首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Merkel Cell Polyomavirus (MCV or MCPyV) was recently discovered in an aggressive form of skin cancer known as Merkel cell carcinoma (MCC). Integration of MCV DNA into the host genome likely contributes to the development of MCC in humans. MCV infection is common and many healthy people shed MCV virions from the surface of their skin. MCV DNA has also been detected in samples from a variety of other tissues. Although MCC tumors serve as a record that MCV can infect the Merkel cell lineage, the true tissue tropism and natural reservoirs of MCV infection in the host are not known. In an effort to gain insight into the tissue tropism of MCV, and to possibly identify cellular factors responsible for mediating infectious entry of the virus, the infection potential of human cells derived from a variety of tissues was evaluated. MCV gene transfer vectors (pseudoviruses) carrying reporter plasmid DNA encoding GFP or luciferase genes were used to transduce keratinocytes and melanocytes, as well as lines derived from MCC tumors and the NCI-60 panel of human tumor cell lines. MCV transduction was compared to transduction with pseudoviruses based on the better-studied human BK polyomavirus (BKV). The efficiency of MCV and BKV transduction of various cell types occasionally overlapped, but often differed greatly, and no clear tissue type preference emerged. Application of native MCV virions to a subset of highly transducible cell types suggested that the lines do not support robust replication of MCV, consistent with recent proposals that the MCV late phase may be governed by cellular differentiation in vivo. The availability of carefully curated gene expression data for the NCI-60 panel should make the MCV and BKV transduction data for these lines a useful reference for future studies aimed at elucidation of the infectious entry pathways of these viruses.  相似文献   

2.
The recently discovered human Merkel cell polyomavirus (MCPyV or MCV) causes the aggressive Merkel cell carcinoma (MCC) in the skin of immunocompromised individuals. Conflicting reports suggest that cellular glycans containing sialic acid (Neu5Ac) may play a role in MCPyV infectious entry. To address this question, we solved X-ray structures of the MCPyV major capsid protein VP1 both alone and in complex with several sialylated oligosaccharides. A shallow binding site on the apical surface of the VP1 capsomer recognizes the disaccharide Neu5Ac-α2,3-Gal through a complex network of interactions. MCPyV engages Neu5Ac in an orientation and with contacts that differ markedly from those observed in other polyomavirus complexes with sialylated receptors. Mutations in the Neu5Ac binding site abolish MCPyV infection, highlighting the relevance of the Neu5Ac interaction for MCPyV entry. Our study thus provides a powerful platform for the development of MCPyV-specific vaccines and antivirals. Interestingly, engagement of sialic acid does not interfere with initial attachment of MCPyV to cells, consistent with a previous proposal that attachment is mediated by a class of non-sialylated carbohydrates called glycosaminoglycans. Our results therefore suggest a model in which sialylated glycans serve as secondary, post-attachment co-receptors during MCPyV infectious entry. Since cell-surface glycans typically serve as primary attachment receptors for many viruses, we identify here a new role for glycans in mediating, and perhaps even modulating, post-attachment entry processes.  相似文献   

3.
The surface of polyomavirus virions is composed of pentameric knobs of the major capsid protein, VP1. In previously studied polyomavirus species, such as SV40, two interior capsid proteins, VP2 and VP3, emerge from the virion to play important roles during the infectious entry process. Translation of the VP3 protein initiates at a highly conserved Met-Ala-Leu motif within the VP2 open reading frame. Phylogenetic analyses indicate that Merkel cell polyomavirus (MCV or MCPyV) is a member of a divergent clade of polyomaviruses that lack the conserved VP3 N-terminal motif. Consistent with this observation, we show that VP3 is not detectable in MCV-infected cells, VP3 is not found in native MCV virions, and mutation of possible alternative VP3-initiating methionine codons did not significantly affect MCV infectivity in culture. In contrast, VP2 knockout resulted in a >100-fold decrease in native MCV infectivity, despite normal virion assembly, viral DNA packaging, and cell attachment. Although pseudovirus-based experiments confirmed that VP2 plays an essential role for infection of some cell lines, other cell lines were readily transduced by pseudovirions lacking VP2. In cell lines where VP2 was needed for efficient infectious entry, the presence of a conserved myristoyl modification on the N-terminus of VP2 was important for its function. The results show that a single minor capsid protein, VP2, facilitates a post-attachment stage of MCV infectious entry into some, but not all, cell types.  相似文献   

4.
5.
Merkel cell carcinoma (MCC) is a relatively uncommon but highly lethal form of skin cancer. A majority of MCC tumors carry DNA sequences derived from a newly identified virus called Merkel cell polyomavirus (MCV or MCPyV), a candidate etiologic agent underlying the development of MCC. To further investigate the role of MCV infection in the development of MCC, we developed a reporter vector-based neutralization assay to quantitate MCV-specific serum antibody responses in human subjects. Our results showed that 21 MCC patients whose tumors harbored MCV DNA all displayed vigorous MCV-specific antibody responses. Although 88% (42/48) of adult subjects without MCC were MCV seropositive, the geometric mean titer of the control group was 59-fold lower than the MCC patient group (p<0.0001). Only 4% (2/48) of control subjects displayed neutralizing titers greater than the mean titer of the MCV-positive MCC patient population. MCC tumors were found not to express detectable amounts of MCV VP1 capsid protein, suggesting that the strong humoral responses observed in MCC patients were primed by an unusually immunogenic MCV infection, and not by viral antigen expressed by the MCC tumor itself. The occurrence of highly immunogenic MCV infection in MCC patients is unlikely to reflect a failure to control polyomavirus infections in general, as seroreactivity to BK polyomavirus was similar among MCC patients and control subjects. The results support the concept that MCV infection is a causative factor in the development of most cases of MCC. Although MCC tumorigenesis can evidently proceed in the face of effective MCV-specific antibody responses, a small pilot animal immunization study revealed that a candidate vaccine based on MCV virus-like particles (VLPs) elicits antibody responses that robustly neutralize MCV reporter vectors in vitro. This suggests that a VLP-based vaccine could be effective for preventing the initial establishment of MCV infection.  相似文献   

6.
Infection with various human papillomaviruses (HPVs) induces cervical cancers. Cell surface heparan sulfates (HS) have been shown to serve as primary attachment receptors, and molecules with structural similarity to cell surface HS, like heparin, function as competitive inhibitors of HPV infection. Here we demonstrate that the N,N'-bisheteryl derivative of dispirotripiperazine, DSTP27, efficiently blocks papillomavirus infection by binding to HS moieties, with 50% inhibitory doses of up to 0.4 mug/ml. In contrast to short-term inhibitory effects of heparin, pretreatment of cells with DSTP27 significantly reduced HPV infection for more than 30 h. Using DSTP27 and heparinase, we furthermore demonstrate that HS moieties, rather than laminin 5, present in the extracellular matrix (ECM) secreted by keratinocytes are essential for infectious transfer of ECM-bound virions to cells. Prior binding to ECM components, especially HS, partially alleviated the requirement for cell surface HS. DSTP27 blocks infection by cell-bound virions by feeding into a noninfectious entry pathway. Under these conditions, virus colocalized with HS moieties in endocytic vesicles. Similarly, postattachment treatment of cells with heparinase, cytochalasin D, or neutralizing antibodies resulted in uptake of virions without infection, indicating that deviation into a noninfectious entry pathway is a major mode of postattachment neutralization. In untreated cells, initial colocalization of virions with HS on the cell surface and in endocytic vesicles was lost with time. Our data suggest that initial attachment of HPV to HS proteoglycans (HSPGs) must be followed by secondary interaction with additional HS side chains and transfer to a non-HSPG receptor for successful infection.  相似文献   

7.
Merkel cell carcinoma (MCC) is a neuroendocrine skin cancer associated with high mortality. Merkel cell polyomavirus (MCV), discovered in 2008, is associated with ~80% of MCC. The MCV large tumor (LT) oncoprotein upregulates the cellular oncoprotein survivin through its conserved retinoblastoma protein-binding motif. We confirm here that YM155, a survivin suppressor, is cytotoxic to MCV-positive MCC cells in vitro at nanomolar levels. Mouse survival was significantly improved for NOD-Scid-Gamma mice treated with YM155 in a dose and duration dependent manner for 3 of 4 MCV-positive MCC xenografts. One MCV-positive MCC xenograft (MS-1) failed to significantly respond to YM155, which corresponds with in vitro dose-response activity. Combination treatment of YM155 with other chemotherapeutics resulted in additive but not synergistic cell killing of MCC cell lines in vitro. These results suggest that survivin targeting is a promising therapeutic approach for most but not all MCV-positive MCCs.  相似文献   

8.
Mammalian reoviruses, prototype members of the Reoviridae family of nonenveloped double-stranded RNA viruses, use at least three proteins--sigma1, mu1, and sigma3--to enter host cells. sigma1, a major determinant of cell tropism, mediates viral attachment to cellular receptors. Studies of sigma1 functions in reovirus entry have been restricted by the lack of methodologies to produce infectious virions containing engineered mutations in viral proteins. To mitigate this problem, we produced virion-like particles by "recoating" genome-containing core particles that lacked sigma1, mu1, and sigma3 with recombinant forms of these proteins in vitro. Image reconstructions from cryoelectron micrographs of the recoated particles revealed that they closely resembled native virions in three-dimensional structure, including features attributable to sigma1. The recoated particles bound to and infected cultured cells in a sigma1-dependent manner and were approximately 1 million times as infectious as cores and 0.5 times as infectious as native virions. Experiments with recoated particles containing recombinant sigma1 from either of two different reovirus strains confirmed that differences in cell attachment and infectivity previously observed between those strains are determined by the sigma1 protein. Additional experiments showed that recoated particles containing sigma1 proteins with engineered mutations can be used to analyze the effects of such mutations on the roles of particle-bound sigma1 in infection. The results demonstrate a powerful new system for molecular genetic dissections of sigma1 with respect to its structure, assembly into particles, and roles in entry.  相似文献   

9.
Several enveloped viruses, including herpesviruses attach to host cells by initially interacting with cell surface heparan sulfate (HS) proteoglycans followed by specific coreceptor engagement which culminates in virus-host membrane fusion and virus entry. Interfering with HS-herpesvirus interactions has long been known to result in significant reduction in virus infectivity indicating that HS play important roles in initiating virus entry. In this study, we provide a series of evidence to prove that specific sulfations as well as the degree of polymerization (dp) of HS govern human cytomegalovirus (CMV) binding and infection. First, purified CMV extracellular virions preferentially bind to sulfated longer chain HS on a glycoarray compared to a variety of unsulfated glycosaminoglycans including unsulfated shorter chain HS. Second, the fraction of glycosaminoglycans (GAG) displaying higher dp and sulfation has a larger impact on CMV titers compared to other fractions. Third, cell lines deficient in specific glucosaminyl sulfotransferases produce significantly reduced CMV titers compared to wild-type cells and virus entry is compromised in these mutant cells. Finally, purified glycoprotein B shows strong binding to heparin, and desulfated heparin analogs compete poorly with heparin for gB binding. Taken together, these results highlight the significance of HS chain length and sulfation patterns in CMV attachment and infectivity.  相似文献   

10.
Clonal integration of Merkel cell polyomavirus (MCV) DNA into the host genome has been observed in at least 80% of Merkel cell carcinoma (MCC). The integrated viral genome typically carries mutations that truncate the C-terminal DNA binding and helicase domains of the MCV large T antigen (LT), suggesting a selective pressure to remove this MCV LT region during tumor development. In this study, we show that MCV infection leads to the activation of host DNA damage responses (DDR). This activity was mapped to the C-terminal helicase-containing region of the MCV LT. The MCV LT-activated DNA damage kinases, in turn, led to enhanced p53 phosphorylation, upregulation of p53 downstream target genes, and cell cycle arrest. Compared to the N-terminal MCV LT fragment that is usually preserved in mutants isolated from MCC tumors, full-length MCV LT shows a decreased potential to support cellular proliferation, focus formation, and anchorage-independent cell growth. These apparently antitumorigenic effects can be reversed by a dominant-negative p53 inhibitor. Our results demonstrate that MCV LT-induced DDR activates p53 pathway, leading to the inhibition of cellular proliferation. This study reveals a key difference between MCV LT and simian vacuolating virus 40 LT, which activates a DDR but inhibits p53 function. This study also explains, in part, why truncation mutations that remove the MCV LT C-terminal region are necessary for the oncogenic progression of MCV-associated cancers.  相似文献   

11.
Recombinant adeno-associated viruses (AAV) are promising gene therapy vectors. We have recently identified a bovine adeno-associated virus (BAAV) that demonstrates unique tropism and transduction activity compared to primate AAVs. To better understand the entry pathway and cell tropism of BAAV, we have characterized the initial cell surface interactions required for transduction with BAAV vectors. Like a number of AAVs, BAAV requires cell surface sialic acid groups for transduction and virus attachment. However, glycosphingolipids (GSLs), not cell surface proteins, were required for vector entry and transduction. Incorporation of gangliosides, ceramide-based glycolipids containing one or more sialic acid groups, into the cytoplasmic cell membranes of GSL-depleted COS cells partially reconstituted BAAV transduction. The dependency of BAAV on gangliosides for transduction was further confirmed by studies with C6 cells, a rat glioma cell line that is deficient in the synthesis of complex gangliosides. C6 cells were resistant to transduction by BAAV. Addition of gangliosides to C6 cells prior to transduction rendered the cells susceptible to transduction by BAAV. Therefore, gangliosides are a likely receptor for BAAV.  相似文献   

12.
The cellular receptor of foamy viruses (FVs) is unknown. The broad spectrum of permissive cells suggests that the cellular receptor is a molecular structure with almost ubiquitous prevalence. Here, we investigated the ability of heparan sulfate (HS), a glycosaminoglycan (GAG) present on the extracellular matrix of many cells, to bind FV particles and to permit prototype FV (PFV) and feline FV (FFV) entry. Permissivity of different cell lines for FV entry correlated with the amount of heparan sulfate present on the cell surface. The resulting 50% cell culture infectious doses (CCID(50)s) were distributed over a range of 4 logs, which means that the most susceptible cell line tested (HT1080) was more than 10,000 times more susceptible for PFV infection than the least susceptible cell line (CRL-2242). HS surface expression varied over a range of 2 logs. HS expression and FV susceptibility were positively correlated (P < 0.001). Enzymatic digestion of heparan sulfate on HT1080 cells diminished permissivity for PFV entry by a factor of at least 500. Using fast protein liquid chromatography (FPLC), we demonstrated binding of FV vector particles to a gel filtration column packed with heparin, a molecule structurally related to heparan sulfate, allowing for the purification of infectious particles. Both PFV and FFV infection were inhibited by soluble heparin. Our results show that FVs bind to HS and that this interaction is a pivotal step for viral entry, suggesting that HS is a cellular attachment factor for FVs.  相似文献   

13.
Merkel cell carcinoma is a highly aggressive form of skin cancer. Merkel cell polyomavirus (MCV) infection and DNA integration into the host genome correlate with 80% of all Merkel cell carcinoma cases. Integration of the MCV genome frequently results in mutations in the large tumor antigen (LT), leading to expression of a truncated LT that retains pRB binding but with a deletion of the C-terminal domain. Studies from our laboratory and others have shown that the MCV LT C-terminal helicase domain contains growth-inhibiting properties. Additionally, we have shown that host DNA damage response factors are recruited to viral replication centers. In this study, we identified a novel MCV LT phosphorylation site at Ser-816 in the C-terminal domain. We demonstrate that activation of the ATM pathway stimulated MCV LT phosphorylation at Ser-816, whereas inhibition of ATM kinase activity prevented LT phosphorylation at this site. In vitro phosphorylation experiments confirmed that ATM kinase is responsible for phosphorylating MCV LT at Ser-816. Finally, we show that ATM kinase-mediated MCV LT Ser-816 phosphorylation may contribute to the anti-tumorigenic properties of the MCV LT C-terminal domain.  相似文献   

14.
Three molecules have been identified as the main cellular factors required for binding and entry of human T-cell leukemia virus type 1 (HTLV-1): glucose transporter 1 (GLUT1), heparan sulfate (HS), and neuropilin 1 (NRP-1). However, the precise mechanism of HTLV-1 cell tropism has yet to be elucidated. Here, we examined the susceptibilities of various human cell lines to HTLV-1 by using vesicular stomatitis virus pseudotypes bearing HTLV-1 envelope proteins. We found that the cellular susceptibility to HTLV-1 infection did not correlate with the expression of GLUT1, HS, or NRP-1 alone. To investigate whether other cellular factors were responsible for HTLV-1 susceptibility, we conducted expression cloning. We identified two HS proteoglycan core proteins, syndecan 1 and syndecan 2, as molecules responsible for susceptibility to HTLV-1. We found that treatment of syndecan 1-transduced cells (expressing increased HS) with heparinase, a heparin-degradative enzyme, reduced HTLV-1 susceptibility without affecting the expression levels of HS chains. To further elucidate these results, we characterized the expression of HS chains in terms of the mass, number, and length of HS in several syndecan 1-transduced cell clones as well as human cell lines. We found a significant correlation between HTLV-1 susceptibility and the number of HS chains with short chain lengths. Our findings suggest that a combination of the number and the length of HS chains containing heparin-like regions is a critical factor which affects the cell tropism of HTLV-1.  相似文献   

15.
Merkel cell polyomavirus (MCV) has been recently described as the cause for most human Merkel cell carcinomas. MCV is similar to simian virus 40 (SV40) and encodes a nuclear large T (LT) oncoprotein that is usually mutated to eliminate viral replication among tumor-derived MCV. We identified the hVam6p cytoplasmic protein involved in lysosomal processing as a novel interactor with MCV LT but not SV40 LT. hVam6p binds through its clathrin heavy chain homology domain to a unique region of MCV LT adjacent to the retinoblastoma binding site. MCV LT translocates hVam6p to the nucleus, sequestering it from involvement in lysosomal trafficking. A naturally occurring, tumor-derived mutant LT (MCV350) lacking a nuclear localization signal binds hVam6p but fails to inhibit hVam6p-induced lysosomal clustering. MCV has evolved a novel mechanism to target hVam6p that may contribute to viral uncoating or egress through lysosomal processing during virus replication.  相似文献   

16.
The interactions between the host and microbial pathogen largely dictate the onset, progression, and outcome of infectious diseases. Pathogens subvert host components to promote their pathogenesis and, among these, cell surface heparan sulfate proteoglycans are exploited by many pathogens for their initial attachment and subsequent cellular entry. The ability to interact with heparan sulfate proteoglycans is widespread among viruses, bacteria, and parasites. Certain pathogens also use heparan sulfate proteoglycans to evade host defense mechanisms. These findings suggest that heparan sulfate proteoglycans are critical in microbial pathogenesis, and that heparan sulfate proteoglycan-pathogen interactions are potential targets for novel prophylactic and therapeutic approaches.  相似文献   

17.
Members of the Old World Arenaviruses primarily utilize α-dystroglycan (α-DAG1) as a cellular receptor for infection. Mutations within the glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV) reduce or abrogate the binding affinity to α-DAG1 and thus influence viral persistence, kinetics, and cell tropism. The observation that α-DAG1 deficient cells are still highly susceptible to low affinity variants, suggests the use of an alternative receptor(s). In this study, we used a genome-wide CRISPR Cas9 knockout screen in DAG1 deficient 293T cells to identify host factors involved in α-DAG1-independent LCMV infection. By challenging cells with vesicular stomatitis virus (VSV), pseudotyped with the GP of LCMV WE HPI (VSV-GP), we identified the heparan sulfate (HS) biosynthesis pathway as an important host factor for low affinity LCMV infection. These results were confirmed by a genetic approach targeting EXTL3, a key factor in the HS biosynthesis pathway, as well as by enzymatic and chemical methods. Interestingly, a single point mutation within GP1 (S153F or Y155H) of WE HPI is sufficient for the switch from DAG1 to HS binding. Furthermore, we established a simple and reliable virus-binding assay, using directly labelled VSV-GP by intramolecular fusion of VSV-P and mWasabi, demonstrating the importance of HS for virus attachment but not entry in Burkitt lymphoma cells after reconstitution of HS expression. Collectively, our study highlights the essential role of HS for low affinity LCMV infection in contrast to their high affinity counterparts. Residual LCMV infection in double knockouts indicate the use of (a) still unknown entry receptor(s).  相似文献   

18.
The double-stranded DNA polyomavirus Merkel cell polyomavirus (MCV) causes Merkel cell carcinoma, an aggressive but rare human skin cancer that most often affects immunosuppressed and elderly persons. As in other polyomaviruses, the large T-antigen of MCV recognizes the viral origin of replication by binding repeating G(A/G)GGC pentamers. The spacing, number, orientation, and necessity of repeats for viral replication differ, however, from other family members such as SV40 and murine polyomavirus. We report here the 2.9 Å crystal structure of the MCV large T-antigen origin binding domain (OBD) in complex with a DNA fragment from the MCV origin of replication. Consistent with replication data showing that three of the G(A/G)GGC-like binding sites near the center of the origin are required for replication, the crystal structure contains three copies of the OBD. This stoichiometry was verified using isothermal titration calorimetry. The affinity for G(A/G)GGC-containing double-stranded DNA was found to be ∼ 740 nM, approximately 8-fold weaker than the equivalent domain in SV40 for the analogous region of the SV40 origin. The difference in affinity is partially attributable to DNA-binding residue Lys331 (Arg154 in SV40). In contrast to SV40, a small protein-protein interface is observed between MCV OBDs when bound to the central region of the origin. This protein-protein interface is reminiscent of that seen in bovine papilloma virus E1 protein. Mutational analysis indicates, however, that this interface contributes little to DNA binding energy.  相似文献   

19.
20.
Trichodysplasia spinulosa-associated Polyomavirus (TSPyV) was isolated from a patient suffering from trichodysplasia spinulosa, a skin disease that can appear in severely immunocompromised patients. While TSPyV is one of the five members of the polyomavirus family that are directly linked to a human disease, details about molecular recognition events, the viral entry pathway, and intracellular trafficking events during TSPyV infection remain unknown. Here we have used a structure-function approach to shed light on the first steps of TSPyV infection. We established by cell binding and pseudovirus infection studies that TSPyV interacts with sialic acids during attachment and/or entry. Subsequently, we solved high-resolution X-ray structures of the major capsid protein VP1 of TSPyV in complex with three different glycans, the branched GM1 glycan, and the linear trisaccharides α2,3- and α2,6-sialyllactose. The terminal sialic acid of all three glycans is engaged in a unique binding site on TSPyV VP1, which is positioned about 18 Å from established sialic acid binding sites of other polyomaviruses. Structure-based mutagenesis of sialic acid-binding residues leads to reduction in cell attachment and pseudovirus infection, demonstrating the physiological relevance of the TSPyV VP1-glycan interaction. Furthermore, treatments of cells with inhibitors of N-, O-linked glycosylation, and glycosphingolipid synthesis suggest that glycolipids play an important role during TSPyV infection. Our findings elucidate the first molecular recognition events of cellular infection with TSPyV and demonstrate that receptor recognition by polyomaviruses is highly variable not only in interactions with sialic acid itself, but also in the location of the binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号