1, TGFss and prostaglandins, influence osteoclast formation by altering expression of these molecular factors. TNFalpha, IL-6 and IL-11 have also been shown to promote osteoclast formation by RANKL-independent processes. RANKL-dependent/independent osteoclast formation is likely to play an important role in conditions where there is pathological bone resorption such as inflammatory arthritis and malignant bone resorption. Osteoclast functional defects cause sclerotic bone disorders, many of which have recently been identified as specific genetic defects. Osteoclasts express specialized proteins including a vacuolar-type H+-ATPase that drives HCl secretion for dissolution of bone mineral. One v-ATPase component, the 116 kD V0 subunit, has several isoforms. Only one isoform, TCIRG1, is up-regulated in osteoclasts. Defects in TCIRG1 are common causes of osteopetrosis. HCl secretion is dependent on chloride channels; a chloride channel homologue, CLCN7, is another common defect in osteopetrosis. Humans who are deficient in carbonic anhydrase II or who have defects in phagocytosis also have variable defects in bone remodelling. Organic bone matrix is degraded by thiol proteinases, principally cathepsin K, and abnormalities in cathepsin K cause another sclerotic bone disorder, pycnodysostosis. Thus, bone turnover in normal subjects depends on relative expression of key cytokines, and defects in osteoclastic turnover usually reflect defects in specific ion transporters or enzymes that play essential roles in bone degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号