首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We present herein the first complete genome sequence of a thermophilic Bacillus-related species, Geobacillus kaustophilus HTA426, which is composed of a 3.54 Mb chromosome and a 47.9 kb plasmid, along with a comparative analysis with five other mesophilic bacillar genomes. Upon orthologous grouping of the six bacillar sequenced genomes, it was found that 1257 common orthologous groups composed of 1308 genes (37%) are shared by all the bacilli, whereas 839 genes (24%) in the G.kaustophilus genome were found to be unique to that species. We were able to find the first prokaryotic sperm protamine P1 homolog, polyamine synthase, polyamine ABC transporter and RNA methylase in the 839 unique genes; these may contribute to thermophily by stabilizing the nucleic acids. Contrasting results were obtained from the principal component analysis (PCA) of the amino acid composition and synonymous codon usage for highlighting the thermophilic signature of the G.kaustophilus genome. Only in the PCA of the amino acid composition were the Bacillus-related species located near, but were distinguishable from, the borderline distinguishing thermophiles from mesophiles on the second principal axis. Further analysis revealed some asymmetric amino acid substitutions between the thermophiles and the mesophiles, which are possibly associated with the thermoadaptation of the organism.  相似文献   

3.
In this study, we analysed synonymous codon usage in Shigella flexneri 2a strain 301 (Sf301) and performed a comparative analysis of synonymous codon usage patterns in Sf301 and other strains of Shigella and Escherichia coli. Although there was a significant variety in codon usage bias among different Sf301 genes, there was a slight but observable codon usage bias that could primarily be attributable to mutational pressure and translational selection. In addition, the relative abundance of dinucleotides in Sf301 was observed to be independent of the overall base composition but was still caused by differential mutational pressure; this also shaped codon usage. By comparing the relative synonymous codon usage values across different Shigella and E. coli strains, we suggested that the synonymous codon usage pattern in the Shigella genomes was strain specific. This study represents a comprehensive analysis of Shigella codon usage patterns and provides a basic understanding of the mechanisms underlying codon usage bias.  相似文献   

4.
ABSTRACT: BACKGROUND: Synonymous codon usage bias has typically been correlated with, and attributed to translational efficiency. However, there are other pressures on genomic sequence composition that can affect codon usage patterns such as mutational biases. This study provides an analysis of the codon usage patterns in Arabidopsis thaliana in relation to gene expression levels, codon volatility, mutational biases and selective pressures. RESULTS: We have performed synonymous codon usage and codon volatility analyses for all genes in the A. thaliana genome. In contrast to reports for species from other kingdoms, we find that neither codon usage nor volatility are correlated with selection pressure (as measured by dN/dS), nor with gene expression levels on a genome wide level. Our results show that codon volatility and usage are not synonymous, rather that they are correlated with the abundance of G and C at the third codon position (GC3). CONCLUSIONS: Our results indicate that while the A. thaliana genome shows evidence for synonymous codon usage bias, this is not related to the expression levels of its constituent genes. Neither codon volatility nor codon usage are correlated with expression levels or selective pressures but, because they are directly related to the composition of G and C at the third codon position, they are the result of mutational bias. Therefore, in A. thaliana codon volatility and usage do not result from selection for translation efficiency or protein functional shift as measured by positive selection.  相似文献   

5.
6.

Background

Synonymous codon usage varies widely between genomes, and also between genes within genomes. Although there is now a large body of data on variations in codon usage, it is still not clear if the observed patterns reflect the effects of positive Darwinian selection acting at the level of translational efficiency or whether these patterns are due simply to the effects of mutational bias. In this study, we have included both intra-genomic and inter-genomic comparisons of codon usage. This allows us to distinguish more efficiently between the effects of nucleotide bias and translational selection.

Results

We show that there is an extreme degree of heterogeneity in codon usage patterns within the rice genome, and that this heterogeneity is highly correlated with differences in nucleotide content (particularly GC content) between the genes. In contrast to the situation observed within the rice genome, Arabidopsis genes show relatively little variation in both codon usage and nucleotide content. By exploiting a combination of intra-genomic and inter-genomic comparisons, we provide evidence that the differences in codon usage among the rice genes reflect a relatively rapid evolutionary increase in the GC content of some rice genes. We also noted that the degree of codon bias was negatively correlated with gene length.

Conclusion

Our results show that mutational bias can cause a dramatic evolutionary divergence in codon usage patterns within a period of approximately two hundred million years.The heterogeneity of codon usage patterns within the rice genome can be explained by a balance between genome-wide mutational biases and negative selection against these biased mutations. The strength of the negative selection is proportional to the length of the coding sequences. Our results indicate that the large variations in synonymous codon usage are not related to selection acting on the translational efficiency of synonymous codons.
  相似文献   

7.
The phenomenon of codon usage bias is known to exist in many genomes and it is mainly determined by mutation and selection. To understand the patterns of codon usage in nemertean mitochondrial genomes, we use bioinformatic approaches to analyze the protein-coding sequences of eight nemertean species. Neutrality analysis did not find a significant correlation between GC12 and GC3. ENc-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENc values are below it. ENc-plot suggested that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally and we propose that codons containing A or U at third position are used preferentially in nemertean species, regardless of whether corresponding tRNAs are encoded in the mitochondrial DNA. Context-dependent analysis indicated that the nucleotide at the second codon position slightly affects synonymous codon choices. These results suggested that mutational and selection forces are probably acting to codon usage bias in nemertean mitochondrial genomes.  相似文献   

8.
Liang HK  Huang CM  Ko MT  Hwang JK 《Proteins》2005,59(1):58-63
Structural analysis is useful in elucidating structural features responsible for enhanced thermal stability of proteins. However, due to the rapid increase of sequenced genomic data, there are far more protein sequences than the corresponding three-dimensional (3D) structures. The usual sequence-based amino acid composition analysis provides useful but simplified clues about the amino acid types related to thermal stability of proteins. In this work, we developed a statistical approach to identify the significant amino acid coupling sequence patterns in thermophilic proteins. The amino acid coupling sequence pattern is defined as any 2 types of amino acids separated by 1 or more amino acids. Using this approach, we construct the rho profiles for the coupling patterns. The rho value gives a measure of the relative occurrence of a coupling pattern in thermophiles compared with mesophiles. We found that thermophiles and mesophiles exhibit significant bias in their amino acid coupling patterns. We showed that such bias is mainly due to temperature adaptation instead of species or GC content variations. Though no single outstanding coupling pattern can adequately account for protein thermostability, we can use a group of amino acid coupling patterns having strong statistical significance (p values < 10(-7)) to distinguish between thermophilic and mesophilic proteins. We found a good correlation between the optimal growth temperatures of the genomes and the occurrences of the coupling patterns (the correlation coefficient is 0.89). Furthermore, we can separate the thermophilic proteins from their mesophilic orthologs using the amino acid coupling patterns. These results may be useful in the study of the enhanced stability of proteins from thermophiles-especially when structural information is scarce. Proteins 2005. (c) 2005 Wiley-Liss, Inc.  相似文献   

9.
鉴于遗传密码子的简并性能够将基因遗传信息的容量提升,同义密码子使用偏嗜性得以在生物体的基因组中广泛存在。虽然同义密码子之间碱基的变化并不能导致氨基酸种类的改变,在研究mRNA半衰期、编码多肽翻译效率及肽链空间构象正确折叠的准确性和翻译等这一系列过程中发现,同义密码子使用的偏嗜性在某种程度上通过精微调控翻译机制体现其遗传学功能。同义密码子指导tRNA在翻译过程中识别核糖体的速率变化是由氨基酸的特定顺序决定,并且在新生多肽链合成时,蛋白质共翻译转运机制同时调节其空间构象的正确折叠从而保证蛋白的正常生物学功能。某些同义密码子使用偏嗜性与特定蛋白结构的形成具有显著相关性,密码子使用偏嗜性一旦改变将可能导致新生多肽空间构象出现错误折叠。结合近些年来国内外在此领域的研究成果,阐述同义密码子使用偏嗜性如何发挥精微调控翻译的生物学功能与作用。  相似文献   

10.
Palidwor GA  Perkins TJ  Xia X 《PloS one》2010,5(10):e13431

Background

In spite of extensive research on the effect of mutation and selection on codon usage, a general model of codon usage bias due to mutational bias has been lacking. Because most amino acids allow synonymous GC content changing substitutions in the third codon position, the overall GC bias of a genome or genomic region is highly correlated with GC3, a measure of third position GC content. For individual amino acids as well, G/C ending codons usage generally increases with increasing GC bias and decreases with increasing AT bias. Arginine and leucine, amino acids that allow GC-changing synonymous substitutions in the first and third codon positions, have codons which may be expected to show different usage patterns.

Principal Findings

In analyzing codon usage bias in hundreds of prokaryotic and plant genomes and in human genes, we find that two G-ending codons, AGG (arginine) and TTG (leucine), unlike all other G/C-ending codons, show overall usage that decreases with increasing GC bias, contrary to the usual expectation that G/C-ending codon usage should increase with increasing genomic GC bias. Moreover, the usage of some codons appears nonlinear, even nonmonotone, as a function of GC bias. To explain these observations, we propose a continuous-time Markov chain model of GC-biased synonymous substitution. This model correctly predicts the qualitative usage patterns of all codons, including nonlinear codon usage in isoleucine, arginine and leucine. The model accounts for 72%, 64% and 52% of the observed variability of codon usage in prokaryotes, plants and human respectively. When codons are grouped based on common GC content, 87%, 80% and 68% of the variation in usage is explained for prokaryotes, plants and human respectively.

Conclusions

The model clarifies the sometimes-counterintuitive effects that GC mutational bias can have on codon usage, quantifies the influence of GC mutational bias and provides a natural null model relative to which other influences on codon bias may be measured.  相似文献   

11.
转座因子对水稻同义密码子使用偏性的影响   总被引:1,自引:0,他引:1  
利用635个包含完整转座因子插入的粳稻CDS序列,对转座因子如何影响基因编码区的碱基组成及基因的表达水平,进而对基因同义密码子的使用偏性产生影响进行了详细分析。结果表明:转座因子插入极显著地影响到基因编码区的同义密码子使用但并非唯一因素;转座因子对不同基因的表达水平具有多重影响,有的基因表达被抑制,有的反而增强,但总的来说它减少了基因表达水平对同义密码子使用的影响程度。  相似文献   

12.
13.
The patterns of synonymous codon usage, both within and among genomes, have been extensively studied over the past two decades. Despite the accumulating evidence that natural selection can shape codon usage, it has not been possible to link a particular pattern of codon usage to a specific external selective force. Here, we have analyzed the patterns of synonymous codon usage in 40 completely sequenced prokaryotic genomes. By combining the genes from several genomes (more than 80 000 genes in all) into a single dataset for this analysis, we were able to investigate variations in codon usage, both within and between genomes. The results show that synonymous codon usage is affected by two major factors: (i) the overall G+C content of the genome and (ii) growth at high temperature. This study focused on the relationship between synonymous codon usage and the ability to grow at high temperature. We have been able to eliminate both phylogenetic history and lateral gene transfer as possible explanations for the characteristic pattern of codon usage among the thermophiles. Thus, these results demonstrate a clear link between a particular pattern of codon usage and an external selective force.  相似文献   

14.
Liu Q  Feng Y  Xue Q 《Mitochondrion》2004,4(4):313-320
In this paper, the main factors shaping codon usage in the mitochondrion genome of rice were reported. Correspondence analysis, a commonly used multivariate statistical approach, was carried out to analyze synonymous codon usage bias. The results showed that the main trend was strongly correlated with the gene expression level assessed by the 'Codon Adaptation Index' value, a result that was confirmed by the distribution of genes along the first axis. From the results that there were two significant correlations between axis 1 coordinates and the GC, GC3s content at silent sites of each sequence, and clearly significant correlations between the 'Effective Number of Codons' values and GC, GC3s content, we inferred that codon usage bias was affected by gene nucleotide composition also. In addition, the hydrophobicity of each protein also played some roles in shaping codon usage in this organelle, which could be confirmed by the significant correlation between the positions of genes placed on the first axis and the hydrophobicity value of each protein. In summary, natural selection played a crucial role, nucleotide mutational bias and amino acid composition only in a minor way, in shaping codon usage in the mitochondrion genome of rice. Notably, 21 codons defined firstly as 'optimal codons' might provide some more useful information for gene engineering and/or evolution studying.  相似文献   

15.
葡萄基因组密码子使用偏好模式研究   总被引:2,自引:0,他引:2  
根据完整基因组序列,运用多元统计分析和对应分析的方法,探讨了葡萄全基因组序列密码子的使用模式和影响密码子使用的各种可能因素。结果显示:葡萄密码子偏好性主要受到碱基差异(r=0.925)和自然选择(r=0.193)共同作用的影响,突变压力占了主导因素,自然选择的作用较小。同时基因长度和蛋白质疏水性也对密码子的偏好性有所影响。确定了葡萄的20个最优密码子。  相似文献   

16.
17.
To study the possible codon usage and base composition variation in the bacteriophages, fourteen mycobacteriophages were used as a model system here and both the parameters in all these phages and their plating bacteria, M. smegmatis had been determined and compared. As all the organisms are GC-rich, the GC contents at third codon positions were found in fact higher than the second codon positions as well as the first + second codon positions in all the organisms indicating that directional mutational pressure is strongly operative at the synonymous third codon positions. Nc plot indicates that codon usage variation in all these organisms are governed by the forces other than compositional constraints. Correspondence analysis suggests that: (i) there are codon usage variation among the genes and genomes of the fourteen mycobacteriophages and M. smegmatis, i.e., codon usage patterns in the mycobacteriophages is phage-specific but not the M. smegmatis-specific; (ii) synonymous codon usage patterns of Barnyard, Che8, Che9d, and Omega are more similar than the rest mycobacteriophages and M. smegmatis; (iii) codon usage bias in the mycobacteriophages are mainly determined by mutational pressure; and (iv) the genes of comparatively GC rich genomes are more biased than the GC poor genomes. Translational selection in determining the codon usage variation in highly expressed genes can be invoked from the predominant occurrences of C ending codons in the highly expressed genes. Cluster analysis based on codon usage data also shows that there are two distinct branches for the fourteen mycobacteriophages and there is codon usage variation even among the phages of each branch.  相似文献   

18.
A O Urrutia  L D Hurst 《Genetics》2001,159(3):1191-1199
In numerous species, from bacteria to Drosophila, evidence suggests that selection acts even on synonymous codon usage: codon bias is greater in more abundantly expressed genes, the rate of synonymous evolution is lower in genes with greater codon bias, and there is consistency between genes in the same species in which codons are preferred. In contrast, in mammals, while nonequal use of alternative codons is observed, the bias is attributed to the background variance in nucleotide concentrations, reflected in the similar nucleotide composition of flanking noncoding and exonic third sites. However, a systematic examination of the covariants of codon usage controlling for background nucleotide content has yet to be performed. Here we present a new method to measure codon bias that corrects for background nucleotide content and apply this to 2396 human genes. Nearly all (99%) exhibit a higher amount of codon bias than expected by chance. The patterns associated with selectively driven codon bias are weakly recovered: Broadly expressed genes have a higher level of bias than do tissue-specific genes, the bias is higher for genes with lower rates of synonymous substitutions, and certain codons are repeatedly preferred. However, while these patterns are suggestive, the first two patterns appear to be methodological artifacts. The last pattern reflects in part biases in usage of nucleotide pairs. We conclude that we find no evidence for selection on codon usage in humans.  相似文献   

19.
In bacteria, synonymous codon usage can be considerably affected by base composition at neighboring sites. Such context-dependent biases may be caused by either selection against specific nucleotide motifs or context-dependent mutation biases. Here we consider the evolutionary conservation of context-dependent codon bias across 11 completely sequenced bacterial genomes. In particular, we focus on two contextual biases previously identified in Escherichia coli; the avoidance of out-of-frame stop codons and AGG motifs. By identifying homologues of E. coli genes, we also investigate the effect of gene expression level in Haemophilus influenzae and Mycoplasma genitalium. We find that while context-dependent codon biases are widespread in bacteria, few are conserved across all species considered. Avoidance of out-of-frame stop codons does not apply to all stop codons or amino acids in E. coli, does not hold for different species, does not increase with gene expression level, and is not relaxed in Mycoplasma spp., in which the canonical stop codon, TGA, is recognized as tryptophan. Avoidance of AGG motifs shows some evolutionary conservation and increases with gene expression level in E. coli, suggestive of the action of selection, but the cause of the bias differs between species. These results demonstrate that strong context-dependent forces, both selective and mutational, operate on synonymous codon usage but that these differ considerably between genomes. Received: 6 May 1999 / Accepted: 29 October 1999  相似文献   

20.
Can genome analysis tell us about the lifestyle of an organism? We ask this question considering a thorough cross comparison of thermophilic and mesophilic genomes, since presently the number of available genomes is enough to ensure statistical significance of the results. We analyze, by means of principal component analysis (PCA), the codon composition of a database comprising 116 genomes, selected so as to include one species for each genus and show that a cross genomic approach can allow the extraction of common determinants of thermostability at the genome level. The results of our analysis indicate that all the known features of thermostability can be found in the 64 component loadings of the second principal axis of PCA. By this, we develop an index of thermostability whose discriminative power between mesophiles and thermophiles scores with 98% accuracy at the genome level and with 95% accuracy at the protein sequence level. We also prove that these results are not due to phylogenetic differences between archaea and bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号