首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary objective of the current study was to assess the influence of early high-fat feeding on tissue trace element content in young male Wistar rats. Twenty weanling male Wistar rats were divided into two groups fed standard (STD) or high-fat diet (HFD) containing 10 and 31.6 % of total calories from fat, respectively, for 1 month. Serum lipid spectrum, apolipoproteins, glucose, insulin, adiponectin, and leptin levels were assessed. The level of trace elements was estimated using inductively coupled plasma mass spectrometry. High-fat feeding significantly increased epidydimal (EDAT) and retroperitoneal adipose tissue (RPAT), as well as total adipose tissue mass by 34, 103, and 59 %, respectively. Serum leptin levels in HFD animals were twofold higher than those in the control rats. No significant difference in serum lipid spectrum, apolipoproteins, glucose, adiponectin, and insulin was detected between the groups. HFD significantly altered tissue trace element content. In particular, HFD-fed animals were characterized by significantly lower levels of Cu, I, Mn, Se, and Zn in the liver; Cr, V, Co, Cu, Fe, and I content of EDAT; Co, Cu, I, Cr, V, Fe, and Zn concentration in RPAT samples. At the same time, only serum Cu was significantly depressed in HFD-fed animals as compared to the control ones. Hair Co, Mn, Si, and V levels were significantly increased in comparison to the control values, whereas Se and I content was decreased. HFD feeding induced excessive adiposity and altered tissue trace element content in rats without insulin resistance, adiponectin deficiency, and proatherogenic state. Hypothetically, trace element disbalance may precede obesity-associated metabolic disturbances.  相似文献   

2.

Background

Recent understanding that insulin resistance is an inflammatory condition necessitates searching for genes that regulate inflammation in insulin sensitive tissues. 12/15-lipoxygenase (12/15LO) regulates the expression of proinflammatory cytokines and chemokines and is implicated in the early development of diet-induced atherosclerosis. Thus, we tested the hypothesis that 12/15LO is involved in the onset of high fat diet (HFD)-induced insulin resistance.

Methodology/Principal Findings

Cells over-expressing 12/15LO secreted two potent chemokines, MCP-1 and osteopontin, implicated in the development of insulin resistance. We assessed adipose tissue inflammation and whole body insulin resistance in wild type (WT) and 12/15LO knockout (KO) mice after 2–4 weeks on HFD. In adipose tissue from WT mice, HFD resulted in recruitment of CD11b+, F4/80+ macrophages and elevated protein levels of the inflammatory markers IL-1β, IL-6, IL-10, IL-12, IFNγ, Cxcl1 and TNFα. Remarkably, adipose tissue from HFD-fed 12/15LO KO mice was not infiltrated by macrophages and did not display any increase in the inflammatory markers compared to adipose tissue from normal chow-fed mice. WT mice developed severe whole body (hepatic and skeletal muscle) insulin resistance after HFD, as measured by hyperinsulinemic euglycemic clamp. In contrast, 12/15LO KO mice exhibited no HFD-induced change in insulin-stimulated glucose disposal rate or hepatic glucose output during clamp studies. Insulin-stimulated Akt phosphorylation in muscle tissue from HFD-fed mice was significantly greater in 12/15LO KO mice than in WT mice.

Conclusions

These results demonstrate that 12/15LO mediates early stages of adipose tissue inflammation and whole body insulin resistance induced by high fat feeding.  相似文献   

3.
The constitutive androstane receptor (CAR) has been reported to decrease insulin resistance even during pregnancy, while exposure to a high-fat diet (HFD) in utero in mice can induce a type 2 diabetes phenotype that can be transmitted to the progeny. Therefore, we examined whether treatment with a CAR ligand during pregnancy could prevent hypertension, insulin resistance, and hyperlipidemia in the offspring from HFD-induced obese pregnant mice (OH mice). We employed four groups of offspring from HFD-fed and control diet-fed pregnant mice with or without treatment with a CAR ligand. Treatment with a CAR ligand during pregnancy improved glucose tolerance and the levels of triglyceride and adipocytokine and restored the changes induced by HFD with amelioration of hypertension in the adult OH mice. This treatment also increased adiponectin mRNA expression, suppressed leptin expression in adipose tissues of OH mice, and abolished the effect of HFD on the epigenetic modifications of the genes encoding adiponectin and leptin in the offspring during immaturity and adulthood. Our data suggest that CAR might be a potential therapeutic target to prevent metabolic syndrome in adulthood of offspring exposed to an HFD in utero.  相似文献   

4.
Obesity, insulin resistance and the metabolic syndrome, are characterized by expansion and inflammation of adipose tissue, including the depots surrounding the heart and the blood vessels. Epicardial adipose tissue (EAT) is a visceral thoracic fat depot located along the large coronary arteries and on the surface of the ventricles and the apex of the heart, whereas perivascular adipose tissue (PVAT) surrounds the arteries. Both fat depots are not separated by a fascia from the underlying tissue. Therefore, factors secreted from epicardial and PVAT, like free fatty acids and adipokines, can directly affect the function of the heart and blood vessels. In this review, we describe the alterations found in EAT and PVAT in pathological states like obesity, type 2 diabetes, the metabolic syndrome and coronary artery disease. Furthermore, we discuss how changes in adipokine expression and secretion associated with these pathological states could contribute to the pathogenesis of cardiac contractile and vascular dysfunction.  相似文献   

5.
Insulin resistance (IR) and systemic hypertension are independently associated with heart failure. We reported previously that nitric oxide synthase 3 (NOS3) has a beneficial effect on left ventricular (LV) remodeling and function after pressure-overload in mice. The aim of our study was to investigate the interaction of IR and NOS3 in pressure-overload-induced LV remodeling and dysfunction. Wild-type (WT) and NOS3-deficient (NOS3(-/-)) mice were fed either a standard diet (SD) or a high-fat diet (HFD) to induce IR. After 9 days of diet, mice underwent transverse aortic constriction (TAC). LV structure and function were assessed serially using echocardiography. Cardiomyocytes were isolated, and levels of oxidative stress were evaluated using 2',7'-dichlorodihydrofluorescein diacetate. Cardiac mitochondria were isolated, and mitochondrial respiration and ATP production were measured. TAC induced LV remodeling and dysfunction in all mice. The TAC-induced decrease in LV function was greater in SD-fed NOS3(-/-) mice than in SD-fed WT mice. In contrast, HFD-fed NOS3(-/-) developed less LV remodeling and dysfunction and had better survival than did HFD-fed WT mice. Seven days after TAC, oxidative stress levels were lower in cardiomyocytes from HFD-fed NOS3(-/-) than in those from HFD-fed WT. N(ω)-nitro-L-arginine methyl ester and mitochondrial inhibitors (rotenone and 2-thenoyltrifluoroacetone) decreased oxidative stress levels in cardiomyocytes from HFD-fed WT mice. Mitochondrial respiration was altered in NOS3(-/-) mice but did not worsen after HFD and TAC. In contrast with its protective role in SD, NOS3 increases LV adverse remodeling after pressure overload in HFD-fed, insulin resistant mice. Interactions between NOS3 and mitochondria may be responsible for increased oxidative stress levels in HFD-fed WT mice hearts.  相似文献   

6.
PurposeStudies associate specific fatty-acids (FA) with the pathophysiology of inflammation. We aimed to analyze the impact of exercise on adipose tissue FA profile in response to a high-fat diet (HFD) and to ascertain whether these exercise-induced changes in specific FA have repercussions on obesity-related inflammation.MethodsSprague-Dawley rats were assigned into sedentary, voluntary physical-activity (VPA) and endurance training (ET) groups fed a standard (S, 35kcal% fat) or high-fat (71kcal% fat) diets. VPA-animals had unrestricted access to wheel-running. After 9-wks, ET-animals engaged a running protocol for 8-wks, while maintained dietary treatments. The FA content in epididymal white-adipose tissue (eWAT) triglycerides was analyzed by gas-chromatography and the expression of inflammatory markers was determined using RT-qPCR, Western and slot blotting.ResultsEight-wks of ET reversed obesity-related anatomical features. HFD increased plasma tumor necrosis factor (TNF)-α content and eWAT monocyte chemoattractant protein (MCP)-1 protein expression. HFD decreased eWAT content of saturated FA and monounsaturated FA, while increased linoleic acid and prostaglandin E2 (PGE2) levels in eWAT. VPA decreased visceral adiposity, adipocyte size and MCP-1 in HFD-fed animals. The VPA and ET interventions diminished palmitoleic acid and increased linoleic acid in HFD-fed groups. Moreover, both interventions increased PGE2 levels in standard diet-fed groups and decreased in HFD. ET increased eWAT fatty acid desaturase 1 (FADS1) and elongase 5 (ELOVL5) protein content in both diet types. ET reduced eWAT inflammatory markers (TNF-α, IL-6), macrophage recruitment (MCP-1 and F4/80) and increased IL-10/TNF-α ratio in plasma and in eWAT in both diet types.ConclusionsExercise induced FA-specific changes independently of dietary FA composition, but only ET attenuated the inflammatory response in VAT of HFD-fed rats. Moreover, the exercise-induced FA changes did not correlate with the inflammatory response in VAT of rats submitted to HFD.  相似文献   

7.
Insulin resistance is an increasingly prevalent condition in humans that frequently clusters with disorders characterized by left ventricular (LV) pressure overload, such as systemic hypertension. To investigate the impact of insulin resistance on LV remodeling and functional response to pressure overload, C57BL6 male mice were fed a high-fat (HFD) or a standard diet (SD) for 9 days and then underwent transverse aortic constriction (TAC). LV size and function were assessed in SD- and HFD-fed mice using serial echocardiography before and 7, 21, and 28 days after TAC. Serial echocardiography was also performed on nonoperated SD- and HFD-fed mice over a period of 6 wk. LV perfusion was assessed before and 7 and 28 days after TAC. Nine days of HFD induced systemic and myocardial insulin resistance (assessed by myocardial 18F-fluorodeoxyglucose uptake), and myocardial perfusion response to acetylcholine was impaired. High-fat feeding for 28 days did not change LV size and function in nonbanded mice; however, TAC induced greater hypertrophy, more marked LV systolic and diastolic dysfunction, and decreased survival in HFD-fed compared with SD-fed mice. Compared with SD-fed mice, myocardial perfusion reserve was decreased 7 days after TAC, and capillary density was decreased 28 days after TAC in HFD-fed mice. A short duration of HFD induces insulin resistance in mice. These metabolic changes are accompanied by increased LV remodeling and dysfunction after TAC, highlighting the impact of insulin resistance in the development of pressure-overload-induced heart failure.  相似文献   

8.
In obese individuals, white adipose tissue (WAT) is infiltrated by large numbers of macrophages, resulting in enhanced inflammatory responses that contribute to insulin resistance. Here we show that expression of the CXC motif chemokine ligand-14 (CXCL14), which targets tissue macrophages, is elevated in WAT of obese mice fed a high fat diet (HFD) compared with lean mice fed a regular diet. We found that HFD-fed CXCL14-deficient mice have impaired WAT macrophage mobilization and improved insulin responsiveness. Insulin-stimulated phosphorylation of Akt kinase in skeletal muscle was severely attenuated in HFD-fed CXCL14+/- mice but not in HFD-fed CXCL14-/- mice. The insulin-sensitive phenotype of CXCL14-/- mice after HFD feeding was prominent in female mice but not in male mice. HFD-fed CXCL14-/- mice were protected from hyperglycemia, hyperinsulinemia, and hypoadiponectinemia and did not exhibit increased levels of circulating retinol-binding protein-4 and increased expression of interleukin-6 in WAT. Transgenic overexpression of CXCL14 in skeletal muscle restored obesity-induced insulin resistance in CXCL14-/- mice. CXCL14 attenuated insulin-stimulated glucose uptake in cultured myocytes and to a lesser extent in cultured adipocytes. These results demonstrate that CXCL14 is a critical chemoattractant of WAT macrophages and a novel regulator of glucose metabolism that functions mainly in skeletal muscle.  相似文献   

9.
Chronic high-fat-diet (HFD) consumption can lead to the development of brain insulin resistance, which then exerts deleterious effects on learning and memory. Activity-regulated cytoskeleton-associated protein (Arc) is a memory-related protein, and its expression can be induced by insulin stimulation. In HFD-fed animals, their basal Arc protein levels in cerebral cortex and hippocampus are reduced. However, the effects of HFD on novelty-induced Arc protein expression that is important for cognitive function is still unknown. In the present study, after feeding HFD (60% kcal from fat) for 5 weeks, mice developed brain insulin resistance and had a significant reduction in the novelty-induced but not the basal Arc protein levels in their hippocampi. Further experiments were performed in primary rat hippocampal neurons. The results show that, under the condition of neuronal insulin resistance, acute insulin stimulation induced less activation of the phosphatidylinositol 3-kinase/protein kinase B/p70 ribosomal S6 kinase (PI3K/Akt/p70S6K) pathway, resulting in reduced induction of Arc protein expression. Accordingly, it is suggested that following HFD feeding, the reduction in novelty-induced Arc protein expression in animal's hippocampus is probably related to a suppressed activation of the PI3K/Akt/p70S6K pathway due to the existence of brain insulin resistance.  相似文献   

10.
Obesity is a world-wide epidemic disease that correlates closely with type 2 diabetes and cardiovascular diseases. Obesity-induced chronic adipose tissue inflammation is now considered as a critical contributor to the above complications. Momordica charantia (bitter melon, BM) is a traditional Chinese food and well known for its function of reducing body weight gain and insulin resistance. However, it is unclear whether BM could alleviate adipose tissue inflammation caused by obesity. In this study, C57BL/6 mice were fed high fat diet (HFD) with or without BM for 12 weeks. BM-contained diets ameliorated HFD-induced obesity and insulin resistance. Histological and real-time PCR analysis demonstrated BM not only reduced macrophage infiltration into epididymal adipose tissues (EAT) and brown adipose tissues (BAT). Flow cytometry show that BM could modify the M1/M2 phenotype ratio of macrophages in EAT. Further study showed that BM lowered mast cell recruitments in EAT, and depressed pro-inflammatory cytokine monocyte chemotactic protein-1 (MCP-1) expression in EAT and BAT as well as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression in EAT. Finally, ELISA analysis showed BM-contained diets also normalized serum levels of the cytokines. In summary, in concert with ameliorated insulin resistance and fat deposition, BM reduced adipose tissue inflammation in diet-induced obese (DIO) mice.  相似文献   

11.
The physiological functions of the aryl hydrocarbon receptor (AHR) are only beginning to unfold. Studies in wildtype and AHR knockout (AHRKO) mice have recently disclosed that AHR activity is required for obesity and steatohepatitis to develop when mice are fed with a high-fat diet (HFD). In addition, a line of AHRKO mouse has been reported to accumulate retinoids in the liver. Whether these are universal manifestations across species related to AHR activity level is not known yet. Therefore, we here subjected wildtype and AHRKO male rats (on Sprague-Dawley background) to HFD feeding coupled with free access to 10% sucrose solution and water; controls received a standard diet and water. Although the HFD-fed rats consumed more energy throughout the 24-week feeding regimen, they did not get overweight. However, relative weights of the brown and epididymal adipose tissues were elevated in HFD-fed rats, while that of the liver was lower in AHRKO than wildtype rats. Moreover, the four groups exhibited diet- or genotype-dependent differences in biochemical variables, some of which suggested marked dissimilarities from AHRKO mice. Expression of pro- and anti-inflammatory genes was induced in livers of HFD-fed AHRKO rats, but histologically they did not differ from others. HFD reduced the hepatic concentrations of retinyl palmitate, 9-cis-4-oxo-13,14-dihydroretinoic acid and (suggestively) retinol, whereas AHR status had no effect. Hence, the background strain/line of AHRKO rat is resistant to diet-induced obesity, and AHR does not modulate this or liver retinoid concentrations. Yet, subtle AHR-dependent differences in energy balance-related factors exist despite similar weight development.  相似文献   

12.
Folic acid (FA) supplementation may protect from obesity and insulin resistance, the effects and mechanism of FA on chronic high-fat-diet-induced obesity-related metabolic disorders are not well elucidated. We adopted a genome-wide approach to directly examine whether FA supplementation affects the DNA methylation profile of mouse adipose tissue and identify the functional consequences of these changes. Mice were fed a high-fat diet (HFD), normal diet (ND) or an HFD supplemented with folic acid (20 μg/ml in drinking water) for 10 weeks, epididymal fat was harvested, and genome-wide DNA methylation analyses were performed using methylated DNA immunoprecipitation sequencing (MeDIP-seq). Mice exposed to the HFD expanded their adipose mass, which was accompanied by a significant increase in circulating glucose and insulin levels. FA supplementation reduced the fat mass and serum glucose levels and improved insulin resistance in HFD-fed mice. MeDIP-seq revealed distribution of differentially methylated regions (DMRs) throughout the adipocyte genome, with more hypermethylated regions in HFD mice. Methylome profiling identified DMRs associated with 3787 annotated genes from HFD mice in response to FA supplementation. Pathway analyses showed novel DNA methylation changes in adipose genes associated with insulin secretion, pancreatic secretion and type 2 diabetes. The differential DNA methylation corresponded to changes in the adipose tissue gene expression of Adcy3 and Rapgef4 in mice exposed to a diet containing FA. FA supplementation improved insulin resistance, decreased the fat mass, and induced DNA methylation and gene expression changes in genes associated with obesity and insulin secretion in obese mice fed a HFD.  相似文献   

13.
Epicardial adipose tissue (EAT) is contiguous with coronary arteries and myocardium and potentially may play a role in coronary atherosclerosis (CAD). Exercise is known to improve cardiovascular disease risk factors. The purpose of this study was to investigate the effect of aerobic exercise training on the expression of 18 genes, measured by RT-PCR and selected for their role in chronic inflammation, oxidative stress, and adipocyte metabolism, in peri-coronary epicardial (cEAT), peri-myocardial epicardial (mEAT), visceral abdominal (VAT), and subcutaneous (SAT) adipose tissues from a castrate male pig model of familial hypercholesterolemia with CAD. We tested the hypothesis that aerobic exercise training for 16 wk would reduce the inflammatory profile of mRNAs in both components of EAT and VAT but would have little effect on SAT. Exercise increased mEAT and total heart weights. EAT and heart weights were directly correlated. Compared with sedentary pigs matched for body weight to exercised animals, aerobic exercise training reduced the inflammatory response in mEAT but not cEAT, had no effect on inflammatory genes but preferentially decreased expression of adiponectin and other adipocyte-specific genes in VAT, and had no effect in SAT except that IL-6 mRNA went down and VEGFa mRNA went up. We conclude that 1) EAT is not homogeneous in its inflammatory response to aerobic exercise training, 2) cEAT around CAD remains proinflammatory after chronic exercise, 3) cEAT and VAT share similar inflammatory expression profiles but different metabolic mRNA responses to exercise, and 4) gene expression in SAT cannot be extrapolated to VAT and heart adipose tissues in exercise intervention studies.  相似文献   

14.
The primary objective of the study was to estimate the effect of perinatal low-dose iron supplementation on diet-induced adipogenic action of a high-fat diet in the male offspring. The experimental group of pregnant dams was treated with drinking water containing 3 mg/l ferrous sulfate (FeSO4·7H2O) from the 2nd week of pregnancy till the end of lactation (the 21st day postpartum). The control group of dams obtained pure drinking water. The obtained male littermates were fed standard and high-fat diets (HFD) for 1 month. Animals’ morphometric parameters as well as serum lipoprotein profile, glucose, insulin, adipokines and cytokines concentrations were estimated. Adipose tissue oxidative stress biomarkers were also measured. It is shown that HFD-fed perinatally iron treated rats had a significantly higher adipose tissue mass in comparison with HFD-control ones. The experimental iron-treated males were also characterized by increased serum glucose and insulin concentrations. Perinatally iron treated HFD-fed animals’ leptin and proinflammatory cytokines concentrations exceeded the HFD-control values. Significant accumulation of free radical oxidation biomarkers is observed in adipose tissue samples. The lipoprotein spectra indicated initial atherogenic changes in the rats’ serum. Taken together, the study suggests that iron takes part in the developmental programming of adipogenesis.  相似文献   

15.
Kim HJ  Kim HM  Kim CS  Jeong CS  Choi HS  Kawada T  Kim BS  Yu R 《FEBS letters》2011,585(14):2285-2290
HVEM is a member of the TNF receptor superfamily that plays a role in the development of various inflammatory diseases. In this study, we show that HVEM deficiency attenuates adipose tissue inflammatory responses and glucose intolerance in diet-induced obesity. Feeding a high-fat diet (HFD) to HVEM-deficient mice elicited a reduction in the number of macrophages and T cells infiltrated into adipose tissue. Proinflammatory cytokine levels in the adipose tissue decreased in HFD-fed HVEM-deficient mice, while levels of the anti-inflammatory cytokine IL-10 increased. Moreover, glucose intolerance and insulin sensitivity were markedly improved in the HFD-fed HVEM-deficient mice. These findings indicate that HVEM may be a useful target for combating obesity-induced inflammatory responses and insulin resistance.  相似文献   

16.
Sun B  Yang G  Yang M  Liu H  Boden G  Li L 《Cytokine》2012,59(1):131-137
High-fat diet (HFD) is associated with insulin resistance, hyperinsulinemia, elevated plasma free fatty acid (FFA), and increased risk for atherosclerotic vascular disease. However, the mechanisms underlying the HFD-induced insulin resistance have not been fully clarified. The aim of present study is to evaluate the effects of long-term HFD on the regulation of the insulin-sensitizing fibroblast growth factor-21 (FGF-21) and visfatin in ApoE(-/-) mice. A total of twenty male ApoE(-/-) mice were randomly divided into normal chow diet (NC) or HFD (HF) group for 16 weeks. Euglycemic-hyperinsulinemic clamp was performed to evaluate insulin sensitivity in this animal model. Both mRNA and protein contents of FGF-21 and visfatin were assayed by Quantitative real-time PCR and Western blot. Long-term HFD resulted in the marked abnormality of glucose and lipid metabolism as well as a large decrease in whole-body insulin sensitivity. Accompanied by abnormal glucose-lipid metabolism and aggravated insulin resistance, FGF-21, β-klotho, FGFR1, FGFR3 and FGFR4 mRNA expressions were markedly up-regulated, whereas visfatin mRNA expression was markedly down-regulated in liver and/or adipose tissue of HFD-fed mice. In addition, Western blotting also revealed both up-regulation of the FGF-21 protein and down-regulation of visfatin protein in liver, adipose tissue and plasma of HFD-fed mice. Both FGF-21 and visfatin expression and secretion are regulated by a potent regulator, long-term HFD. And these adipokines are associated with glucose-lipid metabolism and insulin resistance.  相似文献   

17.
Obesity and cigarette smoking are both important risk factors for insulin resistance, cardiovascular disease, and cancer. Smoking reduces appetite, which makes many people reluctant to quit. Few studies have documented the metabolic impact of combined smoke exposure (se) and high-fat-diet (HFD). Neuropeptide Y (NPY) is a powerful hypothalamic feeding stimulator that promotes obesity. We investigated how chronic se affects caloric intake, adiposity, plasma hormones, inflammatory mediators, and hypothalamic NPY peptide in animals fed a palatable HFD. Balb/c mice (5 wk old, male) were exposed to smoke (2 cigarettes, twice/day, 6 days/wk, for 7 wk) with or without HFD. Sham-exposed mice were handled similarly without se. Plasma leptin, hypothalamic NPY, and adipose triglyceride lipase (ATGL) mRNA were measured. HFD induced a 2.3-fold increase in caloric intake, increased adiposity, and glucose in both sham and se cohorts. Smoke exposure decreased caloric intake by 23%, with reduced body weight in both dietary groups. Fat mass and glucose were reduced only by se in the chow-fed animals. ATGL mRNA was reduced by HFD in se animals. Total hypothalamic NPY was reduced by HFD, but only in sham-exposed animals; se increased arcuate NPY. We conclude that although se ameliorated hyperphagia and reversed the weight gain associated with HFD, it failed to reverse fat accumulation and hyperglycemia. The reduced ATGL mRNA expression induced by combined HFD and se may contribute to fat retention. Our data support a powerful health message that smoking in the presence of an unhealthy Western diet increases metabolic disorders and fat accumulation.  相似文献   

18.
Investigations of long-term exercise interventions in humans to reverse obesity is expensive and is hampered by poor compliance and confounders. In the present study, we investigated intrahepatic and muscle fat, visceral and subcutaneous fat pads, plasma metabolic profile and skeletal muscle inflammatory markers in response to 12-week aerobic exercise in an obese rodent model. Six-week-old male Wistar rats (n=20) were randomized to chow-fed control (Control, n=5), sedentary high-fat diet (HFD, n=5), chow-fed exercise (Exercise, n=5) and HFD-fed exercise (HFD+Exercise, n=5) groups. The exercise groups were subjected to 12 weeks of motorized treadmill running at a speed of 18 m/min for 30 min/day. Differences in post-intervention measures were assessed by analysis of covariance (ANCOVA), adjusted for baseline bodyweight and pre-intervention measures, where available. Post-hoc analyses were performed with Bonferroni correction. Plasma metabolic profile was worsened and fat pads, ectopic fat in muscle and liver and inflammatory markers in skeletal muscle were elevated in sedentary HFD-fed animals relative to chow-fed controls. HFD+Exercise animals had significantly lower leptin (P=0.0004), triglycerides (P=0.007), homeostatic model assessment of insulin resistance (HOMA-IR; P=0.065), intramyocellular lipids (IMCLs; P=0.003), intrahepatic lipids (IHLs; P<0.0001), body fat% (P=0.001), subcutaneous adipose tissue (SAT; P<0.0001), visceral adipose (P<0.0001) and total fat mass (P<0.0001), relative to sedentary HFD-fed animals, despite only modestly lower bodyweight. Messenger RNA (mRNA) expression of inflammatory markers Interleukin 6 (IL6) and Tumor necrosis factor α (TNFα) were also reduced with aerobic exercise in skeletal muscle. Our results suggest that 12 weeks of aerobic exercise training is effective in improving metabolic health, fat depots, ectopic fat and inflammation even against a high-fat dietary background.  相似文献   

19.
Adipose-derived stem cells (ADSCs) can differentiate into neurons under particular conditions. It remains largely unknown whether this differentiation potential is affected by physical conditions such as obesity, which modulates the functions of adipose tissue. In this study, we determined the impact of either a 9-week high-fat diet (60% fat; HFD) or 9-week exercise training on the differentiation potential of ADSCs into neuron-like cells in male Wistar rats. Rats were randomly assigned to a normal diet-fed (ND-SED) group, HFD-fed (HFD-SED) group, or exercise-trained HFD-fed group (HFD-EX). After a 9-week intervention, ADSCs from all groups differentiated into neuron-like cells. Expression of neuronal marker proteins (nestin, βIII-tubulin, and microtubule-associated protein 2 [MAP2]) and the average length of cell neurites were lower in cells from HFD-SED rats than in other groups. Instead, protein expression of COX IV and Cyt-c, the Bax/Bcl-2 and LC3-II/I ratio, and the malondialdehyde level in culture medium were higher in cells from HFD-SED rats. No significant difference between ND-SED and HFD-EX rats was observed, except for the average length of cell neurites in MAP2. Thus, HFD impaired the differentiation potential of ADSCs into neuron-like cells, which was accompanied by increases in apoptotic activity and oxidative stress. Importantly, exercise training ameliorated the HFD-induced impairment of neurogenesis in ADSCs. The adipose tissue microenvironment could influence the differentiation potential of ADSCs, a source of autologous stem cell therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号