首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The vaoA gene from Penicillium simplicissimum CBS 170.90, encoding vanillyl alcohol oxidase, which also catalyzes the conversion of eugenol to coniferyl alcohol, was expressed in Escherichia coli XL1-Blue under the control of the lac promoter, together with the genes calA and calB, encoding coniferyl alcohol dehydrogenase and coniferyl aldehyde dehydrogenase of Pseudomonas sp. strain HR199, respectively. Resting cells of the corresponding recombinant strain E. coli XL1-Blue(pSKvaomPcalAmcalB) converted eugenol to ferulic acid with a molar yield of 91% within 15 h on a 50-ml scale, reaching a ferulic acid concentration of 8.6 g liter−1. This biotransformation was scaled up to a 30-liter fermentation volume. The maximum production rate for ferulic acid at that scale was 14.4 mmol per h per liter of culture. The maximum concentration of ferulic acid obtained was 14.7 g liter−1 after a total fermentation time of 30 h, which corresponded to a molar yield of 93.3% with respect to the added amount of eugenol. In a two-step biotransformation, E. coli XL1-Blue(pSKvaomPcalAmcalB) was used to produce ferulic acid from eugenol and, subsequently, E. coli(pSKechE/Hfcs) was used to convert ferulic acid to vanillin (J. Overhage, H. Priefert, and A. Steinbüchel, Appl. Environ. Microbiol. 65:4837-4847, 1999). This process led to 0.3 g of vanillin liter−1, besides 0.1 g of vanillyl alcohol and 4.6 g of ferulic acid liter−1. The genes ehyAB, encoding eugenol hydroxylase of Pseudomonas sp. strain HR199, and azu, encoding the potential physiological electron acceptor of this enzyme, were shown to be unsuitable for establishing eugenol bioconversion in E. coli XL1-Blue.  相似文献   

2.
The gene loci ehyAB, calA, and calB, encoding eugenol hydroxylase, coniferyl alcohol dehydrogenase, and coniferyl aldehyde dehydrogenase, respectively, which are involved in the first steps of eugenol catabolism in Pseudomonas sp. strain HR199, were amplified by PCR and combined to construct a catabolic gene cassette. This gene cassette was cloned in the newly designed broad-host-range vector pBBR1-JO2 (pBBR1-JO2ehyABcalAcalB) and transferred to Ralstonia eutropha H16. A recombinant strain of R. eutropha H16 harboring this plasmid expressed functionally active eugenol hydroxylase, coniferyl alcohol dehydrogenase, and coniferyl aldehyde dehydrogenase. Cells of R. eutropha H16(pBBR1-JO2ehyABcalAcalB) from the late-exponential growth phase were used as biocatalysts for the biotransformation of eugenol to ferulic acid. A maximum conversion rate of 2.9 mmol of eugenol per h per liter of culture was achieved with a yield of 93.8 mol% of ferulic acid from eugenol within 20 h, without further optimization.  相似文献   

3.
To harness eugenol as cheap substrate for the biotechnological production of aromatic compounds, the vanillyl alcohol oxidase gene (vaoA) from Penicillium simplicissimum CBS 170.90 was cloned in an expression vector suitable for Gram-positive bacteria and expressed in the vanillin-tolerant Gram-positive strain Amycolatopsis sp. HR167. Recombinant strains harboring hybrid plasmid pRLE6SKvaom exhibited a specific vanillyl alcohol oxidase activity of 1.1U/g protein. Moreover, this strain had gained the ability to grow on eugenol as sole carbon source. The intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, guajacol, and vanillic acid were detected as excreted compounds during growth on eugenol, whereas vanillin could only be detected in trace amounts. Resting cells of Amycolatopsis sp. HR167 (pRLE6SKvaom) produced coniferyl alcohol from eugenol with a maximum conversion rate of about 2.3 mmol/h/l of culture, and a maximum coniferyl alcohol concentration of 4.7 g/1 was obtained after 16 h biotransformation without further optimization. Beside coniferyl alcohol, traces of coniferyl aldehyde and ferulic acid were also detected.  相似文献   

4.
The gene loci ehyAB, calA, and calB, encoding eugenol hydroxylase, coniferyl alcohol dehydrogenase, and coniferyl aldehyde dehydrogenase, respectively, which are involved in the first steps of eugenol catabolism in Pseudomonas sp. strain HR199, were amplified by PCR and combined to construct a catabolic gene cassette. This gene cassette was cloned in the newly designed broad-host-range vector pBBR1-JO2 (pBBR1-JO2ehyABcalAcalB) and transferred to Ralstonia eutropha H16. A recombinant strain of R. eutropha H16 harboring this plasmid expressed functionally active eugenol hydroxylase, coniferyl alcohol dehydrogenase, and coniferyl aldehyde dehydrogenase. Cells of R. eutropha H16(pBBR1-JO2ehyABcalAcalB) from the late-exponential growth phase were used as biocatalysts for the biotransformation of eugenol to ferulic acid. A maximum conversion rate of 2.9 mmol of eugenol per h per liter of culture was achieved with a yield of 93.8 mol% of ferulic acid from eugenol within 20 h, without further optimization.  相似文献   

5.
During the screening for bacteria capable of converting eugenol to vanillin, strain OPS1 was isolated, which was identified as a new Pseudomonas species by 16 s rDNA sequence analysis. When this bacterium was grown on eugenol, the intermediates, coniferyl alcohol, ferulic acid, vanillic acid, and protocatechuic acid, were identified in the culture supernatant. The genes encoding the eugenol hydroxylase (ehyA, ehyB), which catalyzes the first step of this biotransformation, were identified in a genomic library of Pseudomonas sp. strain OPS1 by complementation of the eugenol-negative mutant SK6165 of Pseudomonas sp. strain HR199. EhyA and EhyB exhibited 57% and 85% amino acid identity to the eugenol hydroxylase subunits of Pseudomonas sp. strain HR199 and up to 34% and 54% identity to the corresponding subunits of p-cresol methylhydroxylase from P. putida. Moreover, the amino-terminal sequences of the alpha- and beta-subunits reported recently for an eugenol dehydrogenase of P fluorescens E118 corresponded well with the appropriate regions of EhyA and EhyB. Downstream of ehyB, an open reading frame was identified, whose deduced amino acid sequence exhibited up to 71% identity to azurins, representing most probably the gene (azu) of the physiological electron acceptor of the eugenol hydroxylase. The eugenol hydroxylase genes were amplified by PCR, cloned, and functionally expressed in Escherichia coli.  相似文献   

6.
In this study a novel strain was isolated with the capability to grow on eugenol as a source of carbon and energy. This strain was identified as Pseudomonas resinovorans (GenBank accession no. HQ198585) based on phenotypic characterization and phylogenetic analysis of 16S rDNA gene. The intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and vanillic acid were detected in the culture supernatant during eugenol biotransformation with this strain. The products were confirmed by thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and spectral data achieved from UV-vis, FTIR and mass spectroscopy. Using eugenol as substrate and resting cells of P. resinovorans SPR1, which were harvested at the end of the exponential growth phase, without further optimization 0.24 g/L vanillin (molar yield of 10%) and 1.1g/L vanillic acid (molar yield of 44%) were produced after 30 h and 60 h biotransformation, respectively. The current work gives the first evidence for the eugenol biotransformation by P. resinovorans.  相似文献   

7.
The potential of two Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol was investigated. Genome sequence data of Rhodococcus sp. I24 suggested a coenzyme A-dependent, non-β-oxidative pathway for ferulic acid bioconversion, which involves feruloyl–CoA synthetase (Fcs), enoyl–CoA hydratase/aldolase (Ech), and vanillin dehydrogenase (Vdh). This pathway was proven for Rhodococcus opacus PD630 by physiological characterization of knockout mutants. However, expression and functional characterization of corresponding structural genes from I24 suggested that degradation of ferulic acid in this strain proceeds via a β-oxidative pathway. The vanillin precursor eugenol facilitated growth of I24 but not of PD630. Coniferyl aldehyde was an intermediate of eugenol degradation by I24. Since the genome sequence of I24 is devoid of eugenol hydroxylase homologous genes (ehyAB), eugenol bioconversion is most probably initiated by a new step in this bacterium. To establish eugenol bioconversion in PD630, the vanillyl alcohol oxidase gene (vaoA) from Penicillium simplicissimum CBS 170.90 was expressed in PD630 together with coniferyl alcohol dehydrogenase (calA) and coniferyl aldehyde dehydrogenase (calB) genes from Pseudomonas sp. HR199. The recombinant strain converted eugenol to ferulic acid. The obtained data suggest that genetically engineered strains of I24 and PD630 are suitable candidates for vanillin production from eugenol.  相似文献   

8.
The gene loci fcs, encoding feruloyl coenzyme A (feruloyl-CoA) synthetase, ech, encoding enoyl-CoA hydratase/aldolase, and aat, encoding beta-ketothiolase, which are involved in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199 (DSM7063), were localized on a DNA region covered by two EcoRI fragments (E230 and E94), which were recently cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The nucleotide sequences of parts of fragments E230 and E94 were determined, revealing the arrangement of the aforementioned genes. To confirm the function of the structural genes fcs and ech, they were cloned and expressed in Escherichia coli. Recombinant strains harboring both genes were able to transform ferulic acid to vanillin. The feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase activities of the fcs and ech gene products, respectively, were confirmed by photometric assays and by high-pressure liquid chromatography analysis. To prove the essential involvement of the fcs, ech, and aat genes in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199, these genes were inactivated separately by the insertion of omega elements. The corresponding mutants Pseudomonas sp. strain HRfcsOmegaGm and Pseudomonas sp. strain HRechOmegaKm were not able to grow on ferulic acid or on eugenol, whereas the mutant Pseudomonas sp. strain HRaatOmegaKm exhibited a ferulic acid- and eugenol-positive phenotype like the wild type. In conclusion, the degradation pathway of eugenol via ferulic acid and the necessity of the activation of ferulic acid to the corresponding CoA ester was confirmed. The aat gene product was shown not to be involved in this catabolism, thus excluding a beta-oxidation analogous degradation pathway for ferulic acid. Moreover, the function of the ech gene product as an enoyl-CoA hydratase/aldolase suggests that ferulic acid degradation in Pseudomonas sp. strain HR199 proceeds via a similar pathway to that recently described for Pseudomonas fluorescens AN103.  相似文献   

9.
The Pseudonocardiaceae Amycolatopsis sp. strain HR167 is used in a biotransformation process to produce vanillin from ferulic acid. To make this strain accessible for genetic engineering, a direct mycelium transformation system developed for Amycolatopsis mediterranei [Madon and Hotter (1991) J Bacteriol 173: 6325-6331] was applied and optimized for Amycolatopsis sp. strain HR167. The physiological state of the cells had a major influence on the transformation rate. The highest transformation rate of about 7x10(5) transformants per microgram of DNA was obtained with mycelium harvested 6.5-7.5 h after the culture has reached the stationary growth phase. When cells were harvested outside of this time slot, the transformation rate drastically decreased. The density of the mycelium suspensions used in the transformation mixture and the methylation state of the plasmid DNA used for the transformation were also crucial parameters. With plasmid DNA isolated from Escherichia coli ET12567, transformation rates were 3,500-fold higher than those obtained with DNA isolated from E. coli XL1-Blue.  相似文献   

10.
A gene encoding a eugenol oxidase was identified in the genome from Rhodococcus sp. strain RHA1. The bacterial FAD-containing oxidase shares 45% amino acid sequence identity with vanillyl alcohol oxidase from the fungus Penicillium simplicissimum. Eugenol oxidase could be expressed at high levels in Escherichia coli, which allowed purification of 160 mg of eugenol oxidase from 1 L of culture. Gel permeation experiments and macromolecular MS revealed that the enzyme forms homodimers. Eugenol oxidase is partly expressed in the apo form, but can be fully flavinylated by the addition of FAD. Cofactor incorporation involves the formation of a covalent protein-FAD linkage, which is formed autocatalytically. Modeling using the vanillyl alcohol oxidase structure indicates that the FAD cofactor is tethered to His390 in eugenol oxidase. The model also provides a structural explanation for the observation that eugenol oxidase is dimeric whereas vanillyl alcohol oxidase is octameric. The bacterial oxidase efficiently oxidizes eugenol into coniferyl alcohol (KM=1.0 microM, kcat=3.1 s-1). Vanillyl alcohol and 5-indanol are also readily accepted as substrates, whereas other phenolic compounds (vanillylamine, 4-ethylguaiacol) are converted with relatively poor catalytic efficiencies. The catalytic efficiencies with the identified substrates are strikingly different when compared with vanillyl alcohol oxidase. The ability to efficiently convert eugenol may facilitate biotechnological valorization of this natural aromatic compound.  相似文献   

11.
Microbial transformation of ferulic acid to acetovanillone was studied using growing cells of Rhizopus oryzae. Ferulic acid was added to the growing medium (0.5 g L-1) and incubated for 12 days. The progress of formation of metabolites was monitored by GC and GC-MS after extraction with ethyl acetate. The major metabolite was acetovanillone with minor metabolites formed, such as dihydroferulic acid, coniferyl alcohol and dihydroconiferyl alcohol. Traces of metabolites (≤1-3%), such as vanillin, vanillyl alcohol, vanillic acid and phenyl ethyl alcohol, were also produced. Formation of 4-vinyl guaiacol increased from day 1 (12.4%), reaching a maximum on day 4 (31.7%), and reducing to a minimum on day 12 (3.1%). The formation of acetovanillone increased only from day 2 onward, and reached a maximum (49.2%) on day 12. The optimum concentration of ferulic acid to be added into the medium was found to be only 0.5 g L-1, as any increase in concentration (0.75 and 1.0 g L-1) precipitated the precursor, resulting in no further degradation.  相似文献   

12.
The catabolism of eugenol in Pseudomonas sp. strain HR199 (DSM7063) proceeds via coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin, vanillate and protocatechuate, which is further degraded by the ortho-cleavage pathway. The vanillin dehydrogenase of Pseudomonas sp. strain HR199, which catalyses the NAD+-dependent oxidation of vanillin to vanillate, was inactivated by the insertion of omega elements into the vdh gene, which was characterized recently. Omega elements conferring resistance against kanamycin (ΩKm) or gentamycin (ΩGm) were constructed by polymerase chain reaction amplification of the aminoglycoside 3′-O-phosphotransferase gene and the gentamycin- 3-acetyltransferase gene, using the plasmids pSUP5011 and pBBR1MCS-5 respectively as template DNA. A 211-bp BssHII fragment of the vdh gene was substituted by ΩKm or ΩGm, and the functional vdh gene was replaced by vdhΩKm or vdhΩGm in Pseudomonas sp. strain HR199 by homologous recombination. Cells of the mutant Pseudomonas sp. strain HRvdhΩKm, pregrown on gluconate, accumulated up to 2.9 mM vanillin during incubation in mineral medium with 6.5 mM eugenol. As a result of another vanillin dehydrogenase activity (VDH-II), the accumulated vanillin was further degraded, when coniferyl aldehyde was exhausted from the medium. Characterization of the purified VDH-II revealed the identity of this enzyme with the recently characterized coniferyl-aldehyde dehydrogenase. Received: 19 March 1999 / Received revision: 31 June 1999 / Accepted: 5 July 1999  相似文献   

13.
Stable isotope-labeled precursors were synthesized for an analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate the biosynthetic flow of capsaicinoids, capsinoids, and capsiconinoids. [1'-(13)C][5-(2)H]-Vanillin was prepared by the condensation of guaiacol with [(13)C]-chloroform and a D(2)O treatment. Labeled vanillylamine, vanillyl alcohol, ferulic acid, and coniferyl alcohol were prepared from the labeled vanillin. The labeled vanillylamine was converted to labeled capsaicinoid in a crude enzyme solution extracted from pungent Capsicum fruits.  相似文献   

14.
Microbial transformation of ferulic acid to acetovanillone was studied using growing cells of Rhizopus oryzae. Ferulic acid was added to the growing medium (0.5 g L?1) and incubated for 12 days. The progress of formation of metabolites was monitored by GC and GC-MS after extraction with ethyl acetate. The major metabolite was acetovanillone with minor metabolites formed, such as dihydroferulic acid, coniferyl alcohol and dihydroconiferyl alcohol. Traces of metabolites (≤1–3%), such as vanillin, vanillyl alcohol, vanillic acid and phenyl ethyl alcohol, were also produced. Formation of 4-vinyl guaiacol increased from day 1 (12.4%), reaching a maximum on day 4 (31.7%), and reducing to a minimum on day 12 (3.1%). The formation of acetovanillone increased only from day 2 onward, and reached a maximum (49.2%) on day 12. The optimum concentration of ferulic acid to be added into the medium was found to be only 0.5 g L?1, as any increase in concentration (0.75 and 1.0 g L?1) precipitated the precursor, resulting in no further degradation.  相似文献   

15.
16.
The gene loci fcs, encoding feruloyl coenzyme A (feruloyl-CoA) synthetase, ech, encoding enoyl-CoA hydratase/aldolase, and aat, encoding β-ketothiolase, which are involved in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199 (DSM7063), were localized on a DNA region covered by two EcoRI fragments (E230 and E94), which were recently cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The nucleotide sequences of parts of fragments E230 and E94 were determined, revealing the arrangement of the aforementioned genes. To confirm the function of the structural genes fcs and ech, they were cloned and expressed in Escherichia coli. Recombinant strains harboring both genes were able to transform ferulic acid to vanillin. The feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase activities of the fcs and ech gene products, respectively, were confirmed by photometric assays and by high-pressure liquid chromatography analysis. To prove the essential involvement of the fcs, ech, and aat genes in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199, these genes were inactivated separately by the insertion of omega elements. The corresponding mutants Pseudomonas sp. strain HRfcsΩGm and Pseudomonas sp. strain HRechΩKm were not able to grow on ferulic acid or on eugenol, whereas the mutant Pseudomonas sp. strain HRaatΩKm exhibited a ferulic acid- and eugenol-positive phenotype like the wild type. In conclusion, the degradation pathway of eugenol via ferulic acid and the necessity of the activation of ferulic acid to the corresponding CoA ester was confirmed. The aat gene product was shown not to be involved in this catabolism, thus excluding a β-oxidation analogous degradation pathway for ferulic acid. Moreover, the function of the ech gene product as an enoyl-CoA hydratase/aldolase suggests that ferulic acid degradation in Pseudomonas sp. strain HR199 proceeds via a similar pathway to that recently described for Pseudomonas fluorescens AN103.  相似文献   

17.
Yoon SH  Lee EG  Das A  Lee SH  Li C  Ryu HK  Choi MS  Seo WT  Kim SW 《Biotechnology progress》2007,23(5):1143-1148
Vanillin production was tested with different concentrations of added ferulic acid in E. coli harboring plasmid pTAHEF containing fcs (feruloyl-CoA synthase) and ech (enoyl-CoA hydratase/aldolase) genes cloned from Amycolatopsis sp. strain HR104. The maximum production of vanillin from E. coli DH5alpha harboring pTAHEF was found to be 1.0 g/L at 2.0 g/L of ferulic acid for 48 h of culture. To improve the vanillin production by reducing its toxicity, two approaches were followed: (1) generation of vanillin-resistant mutant of NTG-VR1 through NTG mutagenesis and (2) removal of toxic vanillin from the medium by XAD-2 resin absorption. The vanillin production of NTG-VR1 increased to three times at 5 g/L of ferulic acid when compared with its wild-type strain. When 50% (w/v) of XAD-2 resin was employed in culture with 10 g/L of ferulic acid, the vanillin production of NTG-VR1 was 2.9 g/L, which was 2-fold higher than that obtained with no use of the resin.  相似文献   

18.
The ectABC genes encoding the biosynthesis of ectoine were identified from Nesterenkonia halobia DSM 20541. The intergenic regions of the ectABC genes from N. halobia DSM 20541 were more loosely spaced than those that had been reported before. The amino acid sequence deduced from ectABC of the strain was highly homologous to the EctABC of Brevibacterium linens BL2 (EctA 50%, EctB 70%, and EctC 68% identities). The osmoprotection of ectABC was studied in the Escherichia coli KNabc and E. coli XL1-Blue. The results revealed that ectABC could shorten the lag phase and enhance the final OD600 of E. coli XL1-Blue in MM63 medium containing 0.68 M NaCl, and could initiate KNabc growth in 0.2 M NaCl. Ectoine was proven to be accumulated in E. coli KNabc/pGEM-Nect using HPLC-UV, and validated by LC-MSD-Trap-VL.  相似文献   

19.
The detection and identification of pathogens from water samples remain challenging due to variations in recovery rates and the cost of procedures. Ultrafiltration offers the possibility to concentrate viral, bacterial, and protozoan organisms in a single process by using size-exclusion-based filtration. In this study, two hollow-fiber ultrafilters with 50,000-molecular-weight cutoffs were evaluated to concentrate microorganisms from 2- and 10-liter water samples. When known quantities (10(5) to 10(6) CFU/liter) of two species of enteric bacteria were introduced and concentrated from 2 liters of sterile water, the addition of 0.1% Tween 80 increased Escherichia coli strain K-12 recoveries from 70 to 84% and Salmonella enterica serovar Enteritidis recoveries from 36 to 72%. An E. coli antibiotic-resistant strain, XL1-Blue, was recovered at a level (87%) similar to that for strain K-12 (96%) from 10 liters of sterile water. When E. coli XL1-Blue was introduced into 10 liters of nonsterile Rio Grande water with higher turbidity levels (23 to 29 nephelometric turbidity units) at two inoculum levels (9 x 10(5) and 2.4 x 10(3) per liter), the recovery efficiencies were 89 and 92%, respectively. The simultaneous addition of E. coli XL1-Blue (9 x 10(5) CFU/liter), Cryptosporidium parvum oocysts (10 oocysts/liter), phage T1 (10(5) PFU/liter), and phage PP7 (10(5) PFU/liter) to 10 liters of Rio Grande surface water resulted in mean recoveries of 96, 54, 59, and 46%, respectively. Using a variety of surface waters from around the United States, we obtained recovery efficiencies for bacteria and viruses that were similar to those observed with the Rio Grande samples, but recovery of Cryptosporidium oocysts was decreased, averaging 32% (the site of collection of these samples had previously been identified as problematic for oocyst recovery). Results indicate that the use of ultrafiltration for simultaneous recovery of bacterial, viral, and protozoan pathogens from variable surface waters is ready for field deployment.  相似文献   

20.
AIMS: The ability of lactic acid bacteria (LAB) to metabolize certain phenolic precursors to vanillin was investigated. METHODS AND RESULTS: Gas chromatography-mass spectrometry (GC-MS) or HPLC was used to evaluate the biosynthesis of vanillin from simple phenolic precursors. LAB were not able to form vanillin from eugenol, isoeugenol or vanillic acid. However Oenococcus oeni or Lactobacillus sp. could convert ferulic acid to vanillin, but in low yield. Only Lactobacillus sp. or Pediococcus sp. strains were able to produce significant quantities of 4-vinylguaiacol from ferulic acid. Moreover, LAB reduced vanillin to the corresponding vanillyl alcohol. CONCLUSIONS: The transformation of phenolic compounds tested by LAB could not explain the concentrations of vanillin observed during LAB growth in contact with wood. SIGNIFICANCE AND IMPACT OF THE STUDY: Important details of the role of LAB in the conversion of phenolic compounds to vanillin have been elucidated. These findings contribute to the understanding of malolactic fermentation in the production of aroma compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号