首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Morphogenesis of Apple Buds: III. The Inception of Flowers   总被引:3,自引:1,他引:2  
FULFORD  R. M. 《Annals of botany》1966,30(2):207-219
The early stages in the change from vegetative to reproductivedevelopment of apple spur terminal buds were followed by dissectionof buds from untreated trees, and from trees defoliated at differenttimes in the season. A change in the development of the leafprimordia occurred when there were approximately eight in thebud. This was followed by the development of bracts, which appearedto be necessary for the formation of actual flower parts. Leafprimordia tend to inhibit this process. Whereas their effectupon the apical meristem was subsequently reduced by the formationof bracts, so that eventually a terminal flower formed, theireffect upon the lower lateral meristems was unaltered. Thesemeristems therefore remained in a vegetative state. In addition to the number of leaf primordia in the bud, thedegree of dormancy may be an important factor in determiningthe onset of flowering. Since the number of leaf primordia invegetative buds at the end of the season is eight, the spatialdistribution of primordia on the main axis of the bud and theirvascular connexions might have a decisive effect on bud development.This was related to the effect of older primordia in the budupon the development of younger ones. In buds in which theseolder primordia were inhibited by foliage, etc., i.e. thosewith a long plastochrone, no effects were observed upon thedevelopment of younger primordia and the buds remained vegetative. Whilst correlative inhibition of buds thus affected their abilityto form flowers, there is no evidence of a critical leaf areafor flowering. Flowering in apple buds is more likely to bedue to the removal of factors inhibiting reproductive developmentthan to the synthesis of a specific flower inducing substanceas such.  相似文献   

2.
The determinism of bud bursting pattern along the 1-year-old shoot was studied at the molecular and morphological levels in the apple tree variety 'Lodi' which shows an acrotonic tendency. At the molecular level, the expression of KNAP2, which belongs to the class I KN1-like gene family, was studied. Measurements were carried out during dormancy (October), breaking dormancy (January) and just before bud bursting (March). The results showed that KNAP2 is more highly expressed in buds that will remain at rest in the spring. Expression of KNAP2 was found in the meristem and in the marginal meristem of the two latest shaped primordia. In the January and March buds, this gene is also expressed in the procambial zone underneath the apical meristem. This study therefore suggests that KNAP2 may be considered as a negative marker of bud growth potential and that the growth inhibition in proximal buds could partially result from differential gene activity. At the morphological level, it was shown that no organogenetic activity took place between October and March as revealed by the constant number of leaf primordia in buds. Nevertheless, those buds likely to grow the following spring had a larger size and fewer hard scales than other buds. This suggests that genetic control may act together with other mechanisms, possibly physical (number of scales) or biochemical, to control bud inhibition.  相似文献   

3.
A controlled environment experiment investigated whether thered:far-red (R:FR) ratio of light at the apical bud of the mainstolon could alter plant morphogenesis in clonal cuttings ofwhite clover (Trifolium repens L.) The apical bud included theapical meristem, five to six developing leaf primordia withassociated axillary bud primordia and stipules and the firstemerged folded leaf until development was greater than 0·3on the Carlson scale. Three light regimes were imposed on theapical bud by collimating light from R or FR light-emittingdiodes so that the R:FR ratio of light incident at the apicalbud was set at 0·25, 1·6 or 2·1, withoutsignificantly altering photosynthetically active radiation.The effect of these light regimes on white clover seedling growthwas also tested. At a low R:FR ratio seedling hypocotyl and cotyledon lengthswere significantly longer. However, with the cuttings, the lighttreatments did not alter node appearance rate or internode lengthof the main stolon, petiole length, area of leaves or totalshoot dry matter. There was one significant photomorphogeneticresponse in the cuttings, a delay of 0·5 of a phyllochronin the appearance of branches from axillary buds in the lowR:FR ratio treatment relative to the other treatments. Wherebranch appearance was delayed plants had fewer branches. Thisdifference could be ascribed solely to a delay in branch appearanceas there were no significant treatment effects on either theinitiation of axillary bud primordia within the apical bud,the probability of branching or on the rate of growth of branchesafter appearance. Because treatment of the apical bud inducedonly one of the many previously observed responses of whiteclover to a decrease in the R:FR ratio of light, we concludethat other plant organs must also sense the quality of incidentlight.Copyright 1994, 1999 Academic Press White clover, Trifolium repens, apical bud, light quality, red:far-red ratio, light-emitting diode, branching, axillary buds, photomorphogenesis  相似文献   

4.
The prostrate rhizome of Butomus umbellatus produces branch primordia of two sorts, inflorescence primordia and nonprecocious vegetative lateral buds. The inflorescence primordia form precociously by the bifurcation of the apical meristem of the rhizome, whereas the non-precocious vegetative buds are formed away from the apical meristem. The rhizome normally produces a branch in the axial of each foliage leaf. However, it is unclear whether the rhizome is a monopodial or a sympodial structure. Lateral buds are produced on the inflorescence of B. umbellatus either by the bifurcation or trifurcation of apical meristems. The inflorescence consists of monochasial units as well as units of greater complexity, and certain of the flower buds lack subtending bracts. The upright vegetative axis of Limnocharis flava has sympodial growth and produces evicted branch primordia solely by meristematic bifurcation. Only certain leaves of the axis are associated with evicted branch primordia and each such primordium gives rise to an inflorescence. The flowers of L. flava are borne in a cincinnus and, although the inflorescence is simpler than that of Butomus umbellatus, the two inflorescences appear to conform to a fundamental body plan. The ultimate bud on the inflorescence of Limnocharis flava always forms a vegetative shoot, and the inflorescence may also produce supernumerary vegetative buds. Butomus umbellatus and Limnocharis flava exhibit a high degree of mirror image symmetry.  相似文献   

5.
The structure of shoots, in particular of winter buds, ofHydrangea macrophylla was examined. The non-flower-bearing shoot is usually composed of a lower and an upper part, between which a boundary is discernible by means of a distinctly short internode. This internode is the lowermost of the upper part, and it is usually shorter than the internodes immediately above and below, although the internodes tend to shorten successively from the proximal to the distal part of the shoot. Variations exist in the following characters among the terminal bud, the axillary bud on the lower part of the shoot and the axillary bud on the upper part: (1) length of bud; (2) character of the outermost pair of leaf primordia; (3) degree of development of secondary buds in the winter bud; and (4) the number of leaf primordia. Usually, the terminal bud contains several pairs of foliage leaf primordia with a primordial inflorescence at the terminal of the bud, but the axiallary bud contains only the primordia of foliage leaves in addition to a pair of bud scales.  相似文献   

6.
S. E. Arney 《Planta》1968,82(3):235-245
Summary Removal of the leaf primordia hastens the rate of leaf initiation at the apex, and a paste containing 0.2% IAA in lanoline will substitute for the effect of the leaf primordia. Physical factors involved in the alteration in bud structure resulting from defoliation, such as gaseous diffusion and shading from light, have only negligible effect on the rate of leaf initiation, and the compsition of the internal atmosphere of the intact buds is not very different from the external atmosphere.The evidence suggests that developing leaf primordia inhibit cell division of the apical meristem through their production of auxin which is discharged into the stem at points which are morphologically basal to the apical cells; this, therefore, could be another case of correlative inhibition by auxin, comparable with the inhibition of lateral buds by the terminal apex.  相似文献   

7.
The Morphogenesis of Apple Buds: II. The Development of the Bud   总被引:3,自引:2,他引:1  
FULFORD  R. M. 《Annals of botany》1966,30(1):25-38
The formation of the terminal resting bud of apple spurs wasstudied on untreated and defoliated spurs by dissection of budscollected at intervals during the season. A distinctive patternof bud development was found in all treatments, the principalfeatures being firstly the steady rate over long periods ofthe season at which successive primordia began or completedbud-scale development, and secondly a change in rate of initiationof bud-scales several weeks after the resting bud had begunto form. Bud-scale initiation was invariably delayed in primordia inthe early period of bud development, when primordia adjacentto the apical meristem were affected directly by the foliage.The rate at which the number of mature bud-scales in the budincreased during the season was not related to the extent offoliar development, but appeared to depend upon the degree towhich the bud, during its early development, was affected bythe foliage. Whilst defoliation of spurs showed that the formation of bud-scaleswas dependent upon an effect of the foliage, no simple relationshipwas found. The number and size of leaves on defoliated spurswas much less than on untreated spurs, but the pattern of buddevelopment was very similar. Since the morphogenetic effectof foliage is known to vary with its age, the constant rateof formation of bud-scales during the season was consideredto be evidence of a second factor in the bud which counteractedvariations in effect of the foliage. A change in rate of increasein number of bud-scales could only occur therefore if the effectivelevel of one of these factors was altered independently of theother. This, it is suggested, is brought about by the accumulationof a further factor in the bud-scales, at a rate determinedduring the early formation of each primordium. From the similaritybetween the effects of these hypothetical factors and thoseof growth-regulating substances extracted from or applied tobuds of fruit trees it is thought that the second factor maybe a gibberellin-like substance, and the bud-scale factor agrowth inhibitor.  相似文献   

8.
Costes E 《Annals of botany》2003,92(4):581-588
An investigation was made of the number of preformed organs in winter buds of 3-year-old reiterated complexes of the 'Granny Smith' cultivar. Winter bud content was studied with respect to bud position: terminal buds were compared on both long shoots and spurs according to branching order and shoot age, while axillary buds were compared between three zones (distal, median and proximal) along 1-year-old annual shoots in order 1. The percentage of winter buds that differentiated into inflorescences was determined and the flowers in each bud were counted for each bud category. The other organ categories considered were scales and leaf primordia. The results confirmed that a certain number of organs must be initiated before floral differentiation occurred. The minimum limit was estimated at about 15 organs on average, including scales. Total number of lateral organs formed was shown to vary with both bud position and meristem age, increasing from newly formed meristems to 1- and 2-year-old meristems on different shoot types. These differences in bud organogenesis depending on bud position, were consistent with the morphogenetic gradients observed in apple tree architecture. Axillary buds did not contain more than 15 organs on average and this low organogenetic activity of the meristems was related to a low number of flowers per bud. In contrast, the other bud categories contained more than 15 differentiated organs on average and a trade-off was observed between leaf and flower primordia. The ratio between the number of leaf and flower primordia per bud varied with shoot type. When the terminal buds on long shoots and spurs were compared, those on long shoots showed more flowers and a higher ratio of leaf to flower primordia.  相似文献   

9.
The dormant axillary buds of Opuntia polyacantha can be activated by either cytokinins or gibberellic acid. Under the influence of benzylaminopurine (BAP), the axillary bud meristem increases greatly in size and becomes mitotically active. The primordia produced by the meristem develop as normal photosynthetic leaves. Gibberellic acid (GA) also causes the meristem to become mitotically active, but the meristem does not increase in size. The primordia produced under the influence of GA develop as normal cactus spines. Leaf-producing meristems and spine-producing meristems have the same zonation, despite the differences in size. The meristems are composed of a uniseriate tunica, a central mother cell zone, peripheral zone, and a pith rib meristem. The mitotic activity of each of the zones in the leaf-producing meristem differs significantly from the mitotic activity of the corresponding zones in the spine-producing meristem.  相似文献   

10.
The interaction of environmental and genetic variation in hazelnut (Corylus avellana) shoot development and the behaviour, survival, and colonisation of eriophyid bud mites (Phytoptus avellanae and Cecidophyopsis vermiformis) were studied. The distribution of galled buds on shoots indicated that mites colonised only those buds formed during the mite migration period. The point of entry is probably the growing shoot tip. Once within this structure, as the shoot develops the mites have access to a succession of newly-formed, bud primordia that are unprotected by bud scales. The relative accessibility of the apical meristem and bud primordia may affect host susceptibility.  相似文献   

11.
 The persistence of large epicormic shoots is one of the main factors that reduces timber quality and value in Quercus petraea. The early phases of epicormic shoot formation, i.e. the initiation of the epicormic buds, their survival and their proliferation over the years, are not clearly understood. In the present work, we studied the initiation of the axillary buds giving rise to epicormic buds and shoots, and followed their behaviour during the first 5 years using both scanning electron microscopy and light microscopy. Two types of proventitious epicormic buds have been identified. The first type has small axillary buds associated with the rings of bud-scale scars which are found at the base and tip of each growth unit. These buds are made of a terminal meristem surrounded only by scales; no leaf primordium is detected. During the second and third years of epicormic life, meristematic areas appear in the scale axil. Progressively, the meristematic areas organize into secondary bud primordia composed solely of the terminal meristem surrounded by scales. The second type of epicormic bud has secondary buds produced by a large axillary bud when this large bud either developed into a shoot or partially abscised. The epicormic potential in Q. petraea is characterized by a balance between the epicormic buds in apparent rest, enclosing meristematic areas and secondary bud primordia, and their mortality over the years. Received: 22 January 1998 / Accepted: 8 May 1998  相似文献   

12.
We have demonstrated the correlation between cell division and the expression of a histone H2A-encoding gene, His2A , in Norway spruce. Picea abies (L.) Karst and used a cDNA clone in in situ hybridization experiments to monitor the cytokinin-induced cell division during early stages of adventitious bud development. A general stimulation of division of epidermal and cortical cells followed upon the cytokinin treatment. After two weeks in culture a high mitotic activity was detected only in single cells or small groups of cells in the epidermis and subepidermal cell layers. These cells presumably constitute the early stages of meristem primordia. The small clusters of dividing cells enlarge and subsequently form adventitious buds. Cells of the meristem and needle primordia of adventitious buds divide frequently as do the corresponding cells in vegetative buds. A quiescent center is distinguished within the apical meristem of vegetative buds. These cells, in the summit of the domed meristem, divide with a considerably lower frequency than cells in the flanking region. Differences in the temporal expression pattern of the histone H2A gene in cells of the vascular tissue, detected between embryos germinating in vitro and bud-induced embryos, suggest that the cytokinin treatment affects the timing of cell divisions in the differentiating procambium.  相似文献   

13.
Passiflora foetida bears an unbranched tendril, one or two laterally situated flowers, and one accessory vegetative bud in the axil of each leaf. The vegetative shoot apex has a single-layered tunica and an inner corpus. The degree of stratification in the peripheral meristem, the discreteness of the central meristem, and its centric and acentric position in the shoot apex are important plastochronic features. The procambium of the lateral leaf trace is close to the site of stipule initiation. The main axillary bud differentiates at the second node below the shoot apex. Adaxial to the bud 1–3 layers of cells form a shell-zone delimiting the bud meristem from the surrounding cells. A group of cells of the bud meristem adjacent to the axis later differentiates as an accessory bud. A second accessory bud also develops from the main bud opposite the previous one. A bud complex then consists of two laterally placed accessory bud primordia and a centrally-situated tendril bud primordium. The two accessory bud primordia differentiate into floral branches. During this development the initiation of a third vegetative accessory bud occurs on the axis just above the insertion of the tendril. This accessory bud develops into a vegetative branch and does not arise from the tissue of the tendril and adjacent two floral buds. The trace of the tendril bud consists of two procambial strands. There is a single strand for the floral branch trace. The tendril primordium grows by marked meristematic activity of its apical region and general intercalary growth.  相似文献   

14.
In the present work, we described the fate of proventitious epicormic buds on the trunks of 40-year-old Quercus petraea trees and in parallel the vascular trace they produced in the wood. Our results show that small and large individual epicormic buds can survive as buds for 40 years and that both are composed of a terminal meristem and scales. Meristematic areas are detected in the scale axils of small buds; in addition to these meristems the large buds also have secondary bud primordia. The small buds are connected to the pith of the main stem by a unique trace, whereas the large buds are connected by one or multiple traces. A single trace might imply that the whole bud is still alive and multiple traces might indicate that the terminal meristem has died. In the latter case, each trace is connected to a secondary bud of the large bud. The buds found in a cluster are composed of a terminal meristem and scales with axillary meristems in the scale axils. A cluster is connected to the pith of a stem either by a unique trace when it seems to be the result of partial abscission of an epicormic shoot or multiple traces when it might have originated from an epicormic bud in which the terminal meristem has died. Whatever the type of the bud, the vascular trace in the bark is composed of a cambium, secondary xylem and parenchyma cells and the trace present in the wood had parenchyma cells with vestiges of secondary xylem. Each year, the vascular trace should be produced in the bark by the cambium of the tree but not by the bud itself. On 40-year-old Q. petraea, we observed a proliferation of epicormic buds and in parallel a multiplication of the number of vascular traces in the trunk, but the knots caused by the traces of epicormic buds in the wood, either as individuals or in clusters, are minor since their colours are only slightly darker than those of woody rays and they are less than 2 mm in diameter. The knots will appear when epicormic buds develop into shoots. Received: 30 March 1999 / Accepted: 09 June 1999  相似文献   

15.
Adventitious buds were formed on the hypocotyls of decapitated flax seedlings. Scanning electron and light microscopic examinations of hypocotyls showed that epidermal cells divided to produce meristematic spots from which several leaf primordia were formed. Between leaf primordia and the original vascular tissues of hypocotyls, new xylem cells were formed which connected them. About 10, 30 and 60% of adventitious buds were formed on upper, middle and basal parts of hypocotyls of decapitated seedlings, respectively. Removal of apical meristem together with longer hypocotyl zero to four cm long below the apical meristem) induced higher percentage of adventitious bud formation in the remaining hypocotyl. When the entire hypocotyl was cut into 16 segments (0.25 cm each) and these segments were cultured on MS medium containing 3% sucrose and 0.8% agar, adventitious buds were mainly formed in the lowest five segments. These results suggested that there was a gradient of inhibitory factor(s) from apical to basal part of hypocotyl with respect to adventitious bud formation. Auxin transport inhibitors, morphactin and TIBA induced adventitious bud formation on intact seedlings by suppressing the basipetal movement of auxin.  相似文献   

16.
A study of the composition of long-branch terminal buds (LBTB) of Pinus banksiana Lamb. and the yearly periodicity associated with their formation, development, and elongation was undertaken. Each LBTB has lateral bud zones and zones of cataphylls lacking axillary buds. When present, staminate cone primordia differentiate from the lowest lateral buds in the lowest lateral bud zone of the LBTB. Ovulate cone primordia and lateral long-branch buds can differentiate from the upper lateral buds in any lateral bud zone. When both types of buds are present, lateral long-branch buds are uppermost. Dwarf-branch buds occur in all lateral bud zones. During spring LBTB internodes elongate, new cataphylls are initiated, dwarf branches elongate, needles form and elongate, pollen forms and is released, and ovulate cones are pollinated. During summer buds form in the axils of the newly formed cataphylls. By early fall the new LBTB are in overwintering condition and the four types of lateral buds are discernable. The cytohistological zonation of the LBTB shoot apex is similar to that of more than 20 other conifer species. Cells in shoot apices of pine are usually arranged in distinct zones: apical initials, subapical initials, central meristem, and peripheral meristem. Periclinal divisions occur in the surface cells of the apex; therefore no tunica is present. At any given time, shoot apex volume and shape vary among LBTB in various positions on a tree. In any one LBTB on a tree, shoot apex shape changes from a low dome during spring to a high dome during summer to an intermediate shape through fall and winter.  相似文献   

17.
In vitro culture of hypocotyl explants from Kandelia candel, a common mangrove species, on hormone-free Murashige and Skoog (MS) medium resulted in shoot formation. Since the hypocotyls showed good potential for in vitro shoot multiplication, the process of bud primordium formation was analyzed from a histological viewpoint. A wound periderm first appeared at the top, exposed cut surface of the explants. The wound-induced meristem continued to divide giving rise to suberized cells oriented towards the cut surface. After formation of the suberized cell layers, the meristem and its inner derivatives differentiated into multilayered, uniformly packed parenchyma cells. Bud primordia differentiated from the dense cytoplasmic cells of the wound-induced meristem just beneath the suberized layer near the severed vascular bundles. Each explant produced several visible shoot buds. Furthermore, histological sections revealed that additional bud primordia were present within the explant just underneath the suberized cells and that these bud primordia appeared to be arrested in their development. The fact that additional bud primordia were present within the explant suggests that further manipulation of the explant is helpful to maximize the potential of this system.  相似文献   

18.
The effect of assimilate supply on axillary bud developmentand subsequent shoot growth was investigated in roses. Differencesin assimilate supply were imposed by differential defoliation.Fresh and dry mass of axillary buds increased with increasedassimilate supply. The growth potential of buds was studiedeither by pruning the parent shoot above the bud, by graftingthe bud or by culturing the bud in vitro. Time until bud breakwas not clearly affected by assimilate supply during bud development,Increase in assimilate supply slightly increased the numberof leaves and leaf primordia in the bud; the number of leavespreceding the flower on the shoot grown from the axillary budsubstantially increased. No difference was found in the numberof leaves preceding the flower on shoots grown from buds attachedto the parent shoot and those from buds grafted on a cutting,indicating that at the moment of release from inhibition thebud meristem became determined to produce a specific numberof leaves and to develop into a flower. Assimilate supply duringaxillary bud development increased the number of pith cells,but the final size of the pith in the subsequent shoot was largelydetermined by cell enlargement, which was dependent on assimilatesupply during shoot growth. Shoot growth after release frominhibition was affected by assimilate supply during axillarybud development only when buds sprouted attached to the parentshoot, indicating that shoot growth is, to a major extent, dependenton the assimilate supply available while growth is taking place.Copyright1994, 1999 Academic Press Assimilate supply, axillary bud, cell number, cell size, defoliation, development, growth potential, meristem programming, pith, Rosa hybrida, rose, shoot growth  相似文献   

19.
The study was focused on changes of anatomical and histochemical parameters of buds of 4-year-old Norway spruce (Picea abies L. Karst) trees subjected to simulated acid rain (SAR). Solutions of pH 2.9 and 3.9 were applied by spraying on shoot and/or by watering for two years. No macroscopic changes of buds or needles were observed in connection with SAR application and the only induced change was 2-week earlier onset of bud break in all treated variants compared to the control. Two-year treatment caused decrease in number of leaf primordia and increase in number of living bud scales in treated dormant buds while these parameters remained unchanged in the control buds. Treatments with solution of pH 2.9 caused decrease of flatness of bud apical meristem during the vegetative season. Increased activity of non-specific esterase in treated buds occurred during dormancy and bud break and the enhanced accumulation of phenolic compounds was detected at the beginning of shoot growth. Changes in histochemical parameters of bud tissues were induced mainly by spraying of shoots and can thus be qualified as primary damage.  相似文献   

20.
Meristematic activity in the bud meristem of Abies nordmanniana was visualized by ubiquitin immunohistochemical localization from before bud break and throughout shoot expansion. Ubiquitin was detected in meristematic cells either in the cytosol or nucleus, or both, depending on tissue type and developmental stage. During winter dormancy, ubiquitin was only observed in the protodermal/hypodermal layers, but at bud break in mid May, the signal expanded to the entire shoot tip. At the end of May, a clear zonation in ubiquitin localization appeared that lasted about one month. Throughout this period, ubiquitin was barely detectable in a central group of cells that might indicate an organizing center with stem cells. At the end of June, coinciding with the transition from scale leaf to needle primordia production, ubiquitin again was more prevalent in the peripheral cell layers. During shoot expansion, a strong ubiquitin signal developed in the axil of all needles. Most of these signals later disappeared, except for those few axils where buds actually developed. A strong ubiquitin signal was also observed in cells lining the young resin ducts. Our data showed that ubiquitin may be used as a marker for metabolic activity associated with seasonal development in the apical meristem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号