首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kemp RG  Gunasekera D 《Biochemistry》2002,41(30):9426-9430
Mammalian phosphofructokinase (PFK) has evolved by a process of tandem gene duplication and fusion to yield a protein that is more than double the size of prokaryotic PFKs. On the basis of complete conservation of active site residues in the N-terminal half of the eukaryotic enzyme with those of the bacterial PFKs, one assumes that the active site of the eukaryotic PFK is located in the N-terminal half. Again using sequence comparisons, the four allosteric ligand sites of mammalian PFK have been thought to arise from the duplicated catalytic and regulatory sites of the ancestral PFK. Previous site-directed mutagenesis studies [Li et al. (1999) Biochemistry 38, 16407-16412; Chang and Kemp (2002) Biochem. Biophys. Res. Commun. 290, 670-675] have identified the origins of the citrate and fructose 2,6-bisphosphate sites. Here, site-directed mutagenesis of two arginine residues (Arg-433 and Arg-429) of mouse phosphofructokinase is used to identify the ATP inhibitory site, and, by inference, the AMP/ADP site. Mutation of the residues to alanine reduced ATP inhibition in the case of Arg-429 and eliminated ATP inhibition in the instance of Arg-433. The Arg-433 mutant could be inhibited by citrate, and that inhibition could be reversed by fructose 2,6-bisphosphate and cyclic AMP, a high-affinity ligand for the AMP/ADP binding site. It is concluded that the two inhibitors, ATP and citrate, of mammalian PFK interact with sites that have evolved from the duplicated phosphoenolpyruvate/ADP allosteric site of the ancestral PFK. The two sites for activators, fructose 2,6-bisphosphate and AMP or ADP, have evolved from the catalytic site of the ancestral precursor.  相似文献   

2.
3.
The crystal structure of the ATP-bound form of the tetrameric phosphofructokinase (PFK) from Trypanosoma brucei enables detailed comparisons to be made with the structures of the apoenzyme form of the same enzyme, as well as with those of bacterial ATP-dependent and PPi-dependent PFKs. The active site of T. brucei PFK (which is strictly ATP-dependent but belongs to the PPi-dependent family by sequence similarities) is a chimera of the two types of PFK. In particular, the active site of T. brucei PFK possesses amino acid residues and structural features characteristic of both types of PFK. Conformational changes upon ATP binding are observed that include the opening of the active site to accommodate the two substrates, MgATP and fructose 6-phosphate, and a dramatic ordering of the C-terminal helices, which act like reaching arms to hold the tetramer together. These conformational transitions are fundamentally different from those of other ATP-dependent PFKs. The substantial differences in structure and mechanism of T. brucei PFK compared with bacterial and mammalian PFKs give optimism for the discovery of species-specific drugs for the treatment of diseases caused by protist parasites of the trypanosomatid family.  相似文献   

4.
The structure of the 60 kDa pyrophosphate (PP(i))-dependent phosphofructokinase (PFK) from Borrelia burgdorferi has been solved and refined (R(free) = 0.243) at 2.55 A resolution. The domain structure of eubacterial ATP-dependent PFKs is conserved in B. burgdorferi PFK, and there are three large insertions relative to E. coli PFK, including a helical domain containing a hairpin structure that interacts with the active site. Asp177, conserved in all PP(i) PFKs, negates the binding of the alpha-phosphate group of ATP and likely contacts the essential Mg(2+) cation via a water molecule. Asn181 blocks the binding of the adenine moiety of ATP. Lys203 hydrogen bonds to a sulfate anion that likely mimics PP(i) substrate binding.  相似文献   

5.
The nucleotide sequence of a full-length cDNA encoding phosphofructokinase (PFK) enzyme from the parasitic nematode Ascaris suum was determined. The entire sequence of 2,653 bases comprises a single open reading frame of 2,452 bases and a noncoding region of 201 bases after the stop codon. The mature protein contains 812 amino acids and has a molecular mass of 90,900 Da. The amino acid sequences of several peptides derived from the purified protein show excellent correspondence with the translated nucleotide sequence. Comparison of the amino acid sequence of the protein with those of 3 other worms as well as those of human, rabbit, and bacterial enzymes reveals highly conserved regions interrupted with stretches of lesser sequence similarity. Analyses of the subunit primary structure reveal, as in other eukaryotic PFKs, that the amino-terminal half is homologous to the carboxy-terminal half, supporting the hypothesis that the PFK gene evolved by duplication of the prokaryotic gene and that the allosteric sites arose by mutations at the catalytic site. The location of the phosphorylation site is unique and different compared with other PFKs and plays a key role in regulation of the enzyme activity. Structural motifs such as the putative substrate and effector binding domains and also the key amino acids involved therein are clearly identified by alignment of all the PFK protein sequences.  相似文献   

6.
Fructose-2,6-bisphosphate (Fru-2,6-P(2)) is a potent allosteric activator of the ATP-dependent phosphofructokinase (PFK) in eukaryotes. Based on the sequence homology between rabbit muscle PFK and two bacterial PFKs and the crystal structures of the latter, Ser(530), Arg(292) and His(662) of the rabbit enzyme are implicated as binding sites for Fru-2,6-P(2). We report here the effects of three mutations, S530D, R292A, and H662A on the activation of rabbit muscle PFK by Fru-2,6-P(2). At pH 7.0 and the inhibitory concentrations of ATP, the native enzyme gives a classic sigmoidal response to changes in Fru-6-P concentration in the absence of Fru-2,6-P(2) and a nearly hyperbolic response in the presence of the activator. Under the same conditions, no activation was seen for S530D. On the other hand, H662A can be activated but requires a 10-fold or higher concentration of Fru-2,6-P(2). Limited activation was observed for mutant R292A. A model illustrating the sites for recognition of Fru-2,6-P(2) in rabbit muscle PFK as well as the mechanism of allosteric activation is proposed.  相似文献   

7.
Usenik A  Legiša M 《PloS one》2010,5(11):e15447
As an important part of metabolism, metabolic flux through the glycolytic pathway is tightly regulated. The most complex control is exerted on 6-phosphofructo-1-kinase (PFK1) level; this control overrules the regulatory role of other allosteric enzymes. Among other effectors, citrate has been reported to play a vital role in the suppression of this enzyme's activity. In eukaryotes, amino acid residues forming the allosteric binding site for citrate are found both on the N- and the C-terminal region of the enzyme. These site has evolved from the phosphoenolpyruvate/ADP binding site of bacterial PFK1 due to the processes of duplication and tandem fusion of prokaryotic ancestor gene followed by the divergence of the catalytic and effector binding sites. Stricter inhibition of the PFK1 enzyme was needed during the evolution of multi-cellular organisms, and the most stringent control of PFK1 by citrate occurs in vertebrates. By substituting a single amino acid (K557R or K617A) as a component of the allosteric binding site in the C-terminal region of human muscle type PFK-M with a residue found in the corresponding site of a fungal enzyme, the inhibitory effect of citrate was attenuated. Moreover, the proteins carrying these single mutations enabled growth of E. coli transformants encoding mutated human PFK-M in a glucose-containing medium that did not support the growth of E. coli transformed with native human PFK-M. Substitution of another residue at the citrate-binding site (D591V) of human PFK-M resulted in the complete loss of activity. Detailed analyses revealed that the mutated PFK-M subunits formed dimers but were unable to associate into the active tetrameric holoenzyme. These results suggest that stricter control over glycolytic flux developed in metazoans, whose somatic cells are largely characterized by slow proliferation.  相似文献   

8.
This work deals with the phosphofructokinase enzyme (PFK) of the parasite Trypanosoma brucei. Inhibitors which are analogues of fructose-6-phosphate (F6P) derived from 2,5-anhydromannitol and therefore blocked in a closed conformation, both nonphosphorylated and phosphorylated, were designed. They provided information on this class of ATP-dependent PFK (structurally more similar to PPi-dependent PFKs revealing (i) an ordered mechanism, ATP binding first, inducing an essential conformational change to increase the affinity for F6P, and (ii) a rather hydrophobic environment at the ATP binding site. Nonphosphorylated mannitol derivatives bind at both the ATP and F6P binding sites, whereas the phosphorylated derivatives only bind at the ATP binding site. The inhibitors bearing an aromatic ring substituted at the meta position indicate a polar interaction with lysine 227, which is specific to T. brucei PFK and is replaced by a glycine in human PFK. This lysine can be irreversibly bound, leading to inhibition when an electrophilic carbon atom is beta to the meta position on the ring. This lysine was identified by site-directed mutagenesis. This first example of a specific irreversible inactivation of T. brucei PFK offers an opportunity to develop biologically active compounds against the sleeping sickness, the causative agent of which is the trypanosome.  相似文献   

9.
UDP-glucose is an R-state inhibitor of glycogen phosphorylase b, competitive with the substrate, glucose 1-phosphate and noncompetitive with the allosteric activator, AMP. Diffusion of 100 mM UDP-glucose into crystals of phosphorylase b resulted in a difference Fourier synthesis at 0.3-nm resolution that showed two peaks: (a) binding at the allosteric site and (b) binding at the catalytic site. At the allosteric site the whole of the UDP-glucose molecule can be located. It is in a well defined folded conformation with its uracil portion in a similar position to that observed for the adenine of AMP. The uracil and the glucose moieties stack against the aromatic side chains of Tyr-75 and Phe-196, respectively. The phosphates of the pyrophosphate component interact with Arg-242, Arg-309 and Arg-310. At the catalytic site, the glucose-1-P component of UDP-glucose is firmly bound in a position similar to that observed for glucose 1-phosphate. The pyrophosphate is also well located with the glucose phosphate interacting with the main-chain NH groups at the start of the glycine-loop alpha helix and the uridine phosphate interacting through a water molecule with the 5'-phosphate of the cofactor pyridoxal phosphate and with the side chains of residues Tyr-573, Lys-574 and probably Arg-569. However the position of the uridine cannot be located although analysis by thin-layer chromatography showed that no degradation had taken place. Binding of UDP-glucose to the catalytic site promotes extensive conformational changes. The loop 279-288 which links the catalytic site to the nucleoside inhibitor site is displaced and becomes mobile. Concomitant movements of residues His-571, Arg-569, and the loop 378-383, together with the major loop displacement, result in an open channel to the catalytic site. Comparison with other structural results shows that these changes form an essential feature of the T to R transition. They allow formation of the phosphate recognition site at the catalytic site and destroy the nucleoside inhibitor site. Kinetic experiments demonstrate that UDP-glucose activates the enzyme in the presence of high concentrations of the weak activator IMP, because of its ability to decrease the affinity of IMP for the inhibitor site.  相似文献   

10.
Four positively-charged residues, namely βLys-155, βArg-182, βArg-246, and αArg-376 have been identified as Pi binding residues in Escherichia coli ATP synthase. They form a triangular Pi binding site in catalytic site βE where substrate Pi initially binds for ATP synthesis in oxidative phosphorylation. Positive electrostatic charge in the vicinity of βArg-246 is shown to be one important component of Pi binding.  相似文献   

11.
Phosphoenolpyruvate carboxylases (PEPC, EC 4.1.1.31) from higher plants are regulated by both allosteric effects and reversible phosphorylation. Previous x-ray crystallographic analysis of Zea mays PEPC has revealed a binding site for sulfate ion, speculated to be the site for an allosteric activator, glucose 6-phosphate (Glc-6-P) (Matsumura, H., Xie, Y., Shirakata, S., Inoue, T., Yoshinaga, T., Ueno, Y., Izui, K., and Kai, Y. (2002) Structure (Lond.) 10, 1721-1730). Because kinetic experiments have also supported this notion, each of the four basic residues (Arg-183, -184, -231, and -372' on the adjacent subunit) located at or near the binding site was replaced by Gln, and the kinetic properties of recombinant mutant enzymes were investigated. Complete desensitization to Glc-6-P was observed for R183Q, R184Q, R183Q/R184Q (double mutant), and R372Q, as was a marked decrease in the sensitivity for R231Q. The heterotropic effect of Glc-6-P on an allosteric inhibitor, l-malate, was also abolished, but sensitivity to Gly, another allosteric activator of monocot PEPC, was essentially not affected, suggesting the distinctness of their binding sites. Considering the kinetic and structural data, Arg-183 and Arg-231 were suggested to be involved directly in the binding with phosphate group of Glc-6-P, and the residues Arg-184 and Arg-372 were thought to be involved in making up the site for Glc-6-P and/or in the transmission of an allosteric regulatory signal. Most unexpectedly, the mutant enzymes had almost lost responsiveness to regulatory phosphorylation at Ser-15. An apparent lack of kinetic competition between the phosphate groups of Glc-6-P and of phospho-Ser at 15 suggested the distinctness of their binding sites. The possible roles of these Arg residues are discussed.  相似文献   

12.
The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked inhibition.  相似文献   

13.
6-Phosphofructokinases (Pfk) are homo- and heterooligomeric, allosteric enzymes that catalyze one of the rate-limiting steps of the glycolysis: the phosphorylation of fructose 6-phosphate at position 1. Pfk activity is modulated by a number of regulators including adenine nucleotides. Recent crystal structures from eukaryotic Pfk revealed several adenine nucleotide binding sites. Herein, we determined the functional relevance of two adenine nucleotide binding sites through site-directed mutagenesis and enzyme kinetic studies. Subsequent characterization of Pfk mutants allowed the identification of the activating (AMP, ADP) and inhibitory (ATP, ADP) allosteric binding sites. Mutation of one binding site reciprocally influenced the allosteric regulation through nucleotides interacting with the other binding site. Such reciprocal linkage between the activating and inhibitory binding sites is in agreement with current models of allosteric enzyme regulation. Because the allosteric nucleotide binding sites in eukaryotic Pfk did not evolve from prokaryotic ancestors, reciprocal linkage of functionally opposed allosteric binding sites must have developed independently in prokaryotic and eukaryotic Pfk (convergent evolution).  相似文献   

14.
The characterization of the gene encoding Leishmania donovani phosphofructokinase (PFK) and the biochemical properties of the expressed enzyme are reported. L. donovani has a single PFK gene copy per haploid genome that encodes a polypeptide with a deduced molecular mass of 53 988 and a pI of 9.26. The predicted amino acid sequence contains a C-terminal tripeptide that conforms to an established signal for glycosome targeting. L. donovani PFK showed most sequence similarity to inorganic pyrophosphate (PPi)-dependent PFKs, despite being ATP-dependent. It thereby resembles PFKs from other Kinetoplastida such as Trypanosoma brucei, Trypanoplasma borreli (characterized in this study), and a PFK found in Entamoeba histolytica. It exhibited hyperbolic kinetics with respect to ATP whereas the binding of the other substrate, fructose 6-phosphate, showed slight positive cooperativity. PPi, even at high concentrations, did not have any effect. AMP acted as an activator of PFK, shifting its kinetics for fructose 6-phosphate from slightly sigmoid to hyperbolic, and increasing considerably the affinity for this substrate, whereas GDP did not have any effect. Modelling studies and site-directed mutagenesis were employed to shed light on the structural basis for the AMP effector specificity and on ATP/PPi specificity among PFKs.  相似文献   

15.
Purified Artemia phosphofructokinase (PFK), unlike the rabbit skeletal muscle enzyme, displays allosteric kinetics at pH 8, a feature that is functionally significant since the intracellular pH of the developing brine shrimp embryo is greater than or equal to 7.9. Catalytic activity of the Artemia enzyme is severely suppressed by acidic pH even when assayed at the adenylate nucleotide concentrations existing in anaerobic embryos, which is consistent with the lack of a Pasteur effect in these organisms. For both PFK homologs, carbethoxylation reduces the sensitivity to ATP and citrate inhibition, the cooperativity as a function of fructose 6-phosphate concentration and the degree of activation in the presence ADP, AMP, and fructose 2,6-bisphosphate. Considering the role of histidine protonation in PFK allosteric control, the capacity for regulatory kinetics seen at pH 8 in the Artemia enzyme could be explained in part by upward shifts in pKa values of ionizable residues. pH-induced dissociation of tetrameric Artemia PFK into inactive subunits does not occur during catalytic inhibition at acidic pH (pH 6.5, 6 degrees C), as judged by 90 degree light scattering. This observation contrasts markedly with the dimerization and inactivation of rabbit PFK, but is shown not to be unique when compared to other selected PFK homologs. Neither the acute pH sensitivity of Artemia PFK nor the pH-induced hysteretic inactivation displayed by the rabbit enzyme are altered by carbethoxylation, suggesting that ionizable residues involved in these two processes are not the same ones involved in allosteric kinetics.  相似文献   

16.
To understand the mechanism by which the activity of the 6-phosphofructo-2-kinase (6PF-2K) of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is stimulated by its substrate ATP, we studied two mutants of the enzyme. Mutation of either Arg-279, the penultimate basic residue within the Walker A nucleotide-binding fold in the bisphosphatase domain, or Arg-359 to Ala eliminated the activation of the chicken 6PF-2K by ATP. Binding analysis by fluorescence spectroscopy using 2'(3')-O-(N-methylanthraniloyl)-ATP revealed that the kinase domains of these two mutants, unlike that of the wild type enzyme, showed no cooperativity in ATP binding and that the mutant enzymes possess only the high affinity ATP binding site, suggesting that the ATP binding site on the bisphosphatase domain represents the low affinity site. This conclusion was supported by the result that the affinity of ATP for the isolated bisphosphatase domain is similar to that for the low affinity site in the wild type enzyme. In addition, we found that the 6PF-2K of a chimeric enzyme, in which the last 25 residues of chicken enzyme were replaced with those of the rat enzyme, could not be activated by ATP, despite the fact that the ATP-binding properties of this chimeric enzyme were not different from those of the wild type chicken enzyme. These results demonstrate that activation of the chicken 6PF-2K by ATP may result from allosteric binding of ATP to the bisphosphatase domain where residues Arg-279 and Arg-359 are critically involved and require specific C-terminal sequences.  相似文献   

17.
The enzyme phosphofructokinase (PFK) is a defining activity of the highly conserved glycolytic pathway, and is present in the domains Bacteria, Eukarya, and Archaea. PFK subtypes are now known that utilize either ATP, ADP, or pyrophosphate as the primary phosphoryl donor and share the ability to catalyze the transfer of phosphate to the 1-position of fructose-6-phosphate. Because of the crucial position in the glycolytic pathway of PFKs, their biochemical characteristics and phylogenies may play a significant role in elucidating the origins of glycolysis and, indeed, of metabolism itself. Despite the shared ability to phosphorylate fructose-6-phosphate, PFKs that have been characterized to date now fall into three sequence families: the PFKA family, consisting of the well-known higher eukaryotic ATP-dependent PFKs together with their ATP- and pyrophosphate-dependent bacterial cousins (including the crenarchaeal pyrophosphate-dependent PFK of Thermoprotetus tenax) and plant pyrophosphate-dependent phosphofructokinases; the PFKB family, exemplified by the minor ATP-dependent PFK activity of Escherichia coli (PFK 2), but which also includes at least one crenarchaeal enzyme in Aeropyrum pernix; and the tentatively named PFKC family, which contains the unique ADP-dependent PFKs from the euryarchaeal genera of Pyrococcus and Thermococcus, which are indicated by sequence analysis to be present also in the methanogenic species Methanococcus jannaschii and Methanosarcina mazei.  相似文献   

18.
The kinetic properties of phosphofructokinase from muscle of the giant cirripede Austromegabalanus psittacus were characterized, after partial purification by ion exchange chromatography on DEAE-cellulose. This enzyme showed differences regarding PFKs from other marine invertebrates: the affinity for fructose 6-phosphate (Fru 6-P) was very low, with an S(0.5) of 22.6+/-1.4 mM (mean+/-S.D., n=3), and a high cooperativity (n(H) of 2.90+/-0.21; mean+/-S.D., n=3). The barnacle PFK showed hyperbolic saturation kinetics for ATP (apparent K(m ATP)=70 microM, at 5 mM Fru 6-P, in the presence of 2 mM ammonium sulfate). ATP concentrations higher than 1 mM inhibited the enzyme. Ammonium sulfate activated the PFK several folds, increasing the affinity of the enzyme for Fru 6-P and V(max). 5'-AMP (0.2 mM) increased the affinity for Fru 6-P (S(0.5) of 6.2 mM). Fructose 2,6-bisphosphate activated the PFK, with a maximal activation at concentrations higher than 2 microM. Citrate reverted the activation of PFK produced by 0.2 mM 5'-AMP (IC(50 citrate)=2.0 mM), producing a higher inhibition than that exerted on other invertebrate PFKs. Barnacle muscular PFK was activated in vitro after exposure to exogenous cyclic-AMP (0.1 mM) as well as by phosphatidylserine (50 microg/ml), indicating a possible control by protein kinase A and a phospholipid dependent protein kinase (PKC). The results suggest a highly regulated enzyme in vivo, by allosteric mechanisms and also by protein phosphorylation.  相似文献   

19.
A cluster of conserved histidines and arginines (His-62, His-167, Arg-21, Arg-38, and Arg-168) in 3-phosphoglycerate kinase (PGK) has been implicated as possibly involved in the binding of 3-phosphoglycerate (3-PG) and/or stabilization of the negatively charged transition state. The role of these residues in the catalytic function of yeast PGK and in the substrate- and sulfate-dependent activation was investigated by site-directed mutagenesis. The following substitutions, R21A, R21Q, H62Q, H167S, and R168Q, produced functional enzymes. In contrast, the R38A and R38Q mutations resulted in a complete loss of catalytic activity. These results demonstrate that of the basic residues studied, only arginine 38 is essential for the catalytic function of PGK. A moderate decrease in the catalytic efficiency as the result of the R21A, H167S, and R168Q mutations and an increased catalytic efficiency of the H62Q mutant rule out a possible role of a positive charge at these positions in the mechanism of phosphoryl transfer reaction. In contrast to the wild type PGK and the H62Q mutant, both of which are activated at low and inhibited at high sulfate concentration, the H167S, R168Q, and R21A mutants exhibited a progressive inhibition with increased concentration of sulfate. The activation observed at high concentration of either ATP or 3-PG as a variable substrate in the steady-state kinetics of wild type PGK was abolished as the result of the latter three mutations. The results of this work support the hypothesis that PGK has two binding sites for anionic ligands, the catalytic and regulatory sites for each substrate and the activatory and inhibitory sites for sulfate, and suggest that arginine 21, arginine 168, and histidine 167 are located in the activatory anion binding site, common for sulfate, 3-PG, and ATP. The increased Km values for both substrates and decreased specific activities of the mutants suggest that this regulatory site is close to the catalytic site.  相似文献   

20.
PRPP (phosphoribosylpyrophosphate) is an important metabolite essential for nucleotide synthesis and PRS (PRPP synthetase) catalyses synthesis of PRPP from R5P (ribose 5-phosphate) and ATP. The enzymatic activity of PRS is regulated by phosphate ions, divalent metal cations and ADP. In the present study we report the crystal structures of recombinant human PRS1 in complexes with SO4(2-) ions alone and with ATP, Cd2+ and SO4(2-) ions respectively. The AMP moiety of ATP binds at the ATP-binding site, and a Cd2+ ion binds at the active site and in a position to interact with the beta- and gamma-phosphates of ATP. A SO4(2-) ion, an analogue of the activator phosphate, was found to bind at both the R5P-binding site and the allosteric site defined previously. In addi-tion, an extra SO4(2-) binds at a site at the dimer interface between the ATP-binding site and the allosteric site. Binding of this SO4(2-) stabilizes the conformation of the flexible loop at the active site, leading to the formation of the active, open conformation which is essential for binding of ATP and initiation of the catalytic reaction. This is the first time that structural stabilization at the active site caused by binding of an activator has been observed. Structural and biochemical data show that mutations of some residues at this site influence the binding of SO4(2-) and affect the enzymatic activity. The results in the present paper suggest that this new SO4(2-)-binding site is a second allosteric site to regulate the enzymatic activity which might also exist in other eukaryotic PRSs (except plant PRSs of class II), but not in bacterial PRSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号