首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Bacterial release factors (RFs) 1 and 2 catalyse translation termination at UAG/UAA and UGA/UAA stop codons respectively. It has been shown that limiting the amount of ribosomal protein L11 affects translation termination at UAG and UGA differently. To understand the functional interplay between L11 and RF1/RF2, we isolated 21 distinct mutations in L11 as suppressors of either temperature-sensitive (ts) RF1/RF2 strains or read-through mutants of lacZ nonsense (UAG or UGA) strains. 10 of 21 mutants restored ts lethal growth of RF1 and/or RF2 strains. All the selected L11 mutants, including the RF1ts- and RF2ts-specific suppressors, had the same effect, either enhancing or reducing, on UAG and UGA termination efficiency in vivo. The specific properties of the selected L11 mutations remained unchanged in an RF3 deletion strain. Moreover, ribosomes absent of L11 had equally reduced activity for both RF1- and RF2-mediated peptide release in vitro. These results suggest that, unlike the previous notion, L11 has a common, cooperative role with RF1 and RF2. These L11 mutations were located on the surface of two domains of L11, and interpreted to affect the interaction between L11 and rRNA or the RFs thereby leading to the altered translation termination.  相似文献   

2.
During protein synthesis, translational release factors catalyze the release of the polypeptide chain when a stop codon on the mRNA reaches the A site of the ribosome. The detailed mechanism of this process is currently unknown. We present here the crystal structures of the ribosome from Thermus thermophilus with RF1 and RF2 bound to their cognate stop codons, at resolutions of 5.9 Angstrom and 6.7 Angstrom, respectively. The structures reveal details of interactions of the factors with the ribosome and mRNA, including elements previously implicated in decoding and peptide release. They also shed light on conformational changes both in the factors and in the ribosome during termination. Differences seen in the interaction of RF1 and RF2 with the L11 region of the ribosome allow us to rationalize previous biochemical data. Finally, this work demonstrates the feasibility of crystallizing ribosomes with bound factors at a defined state along the translational pathway.  相似文献   

3.
Bacterial release factors RF1 and RF2 are methylated on the Gln residue of a universally conserved tripeptide motif GGQ, which interacts with the peptidyl transferase center of the large ribosomal subunit, triggering hydrolysis of the ester bond in peptidyl-tRNA and releasing the newly synthesized polypeptide from the ribosome. In vitro experiments have shown that the activity of RF2 is stimulated by Gln methylation. The viability of Escherichia coli K12 strains depends on the integrity of the release factor methyltransferase PrmC, because K12 strains are partially deficient in RF2 activity due to the presence of a Thr residue at position 246 instead of Ala. Here, we study in vivo RF1 and RF2 activity at termination codons in competition with programmed frameshifting and the effect of the Ala-246 --> Thr mutation. PrmC inactivation reduces the specific termination activity of RF1 and RF2(Ala-246) by approximately 3- to 4-fold. The mutation Ala-246 --> Thr in RF2 reduces the termination activity in cells approximately 5-fold. After correction for the decrease in level of RF2 due to the autocontrol of RF2 synthesis, the mutation Ala-246 --> Thr reduced RF2 termination activity by approximately 10-fold at UGA codons and UAA codons. PrmC inactivation had no effect on cell growth in rich media but reduced growth considerably on poor carbon sources. This suggests that the expression of some genes needed for optimal growth under such conditions can become growth limiting as a result of inefficient translation termination.  相似文献   

4.
Chemical modification of ribosomes with the histidine specific reagents, 1-fluoro-2,4-dinitrobenzene (FDNB) and diethylpyrocarbonate (DEP), result in a loss of activities in vitro of codon-dependent termination and peptide bond formation. The binding of release factor (RF) to the ribosome is unaffected but the hydrolysis of peptidyl-tRNA is inhibited. On reversal of the modification activity can be restored. Partial protection is provided by chloramphenicol indicating that one or more of the affected residues is at the peptidyl transferase centre. Codon-dependent termination on ribosomes lacking L11, which have a greater affinity for RF-2, is significantly less affected by the modification than on control ribosomes. Peptide bond formation is affected similarly on L11 lacking and normal ribosomes.  相似文献   

5.
G F Short  S Y Golovine  S M Hecht 《Biochemistry》1999,38(27):8808-8819
An in vitro protein synthesizing system was modified to facilitate the improved, site-specific incorporation of unnatural amino acids into proteins via readthrough of mRNA nonsense (UAG) codons by chemically misacylated suppressor tRNAs. The modified system included an S-30 extract derived from Escherichia coli that expresses a temperature-sensitive variant of E. coli release factor 1 (RF1). Mild heat treatment of the S-30 extract partially deactivated RF1 and improved UAG codon readthrough by as much as 11-fold, as demonstrated by the incorporation of unnatural amino acids into positions 25 and 125 of HIV-1 protease and positions 10 and 22 of E. coli dihydrofolate reductase. The increases in yields were the greatest for those amino acids normally incorporated poorly in the in vitro protein synthesizing system, thus significantly enhancing the repertoire of modified amino acids that can be incorporated into the proteins of interest. The substantial increase in mutant protein yields over those obtained with an S-30 extract derived from an RF1 proficient E. coli strain is proposed to result from a relaxed stringency of termination by RF1 at the stop codon (UAG). When RF1 levels were depleted further, the intrinsic rate of DHFR synthesis increased, consistent with the possibility that RF1 competes not only at stop codons but also at other mRNA codons during peptide elongation. It thus seems possible that in addition to its currently accepted role as a protein factor involved in peptide termination, RF1 is also involved in functions that control the rate at which protein synthesis proceeds.  相似文献   

6.
The incubation of the 50 S ribosomal subunits of Escherichia coli with 1.5 M LiCl yields 1.5c core particles depleted in 14 proteins and inactive in peptide chain termination. In codon-dependent peptidyl-tRNA hydrolysis the release factor 1 (RF-1)-induced reaction essentially depends on both L11 and L16 whereas the release factor 2 (RF-2)-induced reaction is depressed by L11 and stimulated by L16. Omission of L11 results in a several-fold increase in the specific activity of the RF-2. Functional complexes are formed with RF-2 at an apparent Km (dissociation constant) for the termination codon 5-fold lower than with reconstituted ribosomes containing L11; the Vmax for the hydrolysis is unchanged. L11 suppresses this effect when added to the core at close to molar equivalence. In contrast, RF-1 has a very low activity if ribosomes lack L11 and this can be restored by titration of L11 back to the core. This is the first example of a differential or an opposite effect of a ribosomal component on the activities of the two release factors, and the studies suggest that L11 has a critical role in the binding domain for the two factors.  相似文献   

7.
In bacteria, stop codons are recognized by two similar class 1 release factors, release factor 1 (RF1) and release factor 2 (RF2). Normally, during termination, the class 2 release factor 3 (RF3), a GTPase, functions downstream of peptide release where it accelerates the dissociation of RF1/RF2 prior to ribosome recycling. In addition to their canonical function in termination, both classes of release factor are also involved in a post peptidyl transfer quality control (post PT QC) mechanism where the termination factors recognize mismatched (i.e. error-containing) ribosome complexes and promote premature termination. Here, using a well defined in vitro system, we explored the role of release factors in canonical termination and post PT QC. As reported previously, during canonical termination, RF1 and RF2 recognize stop codons in a similar manner, and RF3 accelerates their rate of dissociation. During post PT QC, only RF2 (and not RF1) effectively binds to mismatched ribosome complexes; and whereas the addition of RF3 to RF2 increased its rate of release on mismatched complexes, the addition of RF3 to RF1 inhibited its rate of release but increased the rate of peptidyl-tRNA dissociation. Our data strongly suggest that RF2, in addition to its primary role in peptide release, functions as the principle factor for post PT QC.  相似文献   

8.
An in vivo translation assay system has been designed to measure, in one and the same assay, the three alternatives for a ribosome poised at a stop codon (termination, read-through and frameshift). A quantitative analysis of the competition has been done in the presence and absence of release factor (RF) mutants, nonsense suppressors and an upstream Shine-Dalgarno-like sequence. The ribosomal +1 frameshift product is measurable when the stop codon is decoded by wild-type or mutant RF (prf A1 or prf B2) and also in the presence of competing suppressor tRNAs. Frameshift frequency appears to be influenced by RF activity. The amount of frameshift product decreases in the presence of competing suppressor tRNAs, however, this decrease is not in proportion to the corresponding increase in the suppression product. Instead, there is an increase in the total amount of protein expressed from the gene, perhaps due to the purging of queued ribosomes. Mutated RFs reduce the total output of the reporter gene by reducing the amount of all three protein products. The nascent peptide has earlier been shown to influence the translation termination process by interacting with the RFs. At 42 degrees C in a temperature-sensitive RF mutant strain, protein measurements indicate that the nascent peptide seems to influence the binding efficiencies of the RFs.  相似文献   

9.
During translation, ribosomes stall on mRNA when the aminoacyl-tRNA to be read is not readily available. The stalled ribosomes are deleterious to the cell and should be rescued to maintain its viability. To investigate the contribution of some of the cellular translation factors on ribosome rescuing, we provoked stalling at AGA codons in mutants that affected the factors and then analyzed the accumulation of oligopeptidyl (peptides of up to 6 amino acid residues, oligopep-)-tRNA or polypeptidyl (peptides of more than 300 amino acids in length, polypep-)-tRNA associated with ribosomes. Stalling was achieved by starvation for aminoacyl-tRNA(Arg4) upon induced expression of engineered lacZ (β-galactosidase) reporter gene harboring contiguous AGA codons close to the initiation codon or at internal codon positions together with minigene ATGAGATAA accompanied by reduced peptidyl-tRNA hydrolase (Pth). Our results showed accumulations of peptidyl-tRNA associated with ribosomes in mutants for release factors (RF1, RF2, and RF3), ribosome recycling factor (RRF), Pth, and transfer-messenger RNA (tmRNA), implying that each of these factors cooperate in rescuing stalled ribosomes. The role of these factors in ribosome releasing from the stalled complex may vary depending on the length of the peptide in the peptidyl-tRNA. RF3 and RRF rescue stalled ribosomes by "drop-off" of peptidyl-tRNA, while RF1, RF2 (in the absence of termination codon), or Pth may rescue by hydrolyzing the associated peptidyl-tRNA. This is followed by the disassembly of the ribosomal complex of tRNA and mRNA by RRF and elongation factor G.  相似文献   

10.
S Tapio  L A Isaksson 《Biochimie》1988,70(2):273-281
Kirromycin-resistant mutant forms of elongation factor Tu, which are coded by tufA (Ar) or tufB (Bo) and are associated with an increased rate of translational error formation, have been analysed. In vivo, Ar was found to increase misreading as well as suppression of non-sense codons irrespective of Bo in a strain with wild type ribosomes. It is therefore not necessary to evoke both tufA (Ar) and tufB (Bo) mutations together in order to increase translational error as suggested earlier [1]. When combined with a hyperaccurate ribosomal rpsL (S12) mutation, Ar counteracts the restrictive effects on translational error formation caused by the altered protein S12, thus restoring the levels of missense error in vitro and non-sense error and suppression in vivo to near wild type values. As judged from in vitro experiments this results principally from a lowered selectivity of the Ar ternary complex at the initial discrimination step on the ribosome during translation. In vivo, this compensatory effect on the rpsL mutation on non-sense error formation and suppression is seen irrespective of the nature of tRNA or codon context. Furthermore, the tufA mutation enhances the cellular growth rate of the rpsL mutant, whereas it decreases growth of strains with normal ribosomes. Inactivation of one of the two genes coding for EF-Tu (tufB), while leaving the other gene (tufA) intact, can by itself, increase non-sense error formation and suppression.  相似文献   

11.
The effects of antibodies specific for the Escherichia coli 30 S and 50 S ribosomal proteins have been determined for in vitro peptide chain termination and two partial reactions, the codon-directed binding of E. coli release factor to the ribosome and peptidyl-tRNA hydrolysis with RF2. Antibodies to ribosomal proteins L7 and L12 inhibit the initial binding of RF to the ribosome, and as a result, the subsequent peptidyl-tRNA hydrolysis. The kinetics of ribosomal inactivation for in vitro termination by anti-L7/L12 indicate that Fab fragments bind to three ribosome sites, and suggest that each of three copies of L7/L12 is involved in the binding of RF to the ribosome. When 70 S ribosome substrates are pretreated with anti-L11 and anti-L16 RF-dependent peptidyl-tRNA, hydrolysis is partially inhibited but the interaction of RF with the ribosome is not affected. The inactivation of in vitro termination by a mixture of anti-L11 and anti-L16 is not co-operative. Pretreatment of the 30 S ribosomal subunit (but not 70 S ribosomal substrate) with antibodies to the 30 S proteins, S9 and S11, results in strong inhibition of codon-directed hydrolysis of peptidyl-tRNA. While these antibodies inhibit ribosome subunit association, a requirement for peptide chain termination, and thereby may inhibit the in vitro termination reactions indirectly, the codon-directed binding of RF is markedly more affected than peptidyl-tRNA hydrolysis by anti-S9 and anti-S11. Antibody to S2 and anti-S3 exhibit a similar but less marked differential effect on the partial reactions of in vitro termination under the same conditions. When dissociated ribosomes are pretreated with anti-L11, in vitro termination is completely inhibited and both codon-directed binding of RF and peptidyl-tRNA hydrolysis are affected. L11 may, therefore, be at or near the interface between the ribosome subunits and like S9 and S11 not completely accessible to antibody in 70 S ribosomes. Pretreatment of dissociated ribosomes with antibodies to a number of other ribosomal proteins (L2, L4, L6, L14, L15, L17, L18, L20, L23, L26, L27) results in partial inhibition of all termination reactions although these antibodies have no effect on termination when incubated with 70 S ribosome substrates. The antibodies probably affect in vitro termination indirectly as a result of either preventing correct ribosome subunit association, or preventing correct positioning of the fMet-tRNA at the ribosome P site.  相似文献   

12.
RluD catalyses formation of three pseudouridine residues within helix 69 of the 50S ribosome subunit. Helix 69 makes important contacts with the decoding centre on the 30S subunit and deletion of rluD was recently shown to interfere with translation termination in Escherichia coli. Here, we show that deletion of rluD increases tmRNA activity on ribosomes undergoing release factor 2 (RF2)-mediated termination at UGA stop codons. Strikingly, tmRNA-mediated SsrA peptide tagging of two proteins, ribosomal protein S7 and LacI, was dramatically increased in ΔrluD cells. S7 tagging was due to a unique C-terminal peptide extension found in E. coli K-12 strains. Introduction of the rpsG gene (encoding S7) from an E. coli B strain abrogated S7 tagging in the ΔrluD background, and partially complemented the mutant's slow-growth phenotype. Additionally, exchange of the K-12 prfB gene (encoding RF2) with the B strain allele greatly reduced tagging in ΔrluD cells. In contrast to E. coli K-12 cells, deletion of rluD in an E. coli B strain resulted in no growth phenotype. These findings indicate that the originally observed rluD phenotypes result from synthetic interactions with rpsG and prfB alleles found within E. coli K-12 strains.  相似文献   

13.
Cloacin DF12 cleavage of Escherichia coli f[3H]MettRNA-AUG-ribosome complexes affects this substrate for in vitro peptide chain termination. Codon-directed release factors' (RF) 1 and 2 release of f[3H]methionine is inhibited by cloacin. Since cloacin inhibits RF1 and -2 binding to ribosomes but not RF-directed f[3H]methionine release from f[3H]met-tRNA-AUG-ribosome complexes when reactions contain 20% ethanol, we conclude that cloacin DF 13 inhibits formation of the termination codon recognition complex. Thus, cleavage of the 3'-OH 49-nucleotide sequence of the 16 S rRNA perturbs the codon-directed binding of RF to ribosomes.  相似文献   

14.
Stop codons have been exploited for genetic incorporation of unnatural amino acids (Uaas) in live cells, but their low incorporation efficiency, which is possibly due to competition from release factors, limits the power and scope of this technology. Here we show that the reportedly essential release factor 1 (RF1) can be knocked out from Escherichia coli by 'fixing' release factor 2 (RF2). The resultant strain JX33 is stable and independent, and it allows UAG to be reassigned from a stop signal to an amino acid when a UAG-decoding tRNA-synthetase pair is introduced. Uaas were efficiently incorporated at multiple UAG sites in the same gene without translational termination in JX33. We also found that amino acid incorporation at endogenous UAG codons is dependent on RF1 and mRNA context, which explains why E. coli tolerates apparent global suppression of UAG. JX33 affords a unique autonomous host for synthesizing and evolving new protein functions by enabling Uaa incorporation at multiple sites.  相似文献   

15.
Translation termination at UAG is influenced by the nature of the 5′ flanking codon inEscherichia coli. Readthrough of the stop codon is always higher in a strain with mutant (prfA1) as compared to wild-type (prfA+) release factor one (RF1). Isocodons, which differ in the last base and are decoded by the same tRNA species, affect termination at UAG differently in strains with mutant or wild-type RF1. No general preference of the last codon base to favour readthrough or termination can be found. The data suggest that RF1 is sensitive to the nature of the wobble base anticodon-codon interaction at the ribosomal peptidyl-tRNA binding site (P-site). For some isoaccepting P-site tRNAs (tRNA3ProversustRNA2Pro, tRNA4ThrversustRNA1,3Thr) the effect is different on mutant and wild-type RF1, suggesting an interaction between RF1 at the aminoacyl-tRNA acceptor site (A-site) and the P-site tRNA itself. The glycine codons GGA (tRNA2Gly) and GGG (tRNA2,3Gly) at the ribosomal P-site are associated with an almost threefold higher readthrough of UAG than any of the other 42 codons tested, including the glycine codons GGU/C, in a strain with wild-type RF1. This differential response to the glycine codons is lost in the strain with the mutant form of RF1 since readthrough is increased to a similar high level for all four glycine codons. High α-helix propensity of the last amino acid residue at the C-terminal end of the nascent peptide is correlated with an increased termination at UAG. The effect is stronger on mutant compared to wild-type RF1. The data suggest that RF1-mediated termination at UAG is sensitive to the nature of the codon-anticodon interaction of the wobble base, the last amino acid residue of the nascent peptide chain, and the tRNA at the ribosomal P-site.  相似文献   

16.
Translation of genetic information encoded in messenger RNAs into polypeptide sequences is carried out by ribosomes in all organisms. When a full protein is synthesized, a stop codon positioned in the ribosomal A site signals termination of translation and protein release. Translation termination depends on class I release factors. Recently, atomic-resolution crystal structures were determined for bacterial 70S ribosome termination complexes bound with release factors RF1 or RF2. In combination with recent biochemical studies, the structures resolve long-standing questions about translation termination. They bring insights into the mechanisms of recognition of all three stop codons, peptidyl-tRNA hydrolysis, and coordination of stop-codon recognition with peptidyl-tRNA hydrolysis. In this review, the structural aspects of these mechanisms are discussed.  相似文献   

17.
Stop codon recognition is a crucial event during translation termination and is performed by class I release factors (RF1 and RF2 in bacterial cells). Recent crystal structures showed that stop codon recognition is achieved mainly through a network of hydrogen bonds and stacking interactions between the stop codon and conserved residues in domain II of RF1/RF2. Additionally, previous studies suggested that recognition of stop codons is coupled to proper positioning of RF1 on the ribosome, which is essential for triggering peptide release. In this study we mutated four conserved residues in Escherichia coli RF1 (Gln185, Arg186, Thr190, and Thr198) that are proposed to be critical for discriminating stop codons from sense codons. Our thermodynamic and kinetic analysis of these RF1 mutants showed that the mutations inhibited the binding of RF1 to the ribosome. However, the mutations in RF1 did not affect the rate of peptide release, showing that imperfect recognition of the stop codon does not affect the proper positioning of RF1 on the ribosome.  相似文献   

18.
Recognition of translational termination signals   总被引:4,自引:0,他引:4  
Ribosomes can specifically shift at certain codons so that the mRNA is read in two different reading frames. To determine if frameshifting occurs at the level of termination, polymers of defined sequence containing AUG, a coding sequence and an in- or out-of-phase nonsense codon were used to bind a termination substrate or to program synthesis and release of dipeptides in a highly purified in vitro translation system. fMet-tRNA bound to ribosomes with AUGUAA, AUGUAAn, AUGUUU, AUGUUA or AUGUAn was not a substrate for release factor RF-1. In contrast, AUGU1UAA, AUGU3UAAn, AUGU4UAAn, AUGU5UAAn effected RF-1-dependent release of fMet from ribosomes. This suggests that nonsense codons can stimulate release whether they occur in- or out-of-phase. Addition of exogenous UAA and RF-1 stimulated release with all oligonucleotides tested. Propagation restricted the RF-1-dependent recognition of out-of-phase nonsense codons but did not restrict recognition of in-phase UAA in AUGU3UAAn. Release of dipeptides from ribosomes programmed with AUGU4UAAn occurred without EF-G and with a mutant lacking EF-G activity, suggesting that out-of-phase termination can occur prior to translocation outside the ribosomal A-site. We propose that the ribosome X RF complex is required to complete proteins, but is also able to frameshift at a nonsense codon resulting in occasional out-of-phase termination of protein synthesis.  相似文献   

19.
In contrast to bacteria that have two release factors, RF1 and RF2, eukaryotes only possess one unrelated release factor eRF1, which recognizes all three stop codons of the mRNA and hydrolyses the peptidyl-tRNA bond. While the molecular basis for bacterial termination has been elucidated, high-resolution structures of eukaryotic termination complexes have been lacking. Here we present a 3.8 Å structure of a human translation termination complex with eRF1 decoding a UAA(A) stop codon. The complex was formed using the human cytomegalovirus (hCMV) stalling peptide, which perturbs the peptidyltransferase center (PTC) to silence the hydrolysis activity of eRF1. Moreover, unlike sense codons or bacterial stop codons, the UAA stop codon adopts a U-turn-like conformation within a pocket formed by eRF1 and the ribosome. Inducing the U-turn conformation for stop codon recognition rationalizes how decoding by eRF1 includes monitoring geometry in order to discriminate against sense codons.  相似文献   

20.
UGA-specific nonsense suppressors from Escherichia coli K-12 were isolated and characterized. One of them (Su+UGA-11) was identified as a mutant of the prfB gene for the peptide releasing factor RF2. It appears that in this strain, while peptide release at sites of UGA mutations is retarded, the UGA stop codon is read through even in the absence of a tRNA suppressor, exhibiting a novel type of passive nonsense suppression. Three suppressors (Su+UGA-12, -16 and -34) were capable of restoring the streptomycin sensitive phenotype in resistant bacteria (strAr). Because of their drug-related phenotype, these are possibly mutations in the components of the ribosomal machinery, particularly those concerned with peptide release at UGA nonsense codons. A tRNA suppressor was also obtained which was derived from the tRNA(Trp) gene. In this strain, a long region between rrnC (84.5 min) and rrnB (89.5 min) was duplicated and one of the duplicated genes of tRNA(Trp) was mutated to the suppressor. The mechanism of UGA-suppression is discussed in terms of translation termination at the nonsense codon in both active and passive fashions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号