首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The N-terminal part of the NS3 protein from dengue virus contains a trypsin-like serine protease responsible for processing the nonstructural region of the viral polyprotein. Enzymatic activity of the NS2B-NS3(pro) precursor incorporating a full-length NS2B cofactor of dengue virus type 2 was examined by using synthetic dodecamer peptide substrates encompassing native cleavage sequences of the NS2A/NS2B, NS2B/NS3, NS3/NS4A and NS4B/NS5 polyprotein junctions. Cleavage of the dansylated substrates was monitored by a HPLC-based assay and kinetic parameters for K(1M), k(cat) and k(cat)/K(m) were obtained. The data presented here show that NS2B-NS3(pro) expressed in recombinant E. coli can be renatured to an active protease which reacts in the absence of microsomal membranes with all 4 substrate peptides, albeit the molecule does not exhibit autoproteolytic processing at the NS2B/NS3 site. A marked difference in cleavage efficiency was found for the NS2B/NS3 substrate and the remaining 3 peptides based on the NS2A/NS2B, NS3/NS4A and NS4A/NS5 cleavage sites.  相似文献   

2.
The presenilin-type aspartic protease signal peptide peptidase (SPP) can cleave signal peptides within their transmembrane region. SPP is essential for generation of signal peptide-derived HLA-E epitopes in humans and is exploited by Hepatitis C virus for processing of the viral polyprotein. Here we analyzed requirements of substrates for intramembrane cleavage by SPP. Comparing signal peptides that are substrates with those that are not revealed that helix-breaking residues within the transmembrane region are required for cleavage, and flanking regions can affect processing. Furthermore, signal peptides have to be liberated from the precursor protein by cleavage with signal peptidase in order to become substrates for SPP. We propose that signal peptides require flexibility in the lipid bilayer to exhibit an accessible peptide bond for intramembrane proteolysis.  相似文献   

3.
The NS3 serine protease of dengue virus is required for the maturation of the viral polyprotein and consequently represents a promising target for the development of antiviral inhibitors. However, the substrate specificity of this enzyme has been characterized only to a limited extent. In this study, we have investigated product inhibition of the NS3 protease by synthetic peptides derived from the P6-P1 and the P1'-P5' regions of the natural polyprotein substrate. N-terminal cleavage site peptides corresponding to the P6-P1 region of the polyprotein were found to act as competitive inhibitors of the enzyme with K(i) values ranging from 67 to 12 microM. The lowest K(i) value was found for the peptide representing the NS2A/NS2B cleavage site, RTSKKR. Inhibition by this cleavage site sequence was analyzed by using shorter peptides, SKKR, KKR, KR, AGRR, and GKR. With the exception of the peptide AGRR which did not inhibit the protease at a concentration of 1mM, all other peptides displayed K(i) values in the range from 188 to 22 microM. Peptides corresponding to the P1'-P5' region of the polyprotein cleavage sites had no effect on enzymatic activity at a concentration of 1mM. Molecular docking data of peptide inhibitors to a homology-based model of the dengue virus type 2 NS2B(H)-NS3p co-complex indicate that binding of the non-prime site product inhibitors is similar to ground-state binding of the corresponding substrates.  相似文献   

4.
Sapovirus is a positive-stranded RNA virus with a translational strategy based on processing of a polyprotein precursor by a chymotrypsin-like protease. So far, the molecular mechanisms regulating cleavage specificity of the viral protease are poorly understood. In this study, the catalytic activities and substrate specificities of the predicted forms of the viral protease, the 3C-like protease (NS6) and the 3CD-like protease-polymerase (NS6-7), were examined in vitro. The purified NS6 and NS6-7 were able to cleave synthetic peptides (15 to 17 residues) displaying the cleavage sites of the sapovirus polyprotein, both NS6 and NS6-7 proteins being active forms of the viral protease. High-performance liquid chromatography and subsequent mass spectrometry analysis of digested products showed a specific trans cleavage of peptides bearing Gln-Gly, Gln-Ala, Glu-Gly, Glu-Pro, or Glu-Lys at the scissile bond. In contrast, peptides bearing Glu-Ala or Gln-Asp at the scissile bond (NS4-NS5 and NS5-NS6, or NS6-NS7 junctions, respectively) were resistant to trans cleavage by NS6 or NS6-7 proteins, whereas cis cleavage of the Glu-Ala scissile bond of the NS5-NS6 junction was evidenced. Interestingly, the presence of a Phe at position P4 overruled the resistance to trans cleavage of the Glu-Ala junction (NS5-NS6), whereas substitutions at the P1 and P2′ positions altered the cleavage efficiency. The differential cleavage observed is supported by a model of the substrate-binding site of the sapovirus protease, indicating that the P4, P1, and P2′ positions in the substrate modulate the cleavage specificity and efficiency of the sapovirus chymotrypsin-like protease.  相似文献   

5.
Alphavirus nsP2 proteins are multifunctional and essential for viral replication. The protease role of nsP2 is critical for virus replication as only the virus protease activity is used for processing of the viral non-structural polypeptide. Chikungunya virus is an emerging disease problem that is becoming a world-wide health issue. We have generated purified recombinant chikungunya virus nsP2 proteins, both full length and a truncated protease domain from the C-terminus of the nsP2 protein. Enzyme characterization shows that the protease domain alone has different properties compared with the full length nsP2 protease. We also show chikungunya nsP2 protease possesses different substrate specificity to the canonical alphavirus nsP2 polyprotein cleavage specificity. Moreover, the chikungunya nsP2 also appears to differ from other alphavirus nsP2 in its distinctive ability to recognize small peptide substrates.  相似文献   

6.
The expression and purification of human rhinovirus protease 3C   总被引:2,自引:0,他引:2  
Human rhinovirus type 14 protease 3C was expressed as a soluble and active protein in Escherichia coli. The protease was purified by a cationic-exchange step followed by gel filtration on a TSK 3000 column. The final yield of purified protease was in the range 0.5-1.0 mg/l culture grown to A550 = 1.0. Sequence analysis revealed that greater than 90% of the N-terminal residues were methionine. The enzyme activity of the purified protease was measured by cleavage of a synthetic peptide representing a predicted Gln/Gly viral polyprotein cleavage site. A mutant protease (Cys146----Ser) was produced and purified in the same way. The yield of mutant protease 3C was approximately 150 micrograms/l from a culture grown to A550 = 1.0. This mutant protease 3C did not cleave the synthetic peptide substrate.  相似文献   

7.
A series of synthetic peptides representing authentic proteolytic cleavage sites of human rhinovirus type 14 were assayed as substrates for purified 3C protease. Competition cleavage assays were employed to determine the relative specificity constants (Kcat/Km) for substrates with sequences related to the viral 2C-3A cleavage site. Variable length peptides representing the 2C-3A cleavage site were cleaved with comparable efficiency. These studies defined a minimum substrate of 6 amino acids (TLFQ/GP), although retention of the residue at position P5 (ETLFQ/GP) resulted in a better substrate by an order of magnitude. Amino acid substitutions at position P5, P4, P1', or P2' indicated that the identity of the residue at position P5 was not critical, whereas substitutions at position P4, P1' or P2' resulted in substrates with Kcat/Km values varying over 2 orders of magnitude. In contrast to the 2C-3A cleavage site, small peptide derivatives representative of the 3A-3B cleavage site were relatively poor substrates, which suggested that residues flanking the minimum core sequence may influence susceptibility to cleavage. The 3C protease of rhinovirus type 14 was also capable of cleaving peptides representing comparable cleavage sites predicted for coxsackie B virus and poliovirus.  相似文献   

8.
The nucleotide sequence of 7200 bases of encephalomyocarditis (EMC) viral RNA, including the complete polyprotein-coding region, was determined. The polyprotein is encoded within a unique translational reading frame, 6870 bases in length. Protein synthesis begins with the sequence Met-Ala-Thr, and ends with the sequence Leu-Phe-Trp, 126 bases from the 3' end of the RNA. Viral capsid and noncapsid proteins were aligned with the deduced amino acid sequence of the polyprotein. The proteolytic processing map follows the standard 4-3-4 picornaviral pattern except for a short leader peptide (8 kd), which precedes the capsid proteins. Identification of the proteolytic cleavage sites showed that EMC viral protease, p22, has cleavage specificity for gln-gly or gln-ser sequences with adjacent proline residues. The cleavage specificity of the host-coded protease(s) includes both tyr-pro and gln-gly sequences.  相似文献   

9.
The NS3 (dengue virus non-structural protein 3) serine protease of dengue virus is an essential component for virus maturation, thus representing an attractive target for the development of antiviral drugs directed at the inhibition of polyprotein processing. In the present study, we have investigated determinants of substrate specificity of the dengue virus NS3 protease by using internally quenched fluorogenic peptides containing Abz (o-aminobenzoic acid; synonymous to anthranilic acid) and 3-nitrotyrosine (nY) representing both native and chimaeric polyprotein cleavage site sequences. By using this combinatorial approach, we were able to describe the substrate preferences and determinants of specificity for the dengue virus NS2B(H)-NS3pro protease. Kinetic parameters (kcat/K(m)) for the hydrolysis of peptide substrates with systematic truncations at the prime and non-prime side revealed a length preference for peptides spanning the P4-P3' residues, and the peptide Abz-RRRRSAGnY-amide based on the dengue virus capsid protein processing site was discovered as a novel and efficient substrate of the NS3 protease (kcat/K(m)=11087 M(-1) x s(-1)). Thus, while having confirmed the exclusive preference of the NS3 protease for basic residues at the P1 and P2 positions, we have also shown that the presence of basic amino acids at the P3 and P4 positions is a major specificity-determining feature of the dengue virus NS3 protease. Investigation of the substrate peptide Abz-KKQRAGVLnY-amide based on the NS2B/NS3 polyprotein cleavage site demonstrated an unexpected high degree of cleavage efficiency. Chimaeric peptides with combinations of prime and non-prime sequences spanning the P4-P4' positions of all five native polyprotein cleavage sites revealed a preponderant effect of non-prime side residues on the K(m) values, whereas variations at the prime side sequences had higher impact on kcat.  相似文献   

10.
Cleavage of synthetic peptides by purified poliovirus 3C proteinase   总被引:23,自引:0,他引:23  
Synthetic peptides, 14-16 residues in length, were used as substrates for purified recombinant poliovirus proteinase 3C. The sequences of the substrates correspond to the sequences of authentic cleavage sites in the poliovirus polyprotein, all of which contain Gln-Gly at the scissile bond. Specificity of cleavages was demonstrated by analysis of 3C digests of synthetic peptides. Relative rate constants for the cleavages were derived by competition experiments. The rate constants roughly correlated with the estimated half-life of the homologous precursor proteins detected in poliovirus-infected cells. The peptide most resistant to cleavage corresponded to the 3C/3D junction, a site known to be cleaved very slowly by 3C in vivo. Substitution of threonine for alanine in P4 position of this peptide, however, resulted in significant cleavage. This observation supports the hypothesis that the residue in P4 position, in addition to the Gln-Gly in P1 and P1', respectively, contributes to substrate recognition. Ac-Gln-Gly-NH2 was not a substrate for 3C.  相似文献   

11.
Ordered and accurate processing of the human immunodeficiency virus type 1 (HIV-1) GagPol polyprotein precursor by a virally encoded protease is an indispensable step in the appropriate assembly of infectious viral particles. The HIV-1 protease (PR) is a 99-amino-acid enzyme that is translated as part of the GagPol precursor. Previously, we have demonstrated that the initial events in precursor processing are accomplished by the PR domain within GagPol in cis, before it is released from the polyprotein. Despite the critical role that ordered processing of the precursor plays in viral replication, the forces that define the order of cleavage remain poorly understood. Using an in vitro assay in which the full-length HIV-1 GagPol is processed by the embedded PR, we examined the effect of PR context (embedded within GagPol versus the mature 99-amino-acid enzyme) on precursor processing. Our data demonstrate that the PR domain within GagPol is constrained in its ability to cleave some of the processing sites in the precursor. Further, we find that this constraint is dependent upon the presence of a proline as the initial amino acid in the embedded PR; substitution of an alanine at this position produces enhanced cleavage at additional sites when the precursor is processed by the embedded, but not the mature, PR. Overall, our data support a model in which the selection of processing sites and the order of precursor processing are defined, at least in part, by the structure of GagPol itself.  相似文献   

12.
The replicase open reading frame lb (ORF1b) protein of equine arteritis virus (EAV) is expressed from the viral genome as an ORF1ab fusion protein (345 kDa) by ribosomal frameshifting. Processing of the ORF1b polyprotein was predicted to be mediated by the nsp4 serine protease, the main EAV protease. Several putative cleavage sites for this protease were detected in the ORF1b polyprotein. On the basis of this tentative processing scheme, peptides were selected to raise rabbit antisera that were used to study the processing of the EAV replicase ORF1b polyprotein (158 kDa). In immunoprecipitation and immunoblotting experiments, processing products of 80, 50, 26, and 12 kDa were detected. Of these, the 80-kDa and the 50-kDa proteins contain the putative viral polymerase and helicase domains, respectively. Together, the four cleavage products probably cover the entire ORF1b-encoded region of the EAV replicase, thereby representing the first complete processing scheme of a coronaviruslike ORF1b polyprotein. Pulse-chase analysis revealed that processing of the ORF1b polyprotein is slow and that several large precursor proteins containing both ORF1a- and ORF1b-encoded regions are generated. The localization of ORF1b-specific proteins in the infected cell was studied by immunofluorescence. A perinuclear staining was observed, which suggests association with a membranous compartment.  相似文献   

13.
Most proteolytic cleavages within the picornavirus polyproteins are carried out by viral protease 3C. For encephalomyocarditis virus, the protease 3C-catalyzed processing occurs between Gln-Gly or Gln-Ser amino acid pairs which are flanked by proline residues, but the sequence-specific constraints on recognition and cleavage by the enzyme are not completely understood. To examine alternative cleavage site sequences, we constructed a cDNA plasmid which expresses the viral L-P1-2A capsid precursor in vitro and introduced site-specific mutations into the Gln-Gly pair at the VP3/VP1 junction. The altered protein substrates were tested for cleavage activity in assays with protease 3C. The encephalomyocarditis virus 3C processed Gln-Ala as efficiently as its natural sites but did not cleave Gln-Val, Gln-Glu, Lys-Gly, Lys-Ala, Lys-Val, Lys-Glu, or Pro-Gly combinations. Displacement of the flanking proline residue by an engineered insertion slowed but did not prevent cleavage at this site. Also, a mutant defective in processing at the VP3/VP1 junction was unable to form 14S pentameric assembly intermediates in vitro.  相似文献   

14.
Hepatitis A virus (HAV) 3C proteinase expressed in Escherichia coli was purified to homogeneity, and its cleavage specificity towards various parts of the viral polyprotein was analyzed. Intermolecular cleavage of the P2-P3 domain of the HAV polyprotein gave rise to proteins 2A, 2B, 2C, 3ABC, and 3D, suggesting that in addition to the primary cleavage site, all secondary sites within P2 as well as the 3C/3D junction are cleaved by 3C. 3C-mediated processing of the P1-P2 precursor liberated 2A and 2BC, in addition to the structural proteins VP0, VP3, and VP1-2A and the respective intermediate products. A clear dependence on proteinase concentration was found for most cleavage sites, possibly reflecting the cleavage site preference of 3C. The most efficient cleavage occurred at the 2A/2B and 2C/3A junctions. The electrophoretic mobility of processing product 2B, as well as cleavage of the synthetic peptide KGLFSQ*AKISLFYT, suggests that the 2A/2B junction is located at amino acid position 836/837 of the HAV polyprotein. Furthermore, using suitable substrates we obtained evidence that sites VP3/VP1 and VP1/2A are alternatively processed by 3C, leading to either VP1-2A or to P1 and 2A. The results with regard to intermolecular cleavage by purified 3C were confirmed by the product pattern derived from cell-free expression and intramolecular processing of the entire polyprotein. We therefore propose that polyprotein processing of HAV relies on 3C as the single proteinase, possibly assisted by as-yet-undetermined viral or host cell factors and presumably controlled in a concentration-dependent fashion.  相似文献   

15.
The specificity of HIV-1 (human immunodeficiency virus-1) protease has been evaluated relative to its ability to cleave the three-domain Pseudomonas exotoxin (PE66) and related proteins in which the first domain has been deleted or replaced by a segment of CD4. Native PE66 is not hydrolyzed by the HIV-1 protease. However, removal of its first domain produces a molecule which is an excellent substrate for the enzyme. The major site of cleavage in this truncated exotoxin, called LysPE40, occurs in a segment that connects its two major domains, the translocation domain (II), and the ADP-ribosyltransferase (III). This interdomain region contains the sequence ...Asn-Tyr-Pro-Thr... which is similar to that surrounding the scissile Tyr-Pro bond in the gag precursor polyprotein, a natural substrate of the HIV-1 protease. Nevertheless, it is not this sequence that is recognized and cleaved by the enzyme, but one 6 residues away, ...Ala-Leu-Leu-Glu... in which the Leu-Leu peptide bond is hydrolyzed. A second, slower cleavage takes place at the Leu-Ala bond 3 residues in from the NH2 terminus of LysPE40. When domain I of PE66 is replaced by a segment comprising the first two domains of CD4, the resulting chimeric protein is hydrolyzed at the same Leu-Leu bond by HIV-1 protease. Enzyme activities toward synthetic peptides modeled after the sequences defined above in LysPE40 are in complete accord, relative to specificity, kinetics, and pH optimum, with results obtained in the hydrolysis of the parent protein. These findings demonstrate that ideas concerning the specificity of the HIV-1 protease that are based solely upon its processing of natural viral polyproteins can be expanded by evaluation of other multidomain proteins as substrates. Moreover, it would appear that it is not a particular conformation, but sequence and accessibility that play the dominant role in defining sites in a protein substrate that are susceptible to hydrolysis by the enzyme.  相似文献   

16.
A recombinant dengue 2 virus NS2B-NS3 protease (NS means non-structural virus protein) was compared with human furin for the capacity to process short peptide substrates corresponding to seven native substrate cleavage sites in the dengue viral polyprotein. Using fluorescence resonance energy transfer peptides to measure kinetics, the processing of these substrates was found to be selective for the Dengue protease. Substrates containing two or three basic amino acids (Arg or Lys) in tandem were found to be the best, with Abz-AKRRSQ-EDDnp being the most efficiently cleaved. The hydrolysis of dipeptide substrates Bz-X-Arg-MCA where X is a non-natural basic amino acid were also kinetically examined, the best substrates containing aliphatic basic amino acids. Our results indicated that proteolytic processing by dengue NS3 protease, tethered to its activating NS2B co-factor, was strongly inhibited by Ca2+ and kosmotropic salts of the Hofmeister's series, and significantly influenced by substrate modifications between S4 and S6'. Incorporation of basic non-natural amino acids in short peptide substrates had significant but differential effects on Km and k(cat), suggesting that further dissection of their influences on substrate affinity might enable the development of effective dengue protease inhibitors.  相似文献   

17.
The NS2B-NS3(pro) polyprotein segment from the dengue virus serotype 2 strain 16681 was purified from overexpressing E. coli by metal chelate affinity chromatography and gel filtration. Enzymatic activity of the refolded NS2B-NS3(pro) protease complex was determined in vitro with dansyl-labeled peptide substrates, based upon native dengue virus type 2 cleavage sites. The 12mer substrate peptides and the cleavage products could be separated by reversed-phase HPLC, and were identified by UV and fluorescence detection. All of the peptide substrates (representing the DEN polyprotein junction sequences at the NS2A/NS2B, NS2B/NS3, NS3/NS4A and NS4B/NS5 sites) were cleaved by the recombinant protease NS2B-NS3(pro). No cleavage was observed with an enzymatically inactive S135A mutant of the NS3 protein, or with a modified substrate peptide of the NS3/NS4A polyprotein site that contained a K2093A substitution. Enzymatic activity was dependent on the salt concentration. A 50% decrease of activity was observed in the presence of 0.1 M sodium chloride. Our results show that the NS3 protease activity of the refolded NS2BNS3(pro) protein can be assayed in vitro with high specificity by using cleavage-junction derived peptide substrates.  相似文献   

18.
The severe acute respiratory syndrome coronavirus papain-like protease (SARS-CoV PLpro) is involved in the processing of the viral polyprotein and, thereby, contributes to the biogenesis of the virus replication complex. Structural bioinformatics has revealed a relationship for the SARS-CoV PLpro to herpesvirus-associated ubiquitin-specific protease (HAUSP), a ubiquitin-specific protease, indicating potential deubiquitinating activity in addition to its function in polyprotein processing (T. Sulea, H. A. Lindner, E. O. Purisima, and R. Menard, J. Virol. 79:4550-4551, 2005). In order to confirm this prediction, we overexpressed and purified SARS-CoV PLpro (amino acids [aa]1507 to 1858) from Escherichia coli. The purified enzyme hydrolyzed ubiquitin-7-amino-4-methylcoumarin (Ub-AMC), a general deubiquitinating enzyme substrate, with a catalytic efficiency of 13,100 M(-1)s(-1), 220-fold more efficiently than the small synthetic peptide substrate Z-LRGG-AMC, which incorporates the C-terminal four residues of ubiquitin. In addition, SARS-CoV PLpro was inhibited by the specific deubiquitinating enzyme inhibitor ubiquitin aldehyde, with an inhibition constant of 210 nM. The purified SARS-CoV PLpro disassembles branched polyubiquitin chains with lengths of two to seven (Ub2-7) or four (Ub4) units, which involves isopeptide bond cleavage. SARS-CoV PLpro processing activity was also detected against a protein fused to the C terminus of the ubiquitin-like modifier ISG15, both in vitro using the purified enzyme and in HeLa cells by coexpression with SARS-CoV PLpro (aa 1198 to 2009). These results clearly establish that SARS-CoV PLpro is a deubiquitinating enzyme, thereby confirming our earlier prediction. This unexpected activity for a coronavirus papain-like protease suggests a novel viral strategy to modulate the host cell ubiquitination machinery to its advantage.  相似文献   

19.
Picornaviruses, such as polio, translate their entire genome as a single polyprotein which must be proteolytically processed to produce the mature viral proteins. A majority of these cleavages are catalyzed by the virus-encoded cysteine proteinase, 3C. We report here the design and synthesis of a series of oligopeptide substrates, based upon native 3C cleavage sites, for an HPLC assay of poliovirus 3C proteinase activity. A similar series of peptides based upon human rhinovirus 3C cleavage sites was also examined. The enzyme shows a marked preference for those peptides with a proline in the P'2 position. A quenched fluorescent substrate suitable for continuous assay of 3C proteinase activity was also synthesized. Both the HPLC assay and the fluorescence assay were used to evaluate a number of potential 3C proteinase inhibitors.  相似文献   

20.
According to the existing model of flavivirus polyprotein processing, one of the cleavages in the amino-terminal part of the flavivirus polyprotein by host cell signalases results in formation of prM (precursor to one of the structural proteins, M) and the membrane-bound intracellular form of the viral capsid protein (Cint) retaining the prM signal sequence at its carboxy terminus. This hydrophobic anchor is subsequently removed by the viral protease, resulting in formation of the mature viral capsid protein found in virions (Cvir). We have prepared in vitro expression cassettes coding for both forms of the capsid protein, for the prM protein, for the C-prM precursor, and for the viral protease components of West Nile flavivirus and characterized their translation products. Using Cint and Cvir translation products as molecular markers, we have observed processing of the intracellular form of the West Nile capsid protein by the viral protease in vitro both upon cotranslation of the C-prM precursor and the viral protease-encoding cassette and by incubation of C-prM translation products with a detergent-solubilized extract of cells infected with a recombinant vaccinia virus expressing the active viral protease. The cleavage of Cint by the viral protease at the predicted dibasic site was verified by introduction of point mutations into the cleavage site and an adjacent region. These studies provide the first direct demonstration of processing of the intracellular form of the flavivirus capsid protein by the viral protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号