首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Telomere length variation has been associated with increased risk of several types of tumors, and telomere shortening, with genetic anticipation in a number of genetic diseases including hereditary cancer syndromes. No conclusive studies have been performed for Lynch syndrome, a hereditary colorectal cancer syndrome caused by germline mutations in the DNA mismatch repair genes. Here we evaluate telomere length in Lynch syndrome, both as a cancer risk factor and as a mechanism associated with anticipation in the age of cancer onset observed in successive generations of Lynch syndrome families. Leukocyte telomere length was measured in 244 mismatch repair gene mutation carriers from 96 Lynch syndrome families and in 234 controls using a monochrome multiplex quantitative PCR method. Cancer-affected mutation carriers showed significantly shorter telomeres than cancer-free mutation carriers. In addition, cancer-affected carriers showed the most pronounced shortening of telomere length with age, compared with unaffected carriers. The anticipation in the age of cancer onset observed in successive generations was not associated with telomere shortening, although, interestingly, all mother-son pairs showed telomere shortening. In conclusion, cancer-affected mismatch repair gene mutation carriers have distinct telomere-length pattern and dynamics. However, anticipation in the age of onset is not explained by telomere shortening. Pending further study, our findings suggest that telomere attrition might explain the previously reported dependence of cancer risk on the parent-of-origin of mismatch repair gene mutations.  相似文献   

2.
Angiogenesis, which plays an important role in tumor growth and progression of breast cancer, is regulated by a balance between pro- and anti-angiogenic factors. Expression of vascular endothelial growth factor (VEGF) is up-regulated during hypoxia by hypoxia-inducible factor-1α (HIF-1α). It is known that there is an interaction between HIF-1α and BRCA1 carrier cancers, but little has been reported about angiogenesis in BRCA1-2 carrier and BRCAX breast cancers. In this study, we investigated the expression of VEGF and HIF-1α and microvessel density (MVD) in 26 BRCA1-2 carriers and 58 BRCAX compared to 77 sporadic breast cancers, by immunohistochemistry. VEGF expression in BRCA1-2 carriers was higher than in BRCAX cancer tissues (p = 0.0001). Furthermore, VEGF expression was higher in both BRCA1-2 carriers and BRCAX than the sporadic group (p<0.0001). VEGF immunoreactivity was correlated with poor tumor grade (p = 0.0074), hormone receptors negativity (p = 0.0206, p = 0.0002 respectively), and MIB-1-labeling index (p = 0.0044) in familial cancers (BRCA1-2 and BRCAX). The percentage of nuclear HIF-1α expression was higher in the BRCA1-2 carriers than in BRCAX cancers (p<0.05), and in all familial than in sporadic tumor tissues (p = 0.0045). A higher MVD was observed in BRCA1-2 carrier than in BRCAX and sporadic cancer tissues (p = 0.002, p = 0.0001 respectively), and in all familial tumors than in sporadic tumors (p = 0.01). MVD was positively related to HIF-1α expression in BRCA1-2 carriers (r = 0.521, p = 0.006), and, in particular, we observed a highly significant correlation in the familial group (r = 0.421, p<0.0001). Our findings suggest that angiogenesis plays a crucial role in BRCA1-2 carrier breast cancers. Prospective studies in larger BRCA1-2 carrier series are needed to improve the best therapeutic strategies for this subgroup of breast cancer patients.  相似文献   

3.
4.
Genetic anticipation is the increased incidence, earlier onset, or increased severity of a disease in successive generations. Before the biological basis of anticipation had been demonstrated, the phenomenon was thought to be due to sampling bias, epigenetic effects, gene conversion, or recombinant events. Since then, the biologic basis for anticipation in a number of neurodegenerative disorders has been shown to be attributable to trinucleotide repeat instability, with expansion of repeats clearly correlated with an earlier age of onset. Recently, telomere shortening has been suggested as the mechanism for anticipation in the autosomal dominant form of dyskeratosis congenita, attributable to mutations in the TERC gene, leading to dysfunctional telomeres (Vulliamy et al. 2004). However, the pattern of anticipation has been observed in other disorders, including cancers, for which no genetic defect has been identified. In this study, we assess the apparent generation effect on cancer incidence in ten extended families with P53 germline mutation, identified through probands diagnosed with childhood sarcoma. The probands were from two sets of systematically ascertained sarcoma patients treated at the University of Texas M. D. Anderson Cancer Center between 1944 and 1982. From those overall studies, we have identified ten kindreds having germline P53 mutations in more than one generation. We compared the cancer incidence in members of successive generations of these families with P53 mutations (carriers) and with no P53 mutations (noncarriers). In carriers, cancer incidence increased in succeeding generations; there was no evidence for this effect in noncarriers; however, the noncarrier population was too small to rule it out. The apparent lack of increase in incidence in noncarriers argues against a cohort effect explaining the increase in carriers.  相似文献   

5.
Inactivating mutations in the breast cancer susceptibility gene BRCA2 cause gross chromosomal rearrangements. Chromosome structural instability in the absence of BRCA2 is thought to result from defective homology-directed DNA repair. Here, we show that BRCA2 links the fidelity of telomere maintenance with genetic integrity. Absence of BRCA2 resulted in signs of dysfunctional telomeres, such as telomere shortening, erosions, and end fusions in proliferating mouse fibroblasts. BRCA2 localized to the telomeres in S phase in an ATR-dependent manner, and its absence resulted in the accumulation of common fragile sites, particularly at the G-rich lagging strand, and increased the telomere sister chromatid exchange in unchallenged cells. The incidence of common fragile sites and telomere sister chromatid exchange increased markedly after treatment with replication inhibitors. Congruently, telomere-induced foci were frequently observed in the absence of Brca2, denoting activation of the DNA damage response and abnormal chromosome end joining. These telomere end fusions constituted a significant portion of chromosome aberrations in Brca2-deficient cells. Our results suggest that BRCA2 is required for telomere homeostasis and may be particularly important for the replication of G-rich telomeric lagging strands.  相似文献   

6.
7.
8.
Maintenance of telomere length is predicted to be essential for bypass of senescence and crisis checkpoints in cancer cells. The impact of telomere dysfunction on tumorigenesis was assessed in successive generations of mice doubly null for the telomerase RNA (mTR) and the INK4a tumor suppressor genes. Significant reductions in tumor formation in vivo and oncogenic potential in vitro were observed in late generations of telomerase deficiency, coincident with severe telomere shortening and associated dysfunction. Reintroduction of mTR into cells significantly restored the oncogenic potential, indicating telomerase activation is a cooperating event in the malignant transformation of cells containing critically short telomeres. The results described here demonstrate that loss of telomere function in a cancer-prone mouse model possessing intact DNA damage responses impairs, but does not prevent, tumor formation.  相似文献   

9.
Telomere lengths are tightly regulated within a narrow range in normal human cells. Previous studies have extensively focused on how short telomeres are extended and have demonstrated that telomerase plays a central role in elongating short telomeres. However, much about the molecular mechanisms of regulating excessively long telomeres is unknown. In this report, we demonstrated that the telomerase enzymatic component, hTERT, plays a dual role in the regulation of telomere length. It shortens excessively long telomeres and elongates short telomeres simultaneously in one cell, maintaining the optimal telomere length at each chromosomal end for efficient protection. This novel hTERT-mediated telomere-shortening mechanism not only exists in cancer cells, but also in primary human cells. The hTERT-mediated telomere shortening requires hTERT’s enzymatic activity, but the telomerase RNA component, hTR, is not involved in that process. We found that expression of hTERT increases telomeric circular DNA formation, suggesting that telomere homologous recombination is involved in the telomere-shortening process. We further demonstrated that shelterin protein TPP1 interacts with hTERT and recruits hTERT onto the telomeres, suggesting that TPP1 might be involved in regulation of telomere shortening. This study reveals a novel function of hTERT in telomere length regulation and adds a new element to the current molecular model of telomere length maintenance.  相似文献   

10.
Many human diseases show anticipation; that is, disease occurs earlier (or with greater severity) in successive generations. In a computer simulation, we assessed the degree of anticipation that one would expect to see in two-generation breast cancer families. Under reasonable assumed distributions for age at cancer onset, number of children, and mortality, we find a consistent earlier mean age at diagnosis in daughters than in mothers, but the same mean age at diagnosis in affected aunts and nieces. We compare these results with published pedigree data for familial breast cancer that show substantial anticipation in affected daughters compared to their mothers. We find that at least some anticipation is expected in human disease families even when the disease is stable and families are ascertained without obvious sampling bias. We further demonstrate that such anticipation is reduced when comparing affected children to the parents' affected siblings.  相似文献   

11.
Telomerase function is critical for telomere maintenance. Mutations in telomerase components lead to telomere shortening and progressive bone marrow failure in the premature aging syndrome dyskeratosis congenita. Short telomeres are also acquired with aging, yet the role that they play in mediating age-related disease is not fully known. We generated wild-type mice that have short telomeres. In these mice, we identified hematopoietic and immune defects that resembled those present in dyskeratosis congenita patients. When mice with short telomeres were interbred, telomere length was only incrementally restored, and even several generations later, wild-type mice with short telomeres still displayed degenerative defects. Our findings implicate telomere length as a unique heritable trait that, when short, is sufficient to mediate the degenerative defects of aging, even when telomerase is wild-type.  相似文献   

12.
Genetic anticipation, described by earlier age of onset (AOO) and more aggressive symptoms in successive generations, is a phenomenon noted in certain hereditary diseases. Its extent may vary between families and/or between mutation subtypes known to be associated with the disease phenotype. In this article, we posit a Bayesian approach to infer genetic anticipation under flexible random effects models for censored data that capture the effect of successive generations on AOO. Primary interest lies in the random effects. Misspecifying the distribution of random effects may result in incorrect inferential conclusions. We compare the fit of four-candidate random effects distributions via Bayesian model fit diagnostics. A related statistical issue here is isolating the confounding effect of changes in secular trends, screening, and medical practices that may affect time to disease detection across birth cohorts. Using historic cancer registry data, we borrow from relative survival analysis methods to adjust for changes in age-specific incidence across birth cohorts. Our motivating case study comes from a Danish cancer register of 124 families with mutations in mismatch repair (MMR) genes known to cause hereditary nonpolyposis colorectal cancer, also called Lynch syndrome (LS). We find evidence for a decrease in AOO between generations in this article. Our model predicts family-level anticipation effects that are potentially useful in genetic counseling clinics for high-risk families.  相似文献   

13.
To establish the contribution of germline BRCA1 and BRCA2 mutations to familial ovarian cancer, we have analyzed both genes in DNA samples obtained from an affected individual in each of 112 families containing at least two cases of epithelial ovarian cancer. Germline mutations were found in 43% of the families; BRCA1 mutations were approximately four times more common than BRCA2 mutations. The extent of family history of ovarian and breast cancers was strongly predictive of BRCA1-mutation status. Segregation analysis suggests that a combination of chance clustering of sporadic cases and insensitivity of mutation detection may account for the remaining families; however, the contribution of other genes cannot be excluded. We discuss the implications for genetic testing and clinical management of familial ovarian cancer arising from the data presented in these studies.  相似文献   

14.
Mutations in the mismatch repair (MMR) pathway occur in human colorectal cancers with microsatellite instability. Mounting evidence suggests that cell-cycle arrest in response to a number of cellular stresses, including telomere shortening, is a potent anticancer barrier. The telomerase-deficient mouse model illustrates the anticancer effect of cell-cycle arrest provoked by short telomeres. Here, we describe a role for the MMR protein, MSH2, in signaling cell-cycle arrest in a p21/p53-dependent manner in response to short telomeres in the context of telomerase-deficient mice. In particular, progressively shorter telomeres at successive generations of MSH2−/–Terc−/–- mice did not suppress cancer in these mice, indicating that MSH2 deficiency abolishes the tumor suppressor activity of short telomeres. Interestingly, MSH2 deficiency prevented degenerative pathologies in the gastrointestinal tract of MSH2−/–Terc−/– mice concomitant with a rescue of proliferative defects. The abolishment of the anticancer and pro-aging effects of short telomeres provoked by MSH2 abrogation was independent of changes in telomere length. These results highlight a role for MSH2 in the organismal response to dysfunctional telomeres, which in turn may be important in the pathobiology of human cancers bearing mutations in the MMR pathway.  相似文献   

15.
S Ahmed  H Sheng  L Niu  E Henderson 《Genetics》1998,150(2):643-650
Telomere length is dynamic in many organisms. Genetic screens that identify mutants with altered telomere lengths are essential if we are to understand how telomere length is regulated in vivo. In Tetrahymena thermophila, telomeres become long at 30 degrees, and growth rate slows. A slow-growing culture with long telomeres is often overgrown by a variant cell type with short telomeres and a rapid-doubling rate. Here we show that this variant cell type with short telomeres is in fact a mutant with a genetic defect in telomere length regulation. One of these telomere growth inhibited forever (tgi) mutants was heterozygous for a telomerase RNA mutation, and this mutant telomerase RNA caused telomere shortening when overexpressed in wild-type cells. Several other tgi mutants were also likely to be heterozygous at their mutant loci, since they reverted to wild type when selective pressure for short telomeres was removed. These results illustrate that telomere length can regulate growth rate in Tetrahymena and that this phenomenon can be exploited to identify genes involved in telomere length regulation.  相似文献   

16.
17.
Hao LY  Armanios M  Strong MA  Karim B  Feldser DM  Huso D  Greider CW 《Cell》2005,123(6):1121-1131
Autosomal-dominant dyskeratosis congenita is associated with heterozygous mutations in telomerase. To examine the dosage effect of telomerase, we generated a line of mTR+/- mice on the CAST/EiJ background, which has short telomeres. Interbreeding of heterozygotes resulted in progressive telomere shortening, indicating that limiting telomerase compromises telomere maintenance. In later-generation heterozygotes, we observed a decrease in tissue renewal capacity in the bone marrow, intestines, and testes that resembled defects seen in dyskeratosis congenita patients. The progressive worsening of disease with decreasing telomere length suggests that short telomeres, not telomerase level, cause stem cell failure. Further, wild-type mice derived from the late-generation heterozygous parents, termed wt*, also had short telomeres and displayed a germ cell defect, indicating that telomere length determines these phenotypes. We propose that short telomeres in mice that have normal telomerase levels can cause an occult form of genetic disease.  相似文献   

18.
Telomeres are the special heterochromatin that forms the ends of chromosomes, consisting of TTAGGG repeats and associated proteins. Telomeres protect the ends from degradation and recombination, and are essential for chromosomal stability. Both a minimal length of telomere repeats and the telomere-binding proteins are required for telomere protection. Telomerase is a DNA polymerase that specifically elongates telomeres, in this way regulating telomere length and function. A minimal telomere length is required to maintain tissue homeostasis. On one hand, critically short telomeres trigger loss of cell viability and premature death in mice deficient for telomerase activity. Furthermore, altered functioning of telomerase and telomere-interacting proteins is present in some human premature ageing syndromes and cancer. A new mouse model with critically short telomeres has been generated by over-expressing the TRF2 telomere-binding protein, K5-TRF2 mice. These mice show short telomeres in the presence of telomerase activity, leading to premature aging and increased cancer. Short telomeres in TRF2 mice can be rescued in the absence of the XPF nuclease, indicating that this enzyme rapidly degrades telomeres in the presence of increased TRF2 expression. K5-TRF2 mice represent a new tool to understand the consequences of critical telomere shortening a telomerase-proficient genetic background, more closely resembling human cancer and aging pathologies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号