首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleotide sequence changes increasing the number of paired bases without producing stable secondary structure elements in the 5'-untranslated region (5'-UTR) of the beta-globin mRNA had a slight effect on its translation in rabbit reticulocyte lysate at its low concentration and dramatically decreased translation efficiency at a high concentration. The removal of paired regions restored translation. Addition of purified eIF2 to the lysate resulted in equal translation efficiencies of templates differing in structure of 5'-UTR. A similar effect was observed for p50, a major mRNP protein. Other mRNA-binding initiation factors, eIF4F and eIF3B, had no effect on the dependence of translation efficiency on mRNA concentration. Analysis of the assembly of the 48S initiation complex from its purified components showed that less eIF2 is required for translation initiation on the beta-globin mRNA than on its derivative containing minor secondary structure elements in 5'-UTR. According to a model proposed, eIF2 not only delivers Met-tRNA, but it also stabilizes the complex of the 40S ribosome subunit with 5'-UTR, which is of particular importance for translation initiation on templates with structured 5'-UTR.  相似文献   

2.
3.
运用反转录-PCR技术,从黑色素瘤细胞中扩增出t—PA cDNA 5′末端460bp的片段,再经重组获得含完整5′-UTR的t—PA cDNA克隆,在兔网织红细胞裂解物中翻译和COS-7细胞中表达发现,t—PA mRNA 5′—UTR对其表达有明显的抑制作用。将t—PA mRNA 5′—UTR用苜蓿病毒RNA 5′—UTR替换,使t—PA的表达水平提高3-7倍,mRNA翻译起始区二级结构分析结果表明,翻译起始区的二级结构与t-PA的表达水平有关。  相似文献   

4.
5.
6.
Preferential translation of Drosophila heat shock protein 70 (Hsp70) mRNA requires only the 5'-untranslated region (5'-UTR). The sequence of this region suggests that it has relatively little secondary structure, which may facilitate efficient protein synthesis initiation. To determine whether minimal 5'-UTR secondary structure is required for preferential translation during heat shock, the effect of introducing stem-loops into the Hsp70 mRNA 5'-UTR was measured. Stem-loops of -11 kcal/mol abolished translation during heat shock, but did not reduce translation in non-heat shocked cells. A -22 kcal/mol stem-loop was required to comparably inhibit translation during growth at normal temperatures. To investigate whether specific sequence elements are also required for efficient preferential translation, deletion and mutation analyses were conducted in a truncated Hsp70 5'-UTR containing only the cap-proximal and AUG-proximal segments. Linker-scanner mutations in the cap-proximal segment (+1 to +37) did not impair translation. Re-ordering the segments reduced mRNA translational efficiency by 50%. Deleting the AUG-proximal segment severely inhibited translation. A 5-extension of the full-length leader specifically impaired heat shock translation. These results indicate that heat shock reduces the capacity to unwind 5-UTR secondary structure, allowing only mRNAs with minimal 5'-UTR secondary structure to be efficiently translated. A function for specific sequences is also suggested.  相似文献   

7.
Expression of the two isoforms p55 and p40 of HIV-1 Gag proteins relies on distinct translation initiation mechanisms, a cap-dependent initiation and two internal ribosome entry sites (IRESs). The regulation of these processes is complex and remains poorly understood. This study was focused on the influence of the 5'-UTR and on the requirement for the eukaryotic initiation factor (eIF)4F complex components. By using an in?vitro system, we showed substantial involvement of the 5'-UTR in the control of p55 expression. This highly structured 5'-UTR requires the eIF4F complex, especially RNA helicase eIF4A, which mediates initiation at the authentic AUG codon. In addition, the 5'-UTR regulates expression in an RNA concentration-dependent manner, with a high concentration of RNA triggering specific reduction of full-length Gag p55 production. HIV-1 genomic RNA also has the ability to use a strong IRES element located in the gag coding region. We show that this mechanism is particularly efficient, and that activity of this IRES is only poorly dependent on RNA helicase eIF4A when the viral 5'-UTR is removed. HIV-1 genomic mRNA exhibits in?vitro translational features that allow the expression of Gag p55 protein by different mechanisms that involve different requirements for eIF4E, eIF4G, and eIF4A. This suggests that HIV-1 could adapt to its mode of translation according to the availability of the initiation factors in the infected cell.  相似文献   

8.
p27 is a key regulator of cell proliferation through inhibition of G(1) cyclin-dependent kinase (CDK) activity. Translation of the p27 mRNA is an important control mechanism for determining cellular levels of the inhibitor. Nearly all eukaryotic mRNAs are translated through a mechanism involving recognition of the 5' cap by eukaryotic initiation factor 4E (eIF4E). In quiescent cells eIF4E activity is repressed, leading to a global decline in translation rates. In contrast, p27 translation is highest during quiescence, suggesting that it escapes the general repression of translational initiation. We show that the 5' untranslated region (5'-UTR) of the p27 mRNA mediates cap-independent translation. This activity is unaffected by conditions in which eIF4E is inhibited. In D6P2T cells, elevated cyclic AMP levels cause a rapid withdrawal from the cell cycle that is correlated with a striking increase in p27. Under these same conditions, cap-independent translation from the p27 5'-UTR is enhanced. These results indicate that regulation of internal initiation of translation is an important determinant of p27 protein levels.  相似文献   

9.
10.
11.
12.
The translation efficiency of an mRNA molecule is typically determined by its 5'- and/or 3'-untranslated regions (UTRs). Previously, we have found that the 3'-UTR of Turnip yellow mosaic virus (TYMV) RNA enhances translation synergistically with a 5' cap. Here, we use a luciferase reporter system in cowpea protoplasts to show that the 5' 217 nucleotides from TYMV genomic RNA enhance expression relative to a vector-derived 17-nucleotide 5'-UTR. Maximum expression was observed from RNAs with a cap and both 5' and 3' TYMV sequences. In paired reporter constructs, the 5' 217 nucleotides harboring the UTR and the first 43 or 41 codons of the two overlapping TYMV open reading frames (ORFs), ORF-69 and ORF-206, respectively, were fused in frame with the luciferase gene. This allowed expression from the initiation codon of each ORF (AUG69 and AUG206) to be monitored separately but from the normal sequence environment. Expression from both AUG codons was heavily dependent on a 5' cap, with a threefold-higher expression occurring from AUG69 than from AUG206 in the presence of the genomic 3'-UTR. Changes that interrupted the cap/3'-UTR synergy (i.e., removal of the cap or TYMV 3'-UTR) resulted in a higher proportion of initiation from AUG206. Mutation of the 3'-UTR to prevent aminoacylation, as well as deletion of 75% of the 5'-UTR, likewise resulted in a lower ratio of expression from AUG69 relative to AUG206. Mutation of each AUG initiation codon increased initiation from the other. Taken together, these results do not fully conform to the expectations of standard leaky ribosomal scanning and leave open the precise mechanism of ribosome commitment to AUG69 and AUG206. However, our observations do not support a recent proposal based on in vitro studies in which the 3'-UTR is proposed to direct cap-independent initiation specifically at AUG206 and not at AUG69 (S. Barends et al., Cell 112:123-129, 2003).  相似文献   

13.
The type I insulin-like growth factor receptor (IGF-IR) is an integral component in the control of cell proliferation, differentiation and apoptosis. The IGF-IR mRNA contains an extraordinarily long (1038 nt) 5'-untranslated region (5'-UTR), and we have characterized a diverse series of proteins interacting with this RNA sequence which may provide for intricate regulation of IGF-IR gene expression at the translational level. Here, we report the purification and identification of one of these IGF-IR 5'-UTR-binding proteins as HuR, using a novel RNA crosslinking/RNase elution strategy. Because HuR has been predominantly characterized as a 3'-UTR-binding protein, enhancing mRNA stability and generally increasing gene expression, we sought to determine whether HuR might serve a different function in the context of its binding the IGF-IR 5'-UTR. We found that HuR consistently repressed translation initiation through the IGF-IR 5'-UTR. The inhibition of translation by HuR was concentration dependent, and could be reversed in trans by addition of a fragment of the IGF-IR 5'-UTR containing the HuR binding sites as a specific competitor, or abrogated by deletion of the third RNA recognition motif of HuR. We determined that HuR repressed translation initiation through the IGF-IR 5'-UTR in cells as well, and that siRNA knockdown of HuR markedly increased IGF-IR protein levels. Interestingly, we also found that HuR potently inhibited IGF-IR translation mediated through internal ribosome entry. Kinetic assays were performed to investigate the mechanism of translation repression by HuR and the dynamic interplay between HuR and the translation apparatus. We found that HuR, occupying a cap-distal position, significantly delayed translation initiation mediated by cap-dependent scanning, but was eventually displaced from its binding site, directly or indirectly, as a consequence of ribosomal scanning. However, HuR perpetually blocked the activity of the IGF-IR IRES, apparently arresting the IRES-associated translation pre-initiation complex in an inactive state. This function of HuR as a 5'-UTR-binding protein and dual-purpose translation repressor may be critical for the precise regulation of IGF-IR expression essential to normal cellular homeostasis.  相似文献   

14.
15.
16.
17.
Expression of the cobalamin (Cbl) biosynthetic cob operon in Salmonella typhimurium is repressed by the end-product. This regulation is conferred mainly at the translational level and involves a cobalamin-induced folding of an RNA hairpin that sequesters the ribosomal binding site (RBS) of the cob mRNA and prevents translation initiation. A combined structural and mutational analysis shows that a cis-acting translational enhancer (TE) element, located 83 nucleotides upstream of the Shine-Dalgarno sequence in the 5'-untranslated region (5'-UTR) of the cob mRNA, is required to unfold the inhibitory RBS hairpin in the absence of cobalamin. The TE element, which consists of 5 nucleotides, is proposed to confer its enhancer function in the absence of cobalamin by interacting with nucleotides in the stem of the RBS hairpin. This interaction destabilizes the RNA hairpin and allows ribosome binding. In the presence of cobalamin, the enhancer function is inhibited. As a result, the RBS hairpin forms and prevents translation initiation. Several additional RNA hairpins in the 5'-UTR were also identified and are suggested to be important for repression. The above data suggest that normal cobalamin repression of the cob operon requires that the 5'-UTR has a defined secondary and tertiary structure.  相似文献   

18.
Heat shock in Drosophila results in repression of most normal (non-heat shock) mRNA translation and the preferential translation of the heat shock mRNAs. The sequence elements that confer preferential translation have been localized to the 5'-untranslated region (5'-UTR) for Hsp22 and Hsp70 mRNAs (in Drosophila). Hsp90 mRNA is unique among the heat shock mRNAs in having extensive secondary structure in its 5'-UTR and being abundantly represented in the non-heat shocked cell. In this study, we show that Hsp90 mRNA translation is inefficient at normal growth temperature, and substantially activated by heat shock. Its preferential translation is not based on an IRES-mediated translation pathway, because overexpression of eIF4E-BP inhibits its translation (and the translation of Hsp70 mRNA). The ability of Hsp90 mRNA to be preferentially translated is conferred by its 5'-UTR, but, in contrast to Hsp22 and -70, is primarily influenced by nucleotides close to the AUG initiation codon. We present a model to account for Hsp90 mRNA translation, incorporating results indicating that heat shock inhibits eIF4F activity, and that Hsp90 mRNA translation is sensitive to eIF4F inactivation.  相似文献   

19.
Cytoplasmic serine hydroxymethyltransferase (cSHMT) enzyme levels are elevated by the expression of the heavy chain ferritin (H ferritin) cDNA in cultured cells without corresponding changes in mRNA levels, resulting in enhanced folate-dependent de novo thymidylate biosynthesis and impaired homocysteine remethylation. In this study, the mechanism whereby H ferritin regulates cSHMT expression was determined. cSHMT translation is shown to be regulated by an H ferritin-responsive internal ribosome entry site (IRES) located within the cSHMT mRNA 5'-untranslated region (5'-UTR). The cSHMT 5'-UTR exhibited IRES activity during in vitro translation of bicistronic mRNA templates, and in MCF-7 and HeLa cells transfected with bicistronic mRNAs. IRES activity was depressed in H ferritin-deficient mouse embryonic fibroblasts and elevated in cells expressing the H ferritin cDNA. H ferritin was shown to interact with the mRNA-binding protein CUGBP1, a protein known to interact with the alpha and beta subunits of eukaryotic initiation factor eIF2. Small interference RNA-mediated depletion of CUGBP1 decreased IRES activity from bicistronic templates that included the cSHMT 3'-UTR in the bicistronic construct. The identification of this H ferritin-responsive IRES represents a mechanism that accounts for previous observations that H ferritin regulates folate metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号