首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Many methods of identifying differential expression in genes depend on testing the null hypotheses of exactly equal means or distributions of expression levels for each gene across groups, even though a statistically significant difference in the expression level does not imply the occurrence of any difference of biological or clinical significance. This is because a mathematical definition of 'differential expression' as any non-zero difference does not correspond to the differential expression biologists seek. Furthermore, while some current methods account for multiple comparisons in hypothesis tests, they do not accordingly adjust estimates of the degrees to which genes are differentially expressed. Both problems lead to overstating the relevance of findings. RESULTS: Testing whether genes have relevant differential expression can be accomplished with customized null hypotheses, thereby redefining 'differential expression' in a way that is more biologically meaningful. When such tests control the false discovery rate, they effectively discover genes based on a desired quantile of differential gene expression. Estimation of the degree to which genes are differentially expressed has been corrected for multiple comparisons. AVAILABILITY: R code is freely available from http://www.davidbickel.com and may become available from www.r-project.org or www.bioconductor.org SUPPLEMENTARY INFORMATION: Applications to cancer microarrays, an application in the absence of differential expression, pseudocode, and a guide to customizing the methods may be found at www.davidbickel.com and www.mathpreprints.com  相似文献   

2.
3.
MOTIVATION: The parametric F-test has been widely used in the analysis of factorial microarray experiments to assess treatment effects. However, the normality assumption is often untenable for microarray experiments with small replications. Therefore, permutation-based methods are called for help to assess the statistical significance. The distribution of the F-statistics across all the genes on the array can be regarded as a mixture distribution with a proportion of statistics generated from the null distribution of no differential gene expression whereas the other proportion of statistics generated from the alternative distribution of genes differentially expressed. This results in the fact that the permutation distribution of the F-statistics may not approximate well to the true null distribution of the F-statistics. Therefore, the construction of a proper null statistic to better approximate the null distribution of F-statistic is of great importance to the permutation-based multiple testing in microarray data analysis. RESULTS: In this paper, we extend the ideas of constructing null statistics based on pairwise differences to neglect the treatment effects from the two-sample comparison problem to the multifactorial balanced or unbalanced microarray experiments. A null statistic based on a subpartition method is proposed and its distribution is employed to approximate the null distribution of the F-statistic. The proposed null statistic is able to accommodate unbalance in the design and is also corrected for the undue correlation between its numerator and denominator. In the simulation studies and real biological data analysis, the number of true positives and the false discovery rate (FDR) of the proposed null statistic are compared with those of the permutated version of the F-statistic. It has been shown that our proposed method has a better control of the FDRs and a higher power than the standard permutation method to detect differentially expressed genes because of the better approximated tail probabilities.  相似文献   

4.

Background  

Before conducting a microarray experiment, one important issue that needs to be determined is the number of arrays required in order to have adequate power to identify differentially expressed genes. This paper discusses some crucial issues in the problem formulation, parameter specifications, and approaches that are commonly proposed for sample size estimation in microarray experiments. Common methods for sample size estimation are formulated as the minimum sample size necessary to achieve a specified sensitivity (proportion of detected truly differentially expressed genes) on average at a specified false discovery rate (FDR) level and specified expected proportion (π 1) of the true differentially expression genes in the array. Unfortunately, the probability of detecting the specified sensitivity in such a formulation can be low. We formulate the sample size problem as the number of arrays needed to achieve a specified sensitivity with 95% probability at the specified significance level. A permutation method using a small pilot dataset to estimate sample size is proposed. This method accounts for correlation and effect size heterogeneity among genes.  相似文献   

5.
6.
MOTIVATION: Currently most of the methods for identifying differentially expressed genes fall into the category of so called single-gene-analysis, performing hypothesis testing on a gene-by-gene basis. In a single-gene-analysis approach, estimating the variability of each gene is required to determine whether a gene is differentially expressed or not. Poor accuracy of variability estimation makes it difficult to identify genes with small fold-changes unless a very large number of replicate experiments are performed. RESULTS: We propose a method that can avoid the difficult task of estimating variability for each gene, while reliably identifying a group of differentially expressed genes with low false discovery rates, even when the fold-changes are very small. In this article, a new characterization of differentially expressed genes is established based on a theorem about the distribution of ranks of genes sorted by (log) ratios within each array. This characterization of differentially expressed genes based on rank is an example of all-gene-analysis instead of single gene analysis. We apply the method to a cDNA microarray dataset and many low fold-changed genes (as low as 1.3 fold-changes) are reliably identified without carrying out hypothesis testing on a gene-by-gene basis. The false discovery rate is estimated in two different ways reflecting the variability from all the genes without the complications related to multiple hypothesis testing. We also provide some comparisons between our approach and single-gene-analysis based methods. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

7.
PURPOSE OF REVIEW: To highlight the development in microarray data analysis for the identification of differentially expressed genes, particularly via control of false discovery rate. RECENT FINDINGS: The emergence of high-throughput technology such as microarrays raises two fundamental statistical issues: multiplicity and sensitivity. We focus on the biological problem of identifying differentially expressed genes. First, multiplicity arises due to testing tens of thousands of hypotheses, rendering the standard P value meaningless. Second, known optimal single-test procedures such as the t-test perform poorly in the context of highly multiple tests. The standard approach of dealing with multiplicity is too conservative in the microarray context. The false discovery rate concept is fast becoming the key statistical assessment tool replacing the P value. We review the false discovery rate approach and argue that it is more sensible for microarray data. We also discuss some methods to take into account additional information from the microarrays to improve the false discovery rate. SUMMARY: There is growing consensus on how to analyse microarray data using the false discovery rate framework in place of the classical P value. Further research is needed on the preprocessing of the raw data, such as the normalization step and filtering, and on finding the most sensitive test procedure.  相似文献   

8.
The multiple testing problem attributed to gene expression analysis is challenging not only by its size, but also by possible dependence between the expression levels of different genes resulting from coregulations of the genes. Furthermore, the measurement errors of these expression levels may be dependent as well since they are subjected to several technical factors. Multiple testing of such data faces the challenge of correlated test statistics. In such a case, the control of the False Discovery Rate (FDR) is not straightforward, and thus demands new approaches and solutions that will address multiplicity while accounting for this dependency. This paper investigates the effects of dependency between bormal test statistics on FDR control in two-sided testing, using the linear step-up procedure (BH) of Benjamini and Hochberg (1995). The case of two multiple hypotheses is examined first. A simulation study offers primary insight into the behavior of the FDR subjected to different levels of correlation and distance between null and alternative means. A theoretical analysis follows in order to obtain explicit upper bounds to the FDR. These results are then extended to more than two multiple tests, thereby offering a better perspective on the effect of the proportion of false null hypotheses, as well as the structure of the test statistics correlation matrix. An example from gene expression data analysis is presented.  相似文献   

9.

Background  

In microarray gene expression profiling experiments, differentially expressed genes (DEGs) are detected from among tens of thousands of genes on an array using statistical tests. It is important to control the number of false positives or errors that are present in the resultant DEG list. To date, more than 20 different multiple test methods have been reported that compute overall Type I error rates in microarray experiments. However, these methods share the following dilemma: they have low power in cases where only a small number of DEGs exist among a large number of total genes on the array.  相似文献   

10.
MOTIVATION: In a typical gene expression profiling study, our prime objective is to identify the genes that are differentially expressed between the samples from two different tissue types. Commonly, standard analysis of variance (ANOVA)/regression is implemented to identify the relative effects of these genes over the two types of samples from their respective arrays of expression levels. But, this technique becomes fundamentally flawed when there are unaccounted sources of variability in these arrays (latent variables attributable to different biological, environmental or other factors relevant in the context). These factors distort the true picture of differential gene expression between the two tissue types and introduce spurious signals of expression heterogeneity. As a result, many genes which are actually differentially expressed are not detected, whereas many others are falsely identified as positives. Moreover, these distortions can be different for different genes. Thus, it is also not possible to get rid of these variations by simple array normalizations. This both-way error can lead to a serious loss in sensitivity and specificity, thereby causing a severe inefficiency in the underlying multiple testing problem. In this work, we attempt to identify the hidden effects of the underlying latent factors in a gene expression profiling study by partial least squares (PLS) and apply ANCOVA technique with the PLS-identified signatures of these hidden effects as covariates, in order to identify the genes that are truly differentially expressed between the two concerned tissue types. RESULTS: We compare the performance of our method SVA-PLS with standard ANOVA and a relatively recent technique of surrogate variable analysis (SVA), on a wide variety of simulation settings (incorporating different effects of the hidden variable, under situations with varying signal intensities and gene groupings). In all settings, our method yields the highest sensitivity while maintaining relatively reasonable values for the specificity, false discovery rate and false non-discovery rate. Application of our method to gene expression profiling for acute megakaryoblastic leukemia shows that our method detects an additional six genes, that are missed by both the standard ANOVA method as well as SVA, but may be relevant to this disease, as can be seen from mining the existing literature.  相似文献   

11.
Bochkina N  Richardson S 《Biometrics》2007,63(4):1117-1125
We consider the problem of identifying differentially expressed genes in microarray data in a Bayesian framework with a noninformative prior distribution on the parameter quantifying differential expression. We introduce a new rule, tail posterior probability, based on the posterior distribution of the standardized difference, to identify genes differentially expressed between two conditions, and we derive a frequentist estimator of the false discovery rate associated with this rule. We compare it to other Bayesian rules in the considered settings. We show how the tail posterior probability can be extended to testing a compound null hypothesis against a class of specific alternatives in multiclass data.  相似文献   

12.
We have developed a program for microarray data analysis, which features the false discovery rate for testing statistical significance and the principal component analysis using the singular value decomposition method for detecting the global trends of gene-expression patterns. Additional features include analysis of variance with multiple methods for error variance adjustment, correction of cross-channel correlation for two-color microarrays, identification of genes specific to each cluster of tissue samples, biplot of tissues and corresponding tissue-specific genes, clustering of genes that are correlated with each principal component (PC), three-dimensional graphics based on virtual reality modeling language and sharing of PC between different experiments. The software also supports parameter adjustment, gene search and graphical output of results. The software is implemented as a web tool and thus the speed of analysis does not depend on the power of a client computer. AVAILABILITY: The tool can be used on-line or downloaded at http://lgsun.grc.nia.nih.gov/ANOVA/  相似文献   

13.
To detect changes in gene expression data from microarrays, a fixed threshold for fold difference is used widely. However, it is not always guaranteed that a threshold value which is appropriate for highly expressed genes is suitable for lowly expressed genes. In this study, aiming at detecting truly differentially expressed genes from a wide expression range, we proposed an adaptive threshold method (AT). The adaptive thresholds, which have different values for different expression levels, are calculated based on two measurements under the same condition. The sensitivity, specificity and false discovery rate (FDR) of AT were investigated by simulations. The sensitivity and specificity under various noise conditions were greater than 89.7% and 99.32%, respectively. The FDR was smaller than 0.27. These results demonstrated the reliability of the method.  相似文献   

14.
Qi Y  Sun H  Sun Q  Pan L 《Genomics》2011,97(5):326-329
Microarrays allow researchers to examine the expression of thousands of genes simultaneously. However, identification of genes differentially expressed in microarray experiments is challenging. With an optimal test statistic, we rank genes and estimate a threshold above which genes are considered to be differentially expressed genes (DE). This overcomes the embarrassing shortcoming of many statistical methods to determine the cut-off values in ranking analysis. Experiments demonstrate that our method is a good performance and avoids the problems with graphical examination and multiple hypotheses testing that affect alternative approaches. Comparing to those well known methods, our method is more sensitive to data sets with small differentially expressed values and not biased in favor of data sets based on certain distribution models.  相似文献   

15.
16.
MOTIVATION: The field of microarray data analysis is shifting emphasis from methods for identifying differentially expressed genes to methods for identifying differentially expressed gene categories. The latter approaches utilize a priori information about genes to group genes into categories and enhance the interpretation of experiments aimed at identifying expression differences across treatments. While almost all of the existing approaches for identifying differentially expressed gene categories are practically useful, they suffer from a variety of drawbacks. Perhaps most notably, many popular tools are based exclusively on gene-specific statistics that cannot detect many types of multivariate expression change. RESULTS: We have developed a nonparametric multivariate method for identifying gene categories whose multivariate expression distribution differs across two or more conditions. We illustrate our approach and compare its performance to several existing procedures via the analysis of a real data set and a unique data-based simulation study designed to capture the challenges and complexities of practical data analysis. We show that our method has good power for differentiating between differentially expressed and non-differentially expressed gene categories, and we utilize a resampling based strategy for controlling the false discovery rate when testing multiple categories. AVAILABILITY: R code (www.r-project.org) for implementing our approach is available from the first author by request.  相似文献   

17.
18.
MOTIVATION: Scanning parameters are often overlooked when optimizing microarray experiments. A scanning approach that extends the dynamic data range by acquiring multiple scans of different intensities has been developed. RESULTS: Data from each of three scan intensities (low, medium, high) were analyzed separately using multiple scan and linear regression approaches to identify and compare the sets of genes that exhibit statistically significant differential expression. In the multiple scan approach only one-third of the differentially expressed genes were shared among the three intensities, and each scan intensity identified unique sets of differentially expressed genes. The set of differentially expressed genes from any one scan amounted to < 70% of the total number of genes identified in at least one scan. The average signal intensity of genes that exhibited statistically significant changes in expression was highest for the low-intensity scan and lowest for the high-intensity scan, suggesting that low-intensity scans may be best for detecting expression differences in high-signal genes, while high-intensity scans may be best for detecting expression differences in low-signal genes. Comparison of the differentially expressed genes identified in the multiple scan and linear regression approaches revealed that the multiple scan approach effectively identifies a subset of statistically significant genes that linear regression approach is unable to identify. Quantitative RT-PCR (qRT-PCR) tests demonstrated that statistically significant differences identified at all three scan intensities can be verified. AVAILABILITY: The data presented can be viewed at http://www.ncbi.nlm.nih.gov/geo/ under GEO accession no. GSE3017.  相似文献   

19.
Statistical analysis of microarray data: a Bayesian approach   总被引:2,自引:0,他引:2  
The potential of microarray data is enormous. It allows us to monitor the expression of thousands of genes simultaneously. A common task with microarray is to determine which genes are differentially expressed between two samples obtained under two different conditions. Recently, several statistical methods have been proposed to perform such a task when there are replicate samples under each condition. Two major problems arise with microarray data. The first one is that the number of replicates is very small (usually 2-10), leading to noisy point estimates. As a consequence, traditional statistics that are based on the means and standard deviations, e.g. t-statistic, are not suitable. The second problem is that the number of genes is usually very large (approximately 10,000), and one is faced with an extreme multiple testing problem. Most multiple testing adjustments are relatively conservative, especially when the number of replicates is small. In this paper we present an empirical Bayes analysis that handles both problems very well. Using different parametrizations, we develop four statistics that can be used to test hypotheses about the means and/or variances of the gene expression levels in both one- and two-sample problems. The methods are illustrated using experimental data with prior knowledge. In addition, we present the result of a simulation comparing our methods to well-known statistics and multiple testing adjustments.  相似文献   

20.
Together with the widely used Affymetrix microarrays, the recently introduced Illumina platform has become a cost-effective alternative for genome-wide studies. To efficiently use data from both array platforms, there is a pressing need for methods that allow systematic integration of multiple datasets, especially when the number of samples is small. To address these needs, we introduce a meta-analytic procedure for combining Affymetrix and Illumina data in the context of detecting differentially expressed genes between the platforms. We first investigate the effect of different expression change estimation procedures within the platforms on the agreement of the most differentially expressed genes. Using the best estimation methods, we then show the benefits of the integrative analysis in producing reproducible results across bootstrap samples. In particular, we demonstrate its biological relevance in identifying small but consistent changes during T helper 2 cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号