共查询到19条相似文献,搜索用时 15 毫秒
1.
2,5-Anhydro-D-mannitol inhibited glucose synthesis, increased the pyruvate/phosphoenolpyruvate ratio and altered adenine nucleotide concentrations in hepatocytes isolated from fasted rats. The accumulations of 2,5-anhydro-D-mannitol 1,6-diphosphate, an allosteric activator of pyruvate kinase, and of ADP in treated hepatocytes can account for the increase in pyruvate/phosphoenolpyruvate ratio and the inhibition of glucose synthesis from lactate. 相似文献
2.
Carmel M. Roberts Samuel P. Bessman 《Biochemical and biophysical research communications》1980,93(2):617-624
Creatine phosphate, nucleotides and glycolytic phosphate esters were estimated in extract of beating, in situ freeze clamped, to day fetal rat hearts by automated phosphate ester chromatography. Creatine phosphate increased more than 4-fold to almost 9 n moles per mg. protein at days, while ATP remained relatively constant at about 19 to 21 n moles per mg. protein. Most other nucleotides decreased as gestation advanced. ATP rather than creatine phosphate appears to be the major energy source of fetal rat heart. Except for glucose-6-phosphate, which increased, the glycolytic phosphate esters decreased only very slightly with advancing gestational age, suggesting a relatively stable basal glycolytic activity. Methodology includes correction for phosphate esters of whole blood trapped in extracts of in situ freeze clamped tissues. 相似文献
3.
Stimulation by epidermal growth factor of phospholipid methyltransferase in isolated rat hepatocytes
Epidermal growth factor produces a time- and dose-dependent activation of phospholipid methyltransferase activity in hepatocytes isolated from juvenile and mature hepatectomized rats. This treatment however has no effect with hepatocytes isolated from mature or laparotomized rats. Dansylcadaverine (50μM), an inhibitor of receptor-mediated internalization of epidermal growth factor, has no effect on basal phospholipid methyltransferase but inhibits the stimulation of this enzyme by epidermal growth factor.
These results indicate a possible role of phospholipid methylation during liver proliferation. 相似文献
4.
《Biochimica et Biophysica Acta (BBA)/General Subjects》1979,587(4):515-521
Pent-4-enoate at 0.1 to 1.0 mM strongly inhibited urea synthesis in isolated rat hepatocytes. Pent-4-enoate at the same concentrations markedly decreased concentrations of , an essential activator of carbamoyl-phosphate synthase-I (EC 2.7.2.5), and the decrease was well parallel with the inhibition of urea synthesis by pent-4-enoate. This compound also lowered cellular concentrations of acetyl-CoA, a substrate of acetylglutamate synthase (EC 2.3.1.1). Pent-4-enoate in a dose of 1 mM did not significantly affect cellular concentrations of ATP, and had no direct effect on acetylglutamate synthase activity. These results suggest that the inhibition of urea synthesis by pent-4-enoate is due to decrease in concentration and that the decrease is probably brought about by decreased rate of its synthesis due to the lowered concentration of cellular acetyl-CoA. 相似文献
5.
Jungdon Bae DuckHee Lee Dooil Kim Soo-Jin Cho Jung Eun Park Sukhoon Koh Joongsu Kim Bo-Hyun Park Yongseok Choi Hyun-Jae Shin Suk-In Hong Dae-Sil Lee 《Process Biochemistry》2005,40(12):3707-3713
The glgP gene encoding α-glucan phosphorylase (α-GP) from the thermopile Thermus caldophilus GK24 has been identified, cloned, and overexpressed in Escherichia coli and used to synthesize d-glucose-1-phospate (G1P) from an inexpensive starch. The enzyme, purified 6.5-fold, was isolated in 31% yield from the transformed E. coli, and gave a single band. The purified enzyme may exist as a homohexamer with an apparent molecular mass of a 550 kDa molecule, consisting of 90 kDa per subunit. The optimal pH and temperature were 7.0 and 70 °C in the α-GP reaction with starch producing G1P. Soluble starch (amylopectin, amylose) turned out to be a better substrate giving a higher yield of G1P than α-1,6-branched α-1,4-glucans (glycogen, potato starch, etc.). As a result, G1P was obtained in a good yield (47%, w/w) from the reaction containing 5% (w/v) soluble starch in 0.7 M potassium phosphate at pH 7.0. T. caldophilus α-GP shows a high tolerance (up to 0.7 M) of potassium phosphate and plays a critical role in shifting the reaction equilibrium in favor of G1P synthesis. The G1P product can be purified simply by ethanol precipitation, after removing the unreacted starch and inorganic phosphate by activated charcoal and magnesium acetate precipitation. It is concluded that T. caldophilus α-GP readily utilized in large scale synthesis of G1P. 相似文献
6.
Joel L. Asenjo Heide C. Ludwig Cristian A. Droppelmann Juan G. Cárcamo Ilona I. Concha Alejandro J. Yáñez María L. Cárdenas Athel Cornish-Bowden Juan C. Slebe 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Fructose-1,6-bisphosphatase, a major enzyme of gluconeogenesis, is inhibited by AMP, Fru-2,6-P2 and by high concentrations of its substrate Fru-1,6-P2. The mechanism that produces substrate inhibition continues to be obscure.Methods
Four types of experiments were used to shed light on this: (1) kinetic measurements over a very wide range of substrate concentrations, subjected to detailed statistical analysis; (2) fluorescence studies of mutants in which phenylalanine residues were replaced by tryptophan; (3) effect of Fru-2,6-P2 and Fru-1,6-P2 on the exchange of subunits between wild-type and Glu-tagged oligomers; and (4) kinetic studies of hybrid forms of the enzyme containing subunits mutated at the active site residue tyrosine-244.Results
The kinetic experiments with the wild-type enzyme indicate that the binding of Fru-1,6-P2 induces the appearance of catalytic sites with lower affinity for substrate and lower catalytic activity. Binding of substrate to the high-affinity sites, but not to the low-affinity sites, enhances the fluorescence emission of the Phe219Trp mutant; the inhibitor, Fru-2,6-P2, competes with the substrate for the high-affinity sites. Binding of substrate to the low-affinity sites acts as a “stapler” that prevents dissociation of the tetramer and hence exchange of subunits, and results in substrate inhibition.Conclusions
Binding of the first substrate molecule, in one dimer of the enzyme, produces a conformational change at the other dimer, reducing the substrate affinity and catalytic activity of its subunits.General significance
Mimics of the substrate inhibition of fructose-1,6-bisphosphatase may provide a future option for combatting both postprandial and fasting hyperglycemia. 相似文献7.
Perivascular nerve stimulation of rat livers perfused in situ with erythrocyte-free Krebs-Henseleit buffer at constant pressure in a non-recirculating system resulted in an increase of glucose and lactate production and in a decrease of portal flow. Infusion of somatostatin in different concentrations (2 × 10−7, 10−8, 10−9 mol·l−1) reduced the nerve-mediated activation of glucose release maximally to 66%. There was only a slight effect on the lactate output, the nerve-mediated reduction of portal flow was unaltered. In controls, somatostatin alone had no effect on the metabolic and hemodynamic parameters. In order to differentiate between a presynaptic and postsynaptic mechanism, the noradrenaline overflow was calculated. The unaltered release of the neurotransmitter in the presence or absence of somatostatin excluded a presynaptic mechanism. To mimic the nerve effects on the carbohydrate metabolism and on the hemodynamics, noradrenaline (2 × 10−7 mol·l−1) was infused instead of the nerve stimulation over a period of 5 min. Somatostatin did not change the endocrine effects of the catecholamine under these conditions. The nerve-dependent effect of somatostatin suggests that other neurotransmitters (e.g. VIP) or mediators (e.g. prostanoids) may be influenced by somatostatin. 相似文献
8.
Jon-Sverre Schanche Tone Schanche Per Magne Ueland 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1982,721(4):399-407
Phospholipid methylation in isolated hepatocytes was inhibited in the presence of 3-deazaadenosine (ID50 = 1.7 μM) 9-β-d-arabinofuranosyladenine (ID50 = 6.0 μM), S-tubercidinylhomocysteine (ID50 = 30 μM), and 5′-deoxy-5′-isobutylthioadenosine (ID50 = 177 μM). A transient inhibitory effect was observed with adenosine, whereas S-adenosyl-l-homocysteine and Sinefungin were essentially without effect. The inhibition of phospholipid methylation by S-tubercidinylhomocysteine and 9-β-d-arabinofuranosyladenine showed a lag-phase, whereas the effect of the other inhibitors was apparent within a few minutes. Cells exposed to 9-β-d-arabinofuranosyladenine or 3-deazaadenosine accumulated large amounts of AdoHcy, and adenosine induced a transient increase in the AdoHcy level. In addition, 3-deazaadenosine served as a precursor for the formation of S-3-deazaadenosylhomocysteine, which accumulated rapidly in cells exposed to this agent. The inhibitory effects of 3-deazaadenosine, 9-β-d-arabinofuranosyladenine and adenosine could be explained by the increase in total nucleosidylhomocysteine induced by these agents. In contrast, only a slight (less than 2-fold) increase in S-adenosyl-l-homocysteine content was observed in hepatocytes treated with 5′-deoxy-5′-isobutylthioadenosine, and this metabolic effect could not explain the inhibition of phospholipid methylation induced by this agent. None of the compounds tested reduced the amount nor the specific radioactivity of S-adenosylmethionine. Biological processes determining the inhibitory effects of adenosine, S-adenosyl-l-homocysteine and their analogues on phospholipid methylation in intact cells are discussed. 相似文献
9.
Primary cultures of rat urothelial cells were exposed to hydroxyurea, [3H]thymidine, and 4-nitroquinoline 1-oxide (NQO) or N-hydroxy-4-aminoquinoline 1-oxide (HAQO) in a serum-free media for 2 h; unscheduled DNA synthesis (UDS) was measured by autoradiography. Both NQO and HAQO produced unscheduled DNA synthesis. Dicumarol, an inhibitor of NQO nitroreductase, inhibited the activity of NQO and, to a lesser extent, HAQO. Pyrophosphate, an inhibitor of seryl-AMP synthetase, inhibited the activity of both compounds. Neither dicumarol nor pyrophosphate, under similar experimental conditions, inhibited the activity of N-hydroxy-N-2-acetylaminofluorene (N-OH-AAF). These results support the idea that nitro-reductase and seryl-AMP synthetase may be involved in the activation of NQO. 相似文献
10.
Eduardo T. Cánepa Elena B.C. Llambías Moisés Grinstein 《Biochimica et Biophysica Acta (BBA)/General Subjects》1985,841(2):186-194
In the present work we have been able to demonstrate the phenobarbital and lead exert an inducing effect on the biosynthesis of δ-aminovulenic acid synthase, ferrochelatase and cytochrome P-450 hemoproteins in isolated rat hepatocytes of normal adult rats. Dibutyryl cyclic AMP enhances the induction effect produced by phenobarbital in this in vitro system. Glucose inhibits the induction of δ-aminolevulinic acid synthase and ferrochelatase. This repression effect can be reversed with increasing concentrations of dibutyryl cyclic AMP. No glucose effect was observed on the phenobarbital- and lead-mediated inductions of cytochrome P-450. The present results add more experimental evidence to support the concept that the last enzyme of the heme pathway is inducible, and as such may have a significant role in regulatory mechanisms of porphyrin and heme biosynthesis. 相似文献
11.
12.
Tuoyu Geng Alton Sutter Michael D. Harland Brittany A. Law Jessica S. Ross David Lewin Arun Palanisamy Sarah B. Russo Kenneth D. Chavin L. Ashley Cowart 《Journal of lipid research》2015,56(12):2359-2371
Steatohepatitis occurs in up to 20% of patients with fatty liver disease and leads to its primary disease outcomes, including fibrosis, cirrhosis, and increased risk of hepatocellular carcinoma. Mechanisms that mediate this inflammation are of major interest. We previously showed that overload of saturated fatty acids, such as that which occurs with metabolic syndrome, induced sphingosine kinase 1 (SphK1), an enzyme that generates sphingosine-1-phosphate (S1P). While data suggest beneficial roles for S1P in some contexts, we hypothesized that it may promote hepatic inflammation in the context of obesity. Consistent with this, we observed 2-fold elevation of this enzyme in livers from humans with nonalcoholic fatty liver disease and also in mice with high saturated fat feeding, which recapitulated the human disease. Mice exhibited activation of NFκB, elevated cytokine production, and immune cell infiltration. Importantly, SphK1-null mice were protected from these outcomes. Studies in cultured cells demonstrated saturated fatty acid induction of SphK1 message, protein, and activity, and also a requirement of the enzyme for NFκB signaling and increased mRNA encoding TNFα and MCP1. Moreover, saturated fat-induced NFκB signaling and elevation of TNFα and MCP1 mRNA in HepG2 cells was blocked by targeted knockdown of S1P receptor 1, supporting a role for this lipid signaling pathway in inflammation in nonalcoholic fatty liver disease. 相似文献
13.
Kambe Y Nakamichi N Takarada T Fukumori R Nakazato R Hinoi E Yoneda Y 《Neurochemistry international》2011,59(1):10-20
We have previously shown that mitochondrial membrane potential disruption is involved in mechanisms underlying differential vulnerabilities to the excitotoxicity mediated by N-methyl-d-aspartate (NMDA) receptors between primary cultured neurons prepared from rat cortex and hippocampus. To further elucidate the role of mitochondria in the excitotoxicity after activation of NMDA receptors, neurons were loaded with the fluorescent dye calcein diffusible in the cytoplasm and organelles for determination of the activity of mitochondrial permeability transition pore (mPTP) responsible for the leakage of different mitochondrial molecules. The addition of CoCl2 similarly quenched the intracellular fluorescence except mitochondria in both cultured neurons, while further addition of NMDA led to a leakage of the dye into the cytoplasm in hippocampal neurons only. An mPTP inhibitor prevented the NMDA-induced loss of viability in hippocampal neurons, while an activator of mPTP induced a similarly potent loss of viability in cortical and hippocampal neurons. Although NMDA was more effective in increasing rhodamine-2 fluorescence as a mitochondrial calcium indicator in hippocampal than cortical neurons, a mitochondrial calcium uniporter inhibitor significantly prevented the NMDA-induced loss of viability in hippocampal neurons. Expression of mRNA was significantly higher for the putative uniporter uncoupling protein-2 in hippocampal than cortical neurons. These results suggest that mitochondrial calcium uniporter would be at least in part responsible for the NMDA neurotoxicity through a mechanism relevant to promotion of mPTP orchestration in hippocampal neurons. 相似文献
14.
Qingping Xu Tadashi Eguchi Christopher L. Rife Hsiu-Ju Chiu Carol L. Farr Julie Feuerhelm Lukasz Jaroszewski Heath E. Klock Mark W. Knuth Mitchell D. Miller Dana Weekes Marc-André Elsliger Ashley M. Deacon Adam Godzik Scott A. Lesley Ian A. Wilson 《Journal of molecular biology》2010,404(3):403-417
Archaeal membrane lipids consist of branched, saturated hydrocarbons distinct from those found in bacteria and eukaryotes. Digeranylgeranylglycerophospholipid reductase (DGGR) catalyzes the hydrogenation process that converts unsaturated 2,3-di-O-geranylgeranylglyceryl phosphate to saturated 2,3-di-O-phytanylglyceryl phosphate as a critical step in the biosynthesis of archaeal membrane lipids. The saturation of hydrocarbon chains confers the ability to resist hydrolysis and oxidation and helps archaea withstand extreme conditions. DGGR is a member of the geranylgeranyl reductase family that is also widely distributed in bacteria and plants, where the family members are involved in the biosynthesis of photosynthetic pigments. We have determined the crystal structure of DGGR from the thermophilic heterotrophic archaea Thermoplasma acidophilum at 1.6 Å resolution, in complex with flavin adenine dinucleotide (FAD) and a bacterial lipid. The DGGR structure can be assigned to the well-studied, p-hydroxybenzoate hydroxylase (PHBH) SCOP superfamily of flavoproteins that include many aromatic hydroxylases and other enzymes with diverse functions. In the DGGR complex, FAD adopts the IN conformation (closed) previously observed in other PHBH flavoproteins. DGGR contains a large substrate-binding site that extends across the entire ligand-binding domain. Electron density corresponding to a bacterial lipid was found within this cavity. The cavity consists of a large opening that tapers down to two, narrow, curved tunnels that closely mimic the shape of the preferred substrate. We identified a sequence motif, PxxYxWxFP, that defines a specificity pocket in the enzyme and precisely aligns the double bond of the geranyl group with respect to the FAD cofactor, thus providing a structural basis for the substrate specificity of geranylgeranyl reductases. DGGR is likely to share a common mechanism with other PHBH enzymes in which FAD switches between two conformations that correspond to the reductive and oxidative half cycles. The structure provides evidence that substrate binding likely involves conformational changes, which are coupled to the two conformational states of the FAD. 相似文献
15.
16.
Sohee Phark So-Young Park Seonyoung ChoiZhi Zheng Eunkyung ChoMin Lee Ji-youn LimJong Bok Seo Nam Hee WonWoon-Won Jung Donggeun Sul 《Biochimica et Biophysica Acta - Proteins and Proteomics》2012,1824(4):656-666
Using a proteomic approach, a study was conducted for determination of the effects of 2,3,4,7,8-pentachlorodibenzofuran (2,3,4,7,8-PCDF) on proteins secreted by HepG2 cells. Briefly, HepG2 cells were exposed to various concentrations of 2,3,4,7,8-PCDF for 24 or 48 h. MTT and comet assays were then conducted for determination of cytotoxicity and genotoxicity, respectively. Results of an MTT assay showed that 1 nM of 2,3,4,7,8-PCDF was the maximum concentration that did not cause cell death. In addition, a dose- and time dependent increase of DNA damage was observed in HepG2 cells exposed to 2,3,4,7,8-PCDF. Therefore, two different concentrations of 2,3,4,7,8-PCDF, 1 and 5 nM, were selected for further analysis of proteomic biomarkers using two different pI ranges (4-7 and 6-9) and large two dimensional gel electrophoresis. Results showed identification of 32 proteins ( 29 up- and 3 down-regulated) by nano-LC-ESI-MS/MS and nano-ESI on a Q-TOF2 MS. Among these, the identities of pyridoxine-5'-phosphate oxidase, UDP-glucose 6-dehydrogenase, plasminogen activator inhibitor I precursor, plasminogen activator inhibitor-3, proteasome activator complex subunit 1, isoform 1 of 14-3-3 protein sigma, peptidyl-prolyl cis-trans isomerase A, 14-3-3 protein gamma, protein DJ-1, and nucleoside diphosphate kinase A were confirmed by western blot analysis. The differential expression of protein DJ-1, proteasome activator complex subunit 1 and plasminogen activator inhibitor-3 was further validated in plasma proteins from rats exposed to 2,3,4,7,8-PCDF. These proteins could be used as potential toxicological biomarkers of 2,3,4,7,8-PCDF. 相似文献
17.
18.
19.
Qiong Wang Sigurdur Trausti Karvelsson Aristotelis Kotronoulas Thorarinn Gudjonsson Skarphedinn Halldorsson Ottar Rolfsson 《Molecular & cellular proteomics : MCP》2022,21(2):100185
Breast cancer cells that have undergone partial epithelial–mesenchymal transition (EMT) are believed to be more invasive than cells that have completed EMT. To study metabolic reprogramming in different mesenchymal states, we analyzed protein expression following EMT in the breast epithelial cell model D492 with single-shot LFQ supported by a SILAC proteomics approach. The D492 EMT cell model contains three cell lines: the epithelial D492 cells, the mesenchymal D492M cells, and a partial mesenchymal, tumorigenic variant of D492 that overexpresses the oncogene HER2. The analysis classified the D492 and D492M cells as basal-like and D492HER2 as claudin-low. Comparative analysis of D492 and D492M to tumorigenic D492HER2 differentiated metabolic markers of migration from those of invasion. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) was one of the top dysregulated enzymes in D492HER2. Gene expression analysis of the cancer genome atlas showed that GFPT2 expression was a characteristic of claudin-low breast cancer. siRNA-mediated knockdown of GFPT2 influenced the EMT marker vimentin and both cell growth and invasion in vitro and was accompanied by lowered metabolic flux through the hexosamine biosynthesis pathway (HBP). Knockdown of GFPT2 decreased cystathionine and sulfide:quinone oxidoreductase (SQOR) in the transsulfuration pathway that regulates H2S production and mitochondrial homeostasis. Moreover, GFPT2 was within the regulation network of insulin and EGF, and its expression was regulated by reduced glutathione (GSH) and suppressed by the oxidative stress regulator GSK3-β. Our results demonstrate that GFPT2 controls growth and invasion in the D492 EMT model, is a marker for oxidative stress, and associated with poor prognosis in claudin-low breast cancer. 相似文献