首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Trans mycolic acid content is directly related to cell wall fluidity and permeability in mycobacteria. Carbon-13 NMR spectroscopy of mycolic acids isolated from Mycobacterium tuberculosis (MTB) and Mycobacterium smegmatis (MSM) fed 13C-labeled precursor molecules was used to probe the biosynthetic pathways that modify mycolic acids. Heteronuclear correlation spectroscopy (HMQC) of ketomycolic acid from MTB allowed assignment of the complete 13C-NMR spectrum. Incorporation patterns from [1-13C]-acetate and [2-13C]-acetate feeding experiments suggested that the mero chain and alpha branch of mycolic acids are both synthesized by standard fatty acid biosynthetic reactions. [13C-methyl]-L-methionine was used to specifically label carbon atoms derived from the action of the methyl transferases involved in meromycolate modification. To enrich for trans mycolic acids a strain of MTB overexpressing the mma1 gene was labeled. Carbon-carbon coupling was observed in mycolate samples doubly labeled with 13C-acetate and [13C-methyl]-L-methionine and this information was used to assess positional specificity of methyl transfer. In MTB such methyl groups were found to occur exclusively on carbons derived from the 2 position of acetate, while in MSM they occurred only on carbons derived from the 1 position. These results suggest that the MSM methyltransferase MMAS-1 operates in an inverted manner to that of MTB.  相似文献   

2.
A mutant of Mycobacterium smegmatis defective in mycolic acid biosynthesis was isolated following chemical mutagenesis. Fatty acids were extracted from the mutant and subjected to structural analysis by thin-layer chromatography and high-performance liquid chromatography (HPLC) of both methyl and p-bromophenacyl ester derivatives. Thin-layer chromatography did not show the presence of any fatty acid of RF comparable to that of standard methyl mycolate. The HPLC profile revealed a broad peak in the standard mycolic acid ester region. No characteristic peaks of mycolic acid esters comparable to the wild-type could be resolved. Mass spectral analysis of the HPLC-purified peak demonstrated the presence of shorter-chain fatty acids in the mutant. These data support the idea that the mutant accumulates precursors of mycolic acids and is incapable of carrying out the final conversion to mycolic acids of 60-90 carbon atoms.  相似文献   

3.
New chemotherapeutics active against multidrug-resistant Mycobacterium tuberculosis are urgently needed. We report on the identification of an adamantyl urea compound that shows potent bactericidal activity against M. tuberculosis and a unique mode of action, namely the abolition of the translocation of mycolic acids from the cytoplasm, where they are synthesized to the periplasmic side of the plasma membrane and are in turn transferred onto cell wall arabinogalactan or used in the formation of virulence-associated, outer membrane, trehalose-containing glycolipids. Whole-genome sequencing of spontaneous-resistant mutants of M. tuberculosis selected in vitro followed by genetic validation experiments revealed that our prototype inhibitor targets the inner membrane transporter MmpL3. Conditional gene expression of mmpL3 in mycobacteria and analysis of inhibitor-treated cells validate MmpL3 as essential for mycobacterial growth and support the involvement of this transporter in the translocation of trehalose monomycolate across the plasma membrane.  相似文献   

4.
Mycolic acids are major components of the cell wall of Mycobacterium tuberculosis. Several studies indicate that functional groups in the acyl chain of mycolic acids are important for pathogenesis and persistence. There are at least three mycolic acid cyclopropane synthases (PcaA, CmaA1, and CmaA2) that are responsible for these site-specific modifications of mycolic acids. To derive information on the specificity and enzyme mechanism of the family of proteins, the crystal structures of CmaA1, CmaA2, and PcaA were solved to 2-, 2-, and 2.65-A resolution, respectively. All three enzymes have a seven-stranded alpha/beta fold similar to other methyltransferases with the location and interactions with the cofactor S-adenosyl-l-methionine conserved. The structures of the ternary complexes demonstrate the position of the mycolic acid substrate binding site. Close examination of the active site reveals electron density that we believe represents a bicarbonate ion. The structures support the hypothesis that these enzymes catalyze methyl transfer via a carbocation mechanism in which the bicarbonate ion acts as a general base. In addition, comparison of the enzyme structures reveals a possible mechanism for substrate specificity. These structures provide a foundation for rational-drug design, which may lead to the development of new inhibitors effective against persistent bacteria.  相似文献   

5.
There are three major structural classes of mycolic acids in the cell envelope of Mycobacterium tuberculosis (MTB): alpha-, methoxy- and ketomycolate. The two oxygen-containing classes are biosynthetically related through a common α-methyl hydroxymycolate intermediate. BCG strains that fail to produce methoxymycolate and instead produce only keto- and alpha-mycolic acids show apparent defects in the O -methyltransferase MMAS-3. Overproduction of MMAS-3 from MTB resulted in a complete replacement of ketomycolate by methoxymycolate in both BCG and MTB. In vitro growth of these recombinant strains lacking ketomycolate was impaired at reduced temperatures but appeared to be normal at 37°C. Glucose uptake was significantly decreased in such strains, but uptake of chenodeoxycholate and glycine was unaffected. Although sensitivity to INH remained unchanged, these cells were found to be hypersensitive to ampicillin and rifampicin. Infectivity of BCG and H37Rv wild type or MMAS-3 overproducers in THP-1 cells was somewhat affected, but the ability of the strains lacking ketomycolate to grow within this macrophage-like cell line was severely compromised. In vivo labelling of mycolic acids during growth of H37Rv within THP-1 cells revealed a substantial increase in ketomycolate and alphamycolate synthesized by intracellularly grown mycobacteria. These results establish a critical role for mycolate composition in proper cell wall function during the growth of MTB in vivo .  相似文献   

6.
Infection with Mycobacterium tuberculosis remains a major global health emergency. Although detailed understanding of the molecular events of M. tuberculosis pathogenesis is still limited, recent genetic analyses have implicated specific lipids of the cell envelope as important effectors in M. tuberculosis pathogenesis. We have shown that pcaA, a novel member of a family of M. tuberculosis S-adenosyl methionine (SAM)-dependent methyl transferases, is required for alpha-mycolic acid cyclopropanation and lethal chronic persistent M. tuberculosis infection. To examine the apparent redundancy between pcaA and cmaA2, another cyclopropane synthetase of M. tuberculosis thought to be involved in alpha-mycolate synthesis, we have disrupted the cmaA2 gene in virulent M. tuberculosis by specialized transduction. Inactivation of cmaA2 causes accumulation of unsaturated derivatives of both the methoxy- and ketomycolates. Analysis by proton NMR indicates that the mycolic acids of the cmaA2 mutant lack trans-cyclopropane rings but are otherwise intact with respect to cyclopropane and methyl branch content. Thus, cmaA2 is required for the synthesis of the trans cyclopropane rings of both the methoxymycolates and ketomycolates. These results define cmaA2 as a trans-cyclopropane synthetase and expand our knowledge of the substrate specificity of a large family of highly homologous mycolic acid methyl transferases recently shown to be critical to M. tuberculosis pathogenesis.  相似文献   

7.
Mycolic acids are very long-chain fatty acids representing essential components of the mycobacterial cell wall. Considering their importance, characterization of key enzymes participating in mycolic acid biosynthesis not only allows an understanding of their role in the physiology of mycobacteria, but also might lead to the identification of new drug targets. Mycolates are synthesized by at least two discrete elongation systems, the type I and type II fatty acid synthases (FAS-I and FAS-II respectively). Among the FAS-II components, the condensing enzymes that catalyse the formation of carbon-carbon bonds have received considerable interest. Four condensases participate in initiation (mtFabH), elongation (KasA and KasB) and termination (Pks13) steps, leading to full-length mycolates. We present the recent biochemical and structural data for these important enzymes. Special emphasis is given to their role in growth, intracellular survival, biofilm formation, as well as in the physiopathology of tuberculosis. Recent studies demonstrated that phosphorylation of these enzymes by mycobacterial kinases affects their activities. We propose here a model in which kinases that sense environmental changes can phosphorylate the condensing enzymes, thus representing a novel mechanism of regulating mycolic acid biosynthesis. Finally, we discuss the attractiveness of these enzymes as valid targets for future antituberculosis drug development.  相似文献   

8.

Background

The human pathogen Mycobacterium tuberculosis (Mtb) has the originality of possessing a multifunctional mega-enzyme FAS-I (Fatty Acid Synthase-I), together with a multi-protein FAS-II system, to carry out the biosynthesis of common and of specific long chain fatty acids: the mycolic acids (MA). MA are the main constituents of the external mycomembrane that represents a tight permeability barrier involved in the pathogenicity of Mtb. The MA biosynthesis pathway is essential and contains targets for efficient antibiotics. We have demonstrated previously that proteins of FAS-II interact specifically to form specialized and interconnected complexes. This finding suggested that the organization of FAS-II resemble to the architecture of multifunctional mega-enzyme like the mammalian mFAS-I, which is devoted to the fatty acid biosynthesis.

Principal Findings

Based on conventional and reliable studies using yeast-two hybrid, yeast-three-hybrid and in vitro Co-immunoprecipitation, we completed here the analysis of the composition and architecture of the interactome between the known components of the Mtb FAS-II complexes. We showed that the recently identified dehydratases HadAB and HadBC are part of the FAS-II elongation complexes and may represent a specific link between the core of FAS-II and the condensing enzymes of the system. By testing four additional methyltransferases involved in the biosynthesis of mycolic acids, we demonstrated that they display specific interactions with each type of complexes suggesting their coordinated action during MA elongation.

Significance

These results provide a global update of the architecture and organization of a FAS-II system. The FAS-II system of Mtb is organized in specialized interconnected complexes and the specificity of each elongation complex is given by preferential interactions between condensing enzymes and dehydratase heterodimers. This study will probably allow defining essential and specific interactions that correspond to promising targets for Mtb FAS-II inhibitors.  相似文献   

9.
10.
11.
Mycolic acids are major and specific lipid components of the cell envelope of mycobacteria that include the causative agents of tuberculosis and leprosy, Mycobacterium tuberculosis and Mycobacterium leprae, respectively. Subtle structural variations that are known to be crucial for both their virulence and the permeability of their cell envelope occur in mycolic acids. Among these are the introduction of cyclopropyl groups and methyl branches by mycolic acid S-adenosylmethionine-dependent methyltransferases (MA-MTs). While the functions of seven of the M. tuberculosis MA-MTs have been either established or strongly presumed nothing is known of the roles of the remaining umaA gene product and those of M. smegmatis MA-MTs. Mutants of the M. tuberculosis umaA gene and its putative M. smegmatis orthologue, MSMEG0913, were created. The lipid extracts of the resulting mutants were analyzed in detail using a combination of analytical techniques such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and proton nuclear magnetic resonance spectroscopy, and chemical degradation methods. The M. smegmatis mutants no longer synthesized subtypes of mycolates containing a methyl branch adjacent to either trans cyclopropyl group or trans double bond at the "proximal" position of both alpha- and epoxy-mycolates. Complementation with MSMEG0913, but not with umaA, fully restored the wild-type phenotype in M. smegmatis. Consistently, no modification was observed in the structures of mycolic acids produced by the M. tuberculosis umaA mutant. These data proved that despite their synteny and high similarity umaA and MSMEG0913 are not functionally orthologous.  相似文献   

12.
Examination of InhA mutants I16T, I21V, I47T, S94A, and I95P showed that direct and water mediated H-bond interactions between NADH and binding site residues reduced drastically. It allowed conformational flexibility to NADH, particularly at the pyrophosphate region, leading to weakening of its binding at dinucleotide binding site. The highly scattered distribution of pyrophosphate dihedral angles and chi1 side chain dihedral angles of corresponding active site residues therein confirmed weak bonding between InhA and NADH. The average direct and water mediated bridged H-bond interactions between NADH and mutants were observed weaker as compared to wild type. Further, estimated NADH binding free energy in mutants supported the observed weakening of InhA-NADH interactions. Similarly, per residue contribution to NADH binding was also found little less as compared to corresponding residues in wild type. This investigation clearly depicted and supported the effect of mutations on NADH binding and can be accounted for isoniazid resistance as suggested by previous biochemical and mutagenic studies. Further, structural analysis of InhA provided the crucial points to enhance the NADH binding affinity towards InhA mutants in the presence of direct InhA inhibitors to combat isoniazid drug resistance. This combination could be a potential alternative for treatment of drug resistant tuberculosis.  相似文献   

13.
14.
Small amounts of free mycolic acids and trehalose dimycolate that are rapidly formed by Mycobacterium tuberculosis H37Ra are probably derived from mycolyl acetyl trehalose and transferred to the cell wall. However, the transfer of mycolic acids from mycolyl acetyl trehalose to the cell wall still appears to be the more prominent route.  相似文献   

15.
Pathogenic mycobacteria survive within macrophages by residing in phagosomes, which they prevent from maturing and fusing with lysosomes. Although several bacterial components were seen to modulate phagosome processing, the molecular regulatory mechanisms taking part in this process remain elusive. We investigated whether the phagosome maturation block (PMB) could be modulated by signaling through Ser/Thr phosphorylation. Here, we demonstrated that mycolic acid cyclopropane synthase PcaA, but not MmaA2, was phosphorylated by mycobacterial Ser/Thr kinases at Thr-168 and Thr-183 both in vitro and in mycobacteria. Phosphorylation of PcaA was associated with a significant decrease in the methyltransferase activity, in agreement with the strategic structural localization of these two phosphoacceptors. Using a BCG ΔpcaA mutant, we showed that PcaA was required for intracellular survival and prevention of phagosome maturation in human monocyte-derived macrophages. The physiological relevance of PcaA phosphorylation was further assessed by generating PcaA phosphoablative (T168A/T183A) or phosphomimetic (T168D/T183D) mutants. In contrast to the wild-type and phosphoablative pcaA alleles, introduction of the phosphomimetic pcaA allele in the ΔpcaA mutant failed to restore the parental mycolic acid profile and cording morphotype. Importantly, the PcaA phosphomimetic strain, as the ΔpcaA mutant, exhibited reduced survival in human macrophages and was unable to prevent phagosome maturation. Our results add new insight into the importance of mycolic acid cyclopropane rings in the PMB and provide the first evidence of a Ser/Thr kinase-dependent mechanism for modulating mycolic acid composition and PMB.  相似文献   

16.
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a highly evolved human pathogen characterized by its formidable cell wall. Many unique lipids and glycolipids from the Mtb cell wall are thought to be virulence factors that mediate host-pathogen interactions. An intriguing example is Sulfolipid-1 (SL-1), a sulfated glycolipid that has been implicated in Mtb pathogenesis, although no direct role for SL-1 in virulence has been established. Previously, we described the biochemical activity of the sulfotransferase Stf0 that initiates SL-1 biosynthesis. Here we show that a stf0-deletion mutant exhibits augmented survival in human but not murine macrophages, suggesting that SL-1 negatively regulates the intracellular growth of Mtb in a species-specific manner. Furthermore, we demonstrate that SL-1 plays a role in mediating the susceptibility of Mtb to a human cationic antimicrobial peptide in vitro, despite being dispensable for maintaining overall cell envelope integrity. Thus, we hypothesize that the species-specific phenotype of the stf0 mutant is reflective of differences in antimycobacterial effector mechanisms of macrophages.  相似文献   

17.
Tuberculosis kills about two million people every year and remains one of the leading causes of mortality worldwide. As a result of the increasing antibiotic resistance of Mycobacterium tuberculosis (Mtb) strains, there is an urgent need for new antitubercular drugs. Several efficient antibiotics, including isoniazid, specifically target the fatty acid synthase-II (FAS-II) complex of mycolic acid biosynthesis. We have previously shown that there are protein-protein interactions between the components of FAS-II that are essential for mycobacterial survival. We have now looked at the potential partners of FAS-II, mtFabD, the methyltransferases MmaAs, and Pks13. A combination of yeast two-hybrid and co-immunoprecipitation experiments showed that mtFabD interacts with each beta-ketoacyl-synthase (KasA, KasB and mtFabH) and with the core of FAS-II (InhA and MabA). The methyltransferases have a greater affinity for KasA and KasB than for mtFabH, suggesting that modifications on the meromycolic chains may occur during their elongation. Finally, Pks13, which catalyzes the final Claisen condensation of mycolic acids, interacts specifically with KasB. These data allowed us to determine the architecture of the multiple specialized FAS-II complexes, giving us insights into the organization of the complete mycolic acids biosynthesis. Our studies suggest a new and crucial interaction (KasB-Pks13) as a putative target for peptidomimetic antibiotics.  相似文献   

18.
The cell wall of mycobacteria includes a thick, robust, and highly impermeable outer membrane made from long-chain mycolic acids. These outer membranes form a primary layer of protection for mycobacteria and directly contribute to the virulence of diseases such as tuberculosis and leprosy. We have formed in vitro planar membranes using pure mycolic acids on circular apertures 20 to 90 μm in diameter. We find these membranes to be long lived and highly resistant to irreversible electroporation, demonstrating their general strength. Insertion of the outer membrane channel MspA into the membranes was observed indicating that the artificial mycolic acid membranes are suitable for controlled studies of the mycobacterial outer membrane and can be used in nanopore DNA translocation experiments.  相似文献   

19.
20.
Mycobacterium smegmatis has been shown to contain two forms of polyprenyl phosphate (Pol-P), while Mycobacterium tuberculosis contains only one. Utilizing subcellular fractions from M. smegmatis and M. tuberculosis, we show that Pol-P synthesis is different in these species. The specific activities of the prenyl diphosphate synthases in M. tuberculosis are 10- to 100-fold lower than those in M. smegmatis. In M. smegmatis decaprenyl diphosphate and heptaprenyl diphosphate were the main products synthesized in vitro, whereas in M. tuberculosis only decaprenyl diphosphate was synthesized. The data from both organisms suggest that geranyl diphosphate is the allylic substrate for two distinct prenyl diphosphate synthases, one located in the cell membrane that synthesizes omega,E,Z-farnesyl diphosphate and the other present in the cytosol that synthesizes omega,E,E,E-geranylgeranyl diphosphate. In M. smegmatis, the omega,E, Z-farnesyl diphosphate is utilized by a membrane-associated prenyl diphosphate synthase activity to generate decaprenyl diphosphate, and the omega,E,E,E-geranylgeranyl diphosphate is utilized by a membrane-associated activity for the synthesis of the heptaprenyl diphosphate. In M. tuberculosis, however, omega,E,E,E-geranylgeranyl diphosphate is not utilized for the synthesis of heptaprenyl diphosphate. Thus, the difference in the compositions of the Pol-P of M. smegmatis and M. tuberculosis can be attributed to distinct enzymatic differences between these two organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号