首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Ubeda F  Haig D 《Genetics》2004,167(4):2083-2095
We present a one-locus model that breaks two symmetries of Mendelian genetics. Whereas symmetry of transmission is breached by allowing sex-specific segregation distortion, symmetry of expression is breached by allowing genomic imprinting. Simple conditions for the existence of at least one polymorphic stable equilibrium are provided. In general, population mean fitness is not maximized at polymorphic equilibria. However, mean fitness at a polymorphic equilibrium with segregation distortion may be higher than mean fitness at the corresponding equilibrium with Mendelian segregation if one (or both) of the heterozygote classes has higher fitness than both homozygote classes. In this case, mean fitness is maximized by complete, but opposite, drive in the two sexes. We undertook an extensive numerical analysis of the parameter space, finding, for the first time in this class of models, parameter sets yielding two stable polymorphic equilibria. Multiple equilibria exist both with and without genomic imprinting, although they occurred in a greater proportion of parameter sets with genomic imprinting.  相似文献   

3.
4.
5.
Summary A new restriction fragment length polymorphism detected with the restriction endonuclease BglII (AGATCT) is presented.  相似文献   

6.
7.
The H19 imprinted gene locus is regulated by an upstream 2 kb imprinting control region (ICR) that influences allele-specific expression, DNA methylation, and replication timing. This ICR becomes de novo methylated during late spermatogenesis in the male but emerges from oogenesis in an unmethylated form, and this allele-specific pattern is then maintained throughout early development and in all tissues of the mouse. We have used a genetic approach involving transfection into embryonic stem (ES) cells in order to decipher how the maternal allele is protected from de novo methylation at the time of implantation. Our studies show that CCCTC binding factor (CTCF) boundary elements within the ICR have the ability to prevent de novo methylation on the maternal allele. Since CTCF does not recognize its binding sequence when methylated, this reaction does not occur on the paternal allele, thus preserving the gamete-derived, allele-specific pattern. These results suggest that CTCF may play a general role in the maintenance of differential methylation patterns in vivo.  相似文献   

8.
The sequences and organization of the histone genes in the histone gene cluster at the chromosomal marker D6S105 have been determined by analyzing the Centre d’étude du Polymorphisme Humain yeast artificial chromosome (YAC) 964f1. The insert of the YAC was subcloned in cosmids. In the established contig of the histone-gene-containing cosmids, 16 histone genes and 2 pseudogenes were identified: one H1 gene (H1.5), five H2A genes, four H2B genes and one pseudogene of H2B, three H3 genes, and three H4 genes plus one H4 pseudogene. The cluster extends about 80 kb with a nonordered arrangement of the histone genes. The dinucleotide repeat polymorphic marker D6S105 was localized at the telomeric end of this histone gene cluster. Almost all human histone genes isolated until now have been localized within this histone gene cluster and within the previously described region of histone genes, about 2 Mb telomeric of the newly described cluster or in a small group of histone genes on chromosome 1. We therefore conclude that the data presented here complete the set of human histone genes. This now allows the general organization of the human histone gene complement to be outlined on the basis of a compilation of all known histone gene clusters and solitary histone genes. Received: 30 June 1997 / Accepted: 3 September 1997  相似文献   

9.
We have completed a genome scan of a 12-generation, 3,400-member pedigree with schizophrenia. Samples from 210 individuals were collected from the pedigree. We performed an "affecteds-only" genome-scan analysis using 43 members of the pedigree. The affected individuals included 29 patients with schizophrenia, 10 with schizoaffective disorders, and 4 with psychosis not otherwise specified. Two sets of white-European allele frequencies were used-one from a Swedish control population (46 unrelated individuals) and one from the pedigree (210 individuals). All analyses pointed to the same region: D6S264, located at 6q25.2, showed a maximum LOD score of 3.45 when allele frequencies in the Swedish control population were used, compared with a maximum LOD score of 2.59 when the pedigree's allele frequencies were used. We analyzed additional markers in the 6q25 region and found a maximum LOD score of 6.6 with marker D6S253, as well as a 6-cM haplotype (markers D6S253-D6S264) that segregated, after 12 generations, with the majority of the affected individuals. Multipoint analysis was performed with the markers in the 6q25 region, and a maximum LOD score of 7.7 was obtained. To evaluate the significance of the genome scan, we simulated the complete analysis under the assumption of no linkage. The results showed that a LOD score >2.2 should be considered as suggestive of linkage, whereas a LOD score >3.7 should be considered as significant. These results suggest that a common ancestral region was inherited by the affected individuals in this large pedigree.  相似文献   

10.
11.
12.
13.
Zhu Y  Zhang W  Huo Z  Zhang Y  Xia Y  Li B  Kong X  Hu L 《Human genetics》2007,121(1):113-123
Human isolated gingival fibromatosis is an oral disorder characterized by a slowly progressive benign enlargement of gingival tissues. The most common genetic form, hereditary gingival fibromatosis (HGF), is usually transmitted as an autosomal dominant trait. We report here for the first time a newly identified maternally inherited gingival fibromatosis in two unrelated Chinese families and mapped this disease locus to human chromosome 11p15 with a maximum two point LOD score of 8.70 at D11S4046 (θ = 0) for family 1 and of 6.02 at D11S1318 for family 2. Haplotype analysis placed the critical region in the interval defined by D11S1984 and D11S1338. A cluster of maternally expressed genes is within this critical region. We screened individuals in these two families for mutations for all known maternally expressed genes within this region. None was found either within the coding sequence or at the intron–exon boundary of these genes. Neither did we detect any loss of imprinting in three informative imprinted genes including H19, KCNQ1 downstream neighbor (KCNQ1DN) and cyclin-dependent kinase inhibitor 1C (CDKN1C). However, gene expression profile analysis revealed reduced expression of hemoglobin beta (HBB), hemoglobin delta (HBD), hemoglobin gamma A (HBG1) and hemoglobin gamma G (HBG2) genes at disease locus in HGF patients. This study suggests that genome imprinting might affect the development of HGF. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Conflict Of Interest Statement: No competing financial interests.  相似文献   

14.
15.
The monoallelic expression of imprinted genes is controlled by epigenetic factors including DNA methylation and histone modifications. In mouse, the imprinted gene Gtl2 is associated with two differentially methylated regions: the IG-DMR, which serves as a gametic imprinting mark at which paternal allele-specific DNA methylation is inherited from sperm, and the Gtl2-DMR, which acquires DNA methylation on the paternal allele after fertilization. The timeframe during which DNA methylation is acquired at secondary DMRs during post-fertilization development and the relationship between secondary DMRs and imprinted expression have not been well established. In order to better understand the role of secondary DMRs in imprinting, we examined the methylation status of the Gtl2-DMR in pre- and post-implantation embryos. Paternal allele-specific DNA methylation of this region correlates with imprinted expression of Gtl2 during post-implantation development but is not required to implement imprinted expression during pre-implantation development, suggesting that this secondary DMR may play a role in maintaining imprinted expression. Furthermore, our developmental profile of DNA methylation patterns at the Cdkn1c- and Gtl2-DMRs illustrates that the temporal acquisition of DNA methylation at imprinted genes during post-fertilization development is not universally controlled.Key words: genomic imprinting, DNA methylation, Gtl2, secondary DMR, epigenetics  相似文献   

16.
《Epigenetics》2013,8(8):1012-1020
The monoallelic expression of imprinted genes is controlled by epigenetic factors including DNA methylation and histone modifications. In mouse, the imprinted gene Gtl2 is associated with two differentially methylated regions: the IG-DMR, which serves as a gametic imprinting mark at which paternal allele-specific DNA methylation is inherited from sperm, and the Gtl2-DMR, which acquires DNA methylation on the paternal allele after fertilization. The timeframe during which DNA methylation is acquired at secondary DMRs during post-fertilization development and the relationship between secondary DMRs and imprinted expression have not been well established. In order to better understand the role of secondary DMRs in imprinting, we examined the methylation status of the Gtl2-DMR in pre- and post-implantation embryos. Paternal allele-specific DNA methylation of this region correlates with imprinted expression of Gtl2 during post-implantation development but is not required to implement imprinted expression during pre-implantation development, suggesting that this secondary DMR may play a role in maintaining imprinted expression. Furthermore, our developmental profile of DNA methylation patterns at the Cdkn1c- and Gtl2-DMRs illustrates that the temporal acquisition of DNA methylation at imprinted genes during post-fertilization development is not universally controlled.  相似文献   

17.
To identify novel susceptibility loci for Crohn disease (CD), we undertook a genome-wide association study with more than 300,000 SNPs characterized in 547 patients and 928 controls. We found three chromosome regions that provided evidence of disease association with p-values between 10−6 and 10−9. Two of these (IL23R on Chromosome 1 and CARD15 on Chromosome 16) correspond to genes previously reported to be associated with CD. In addition, a 250-kb region of Chromosome 5p13.1 was found to contain multiple markers with strongly suggestive evidence of disease association (including four markers with p < 10−7). We replicated the results for 5p13.1 by studying 1,266 additional CD patients, 559 additional controls, and 428 trios. Significant evidence of association (p < 4 × 10−4) was found in case/control comparisons with the replication data, while associated alleles were over-transmitted to affected offspring (p < 0.05), thus confirming that the 5p13.1 locus contributes to CD susceptibility. The CD-associated 250-kb region was saturated with 111 SNP markers. Haplotype analysis supports a complex locus architecture with multiple variants contributing to disease susceptibility. The novel 5p13.1 CD locus is contained within a 1.25-Mb gene desert. We present evidence that disease-associated alleles correlate with quantitative expression levels of the prostaglandin receptor EP4, PTGER4, the gene that resides closest to the associated region. Our results identify a major new susceptibility locus for CD, and suggest that genetic variants associated with disease risk at this locus could modulate cis-acting regulatory elements of PTGER4.  相似文献   

18.
Genetic factors associated with the risk of smoking related cancers have until recently remained elusive. Since the publication of a genome-wide association study (GWAS) on lung cancer new genetic loci have been identified that appear to be associated with disease risk. In this replication study we genotyped 14 single nucleotide polymorphisms (SNPs) located at the 5p12.3-p15.33, 6p21.3-p22.1, 6q23-q27 and 15q25.1 loci in 874 lung, 450 bladder, 418 laryngeal cancer cases and cancer-free controls, matched by year of birth and sex to the cases. Our results revealed that loci in the chromosome region 15q25.1 (rs16969968[A], rs8034191[G]) and 5p15 (rs402710[T]) are associated with lung cancer risk in the Polish population (smoking status adjusted OR = 1.45, 1.35, 0.77; p ≤ 0.0001, 0.0005, 0.002; 95%CI 1.23-1.72, 1.14-1.59, 0.66-0.91 respectively). None of the other regions analyzed herein were implicated in the risk of lung, bladder or laryngeal cancer. This study supports previous findings on lung cancer but fails to show association of SNPs located in 15q25.1 and 5p15 region with other smoking related cancers like bladder and laryngeal cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号