首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vacuolar H(+)-ATPases (or V-ATPases) are a family of ATP-dependent proton pumps responsible for acidification of intracellular compartments and, in certain cases, proton transport across the plasma membrane of eukaryotic cells. They are multisubunit complexes composed of a peripheral domain (V(1)) responsible for ATP hydrolysis and an integral domain (V(0)) responsible for proton translocation. Based upon their structural similarity to the F(1)F(0) ATP synthases, the V-ATPases are thought to operate by a rotary mechanism in which ATP hydrolysis in V(1) drives rotation of a ring of proteolipid subunits in V(0). This review is focused on the current structural knowledge of the V-ATPases as it relates to the mechanism of ATP-driven proton translocation.  相似文献   

2.
The vacuolar (H(+))-ATPases (or V-ATPases) are ATP-dependent proton pumps that function to acidify intracellular compartments in eukaryotic cells. This acidification is essential for such processes as receptor-mediated endocytosis, intracellular targeting of lysosomal enzymes, protein processing and degradation and the coupled transport of small molecules. V-ATPases in the plasma membrane of specialized cells also function in such processes as renal acidification, bone resorption and pH homeostasis. Work from our laboratory has focused on the V-ATPases from clathrin-coated vesicles and yeast vacuoles.Structurally, the V-ATPases are composed of two domains: a peripheral complex (V(1)) composed of eight different subunits (A-H) that is responsible for ATP hydrolysis and an integral complex (V(0)) composed of five different subunits (a, d, c, c' and c") that is responsible for proton translocation. Electron microscopy has revealed the presence of multiple stalks connecting the V(1) and V(0) domains, and crosslinking has been used to address the arrangement of subunits in the complex. Site-directed mutagenesis has been employed to identify residues involved in ATP hydrolysis and proton translocation and to study the topology of the 100 kDa a subunit. This subunit has been shown to control intracellular targeting of the V-ATPase and to influence reversible dissociation and coupling of proton transport and ATP hydrolysis.  相似文献   

3.
Arrangement of subunits in the proteolipid ring of the V-ATPase   总被引:1,自引:0,他引:1  
The vacuolar ATPases (V-ATPases) are multisubunit complexes containing two domains. The V(1) domain (subunits A-H) is peripheral and carries out ATP hydrolysis. The V(0) domain (subunits a, c, c', c', d, and e) is membrane-integral and carries out proton transport. In yeast, there are three proteolipid subunits as follows: subunit c (Vma3p), subunit c' (Vma11p), and subunit c' (Vma16p). The proteolipid subunits form a six-membered ring containing single copies of subunits c' and c' and four copies of subunit c. To determine the possible arrangements of proteolipid subunits in V(0) that give rise to a functional V-ATPase complex, a series of gene fusions was constructed to constrain the arrangement of pairs of subunits in the ring. Fusions containing c' employed a truncated version of this protein lacking the first putative transmembrane helix (which we have shown previously to be functional), to ensure that the N and C termini of all subunits were located on the luminal side of the membrane. Fusion constructs were expressed in strains disrupted in c', c', or both but containing a wild copy of c to ensure the presence of the required number of copies of subunit c. The c-c'(DeltaTM1), c'(DeltaTM1)-c', and c'-c constructs all complemented the vma(-) phenotype and gave rise to complexes possessing greater than 25% of wild-type levels of activity. By contrast, neither the c-c', the c'-c'(DeltaTM1), nor the c'(DeltaTM1)-c constructs complemented the vma(-) phenotype. These results suggest that functionally assembled V-ATPase complexes contain the proteolipid subunits arranged in a unique order in the ring.  相似文献   

4.
Solubilization of mineralized bone by osteoclasts is largely dependent on the acidification of the extracellular resorption lacuna driven by the vacuolar (H+)-ATPases (V-ATPases) polarized within the ruffled border membranes. V-ATPases consist of two functionally and structurally distinct domains, V(1) and V(0). The peripheral cytoplasmically oriented V(1) domain drives ATP hydrolysis, which necessitates the translocation of protons across the integral membrane bound V(0) domain. Here, we demonstrate that an accessory subunit, Ac45, interacts with the V(0) domain and contributes to the vacuolar type proton pump-mediated function in osteoclasts. Consistent with its role in intracellular acidification, Ac45 was found to be localized to the ruffled border region of polarized resorbing osteoclasts and enriched in pH-dependent endosomal compartments that polarized to the ruffled border region of actively resorbing osteoclasts. Interestingly, truncation of the 26-amino acid residue cytoplasmic tail of Ac45, which encodes an autonomous internalization signal, was found to impair bone resorption in vitro. Furthermore, biochemical analysis revealed that although both wild type Ac45 and mutant were capable of associating with subunits a3, c, c', and d, deletion of the cytoplasmic tail altered its binding proximity with a3, c', and d. In all, our data suggest that the cytoplasmic terminus of Ac45 contains elements necessary for its proper interaction with V(0) domain and efficient osteoclastic bone resorption.  相似文献   

5.
The vacuolar (H+)-ATPases (V-ATPases) are ATP-dependent proton pumps that operate by a rotary mechanism in which ATP hydrolysis drives rotation of a ring of proteolipid subunits relative to subunit a within the integral V(0) domain. In vivo dissociation of the V-ATPase (an important regulatory mechanism) generates a V(0) domain that does not passively conduct protons. EM analysis indicates that the N-terminal domain of subunit a approaches the rotary subunits in free V(0), suggesting a possible mechanism of silencing passive proton transport. To test the hypothesis that the N-terminal domain inhibits passive proton flux by preventing rotation of the proteolipid ring in free V(0), factor Xa cleavage sites were introduced between the N- and C-terminal domains of subunit a (the Vph1p isoform in yeast) to allow its removal in vitro after isolation of vacuolar membranes. The mutant Vph1p gave rise to a partially uncoupled V-ATPase complex. Cleavage with factor Xa led to further loss of coupling of proton transport and ATP hydrolysis. Removal of the N-terminal domain by cleavage with factor Xa and treatment with KNO3 and MgATP did not, however, lead to an increase in passive proton conductance by free V(0), suggesting that removal of the N-terminal domain is not sufficient to facilitate passive proton conductance through V(0). Photoactivated cross-linking using the cysteine reagent maleimido benzophenone and single cysteine mutants of subunit a demonstrated the proximity of specific sites within the N-terminal domain and subunits E and G of the peripheral stalk. These results suggest that a localized region of the N-terminal domain (residues 347-369) is important in anchoring the peripheral stator in V1V0.  相似文献   

6.
The vacuolar (H+)-ATPase: subunit arrangement and in vivo regulation   总被引:1,自引:0,他引:1  
The V-ATPases are responsible for acidification of intracellular compartments and proton transport across the plasma membrane. They play an important role in both normal processes, such as membrane traffic, protein degradation, urinary acidification, and bone resorption, as well as various disease processes, such as viral infection, toxin killing, osteoporosis, and tumor metastasis. V-ATPases contain a peripheral domain (V1) that carries out ATP hydrolysis and an integral domain (V0) responsible for proton transport. V-ATPases operate by a rotary mechanism involving both a central rotary stalk and a peripheral stalk that serves as a stator. Cysteine-mediated cross-linking has been used to localize subunits within the V-ATPase complex and to investigate the helical interactions between subunits within the integral V0 domain. An essential property of the V-ATPases is the ability to regulate their activity in vivo. An important mechanism of regulating V-ATPase activity is reversible dissociation of the complex into its component V1 and V0 domains. The dependence of reversible dissociation on subunit isoforms and cellular environment has been investigated. Qi and Wang contributed equally to this work.  相似文献   

7.
The vacuolar (H+)-ATPases (or V-ATPases) are ATP-dependent proton pumps that function both to acidify intracellular compartments and to transport protons across the plasma membrane. Acidification of intracellular compartments is important for such processes as receptor-mediated endocytosis, intracellular trafficking, protein processing, and coupled transport. Plasma membrane V-ATPases function in renal acidification, bone resorption, pH homeostasis, and, possibly, tumor metastasis. This review will focus on work from our laboratories on the V-ATPases from mammalian clathrin-coated vesicles and from yeast. The V-ATPases are composed of two domains. The peripheral V1 domain has a molecular mass of 640 kDa and is composed of eight different subunits (subunits A–H) of molecular mass 70–13 kDa. The integral V0 domain, which has a molecular mass of 260 kDa, is composed of five different subunits (subunits a, d, c, c', and c) of molecular mass 100–17 kDa. The V1 domain is responsible for ATP hydrolysis whereas the V0 domain is responsible for proton transport. Using a variety of techniques, including cysteine-mediated crosslinking and electron microscopy, we have defined both the overall shape of the V-ATPase and the V0 domain as well as the location of various subunits within the complex. We have employed site-directed and random mutagenesis to identify subunits and residues involved in nucleotide binding and hydrolysis, proton translocation, and the coupling of these two processes. We have also investigated the mechanism of regulation of the V-ATPase by reversible dissociation and the role of different subunits in this process.  相似文献   

8.
Function, structure and regulation of the vacuolar (H+)-ATPases   总被引:2,自引:0,他引:2  
The vacuolar ATPases (or V-ATPases) are ATP-driven proton pumps that function to both acidify intracellular compartments and to transport protons across the plasma membrane. Intracellular V-ATPases function in such normal cellular processes as receptor-mediated endocytosis, intracellular membrane traffic, prohormone processing, protein degradation and neurotransmitter uptake, as well as in disease processes, including infection by influenza and other viruses and killing of cells by anthrax and diphtheria toxin. Plasma membrane V-ATPases are important in such physiological processes as urinary acidification, bone resorption and sperm maturation as well as in human diseases, including osteopetrosis, renal tubular acidosis and tumor metastasis. V-ATPases are large multi-subunit complexes composed of a peripheral domain (V1) responsible for hydrolysis of ATP and an integral domain (V0) that carries out proton transport. Proton transport is coupled to ATP hydrolysis by a rotary mechanism. V-ATPase activity is regulated in vivo using a number of mechanisms, including reversible dissociation of the V1 and V0 domains, changes in coupling efficiency of proton transport and ATP hydrolysis and changes in pump density through reversible fusion of V-ATPase containing vesicles. V-ATPases are emerging as potential drug targets in treating a number of human diseases including osteoporosis and cancer.  相似文献   

9.
The V-ATPases are a family of ATP-dependent proton pumps responsible foracidification of intracellular compartments in eukaryotic cells. This reviewfocuses on the the V-ATPases from clathrin-coated vesicles and yeastvacuoles. The V-ATPase of clathrin-coated vesicles is a precursor to thatfound in endosomes and synaptic vesicles, which function in receptorrecycling, intracellular membrane traffic, and neurotransmitter uptake. Theyeast vacuolar ATPase functions to acidify the central vacuole and to drivevarious coupled transport processes across the vacuolar membrane. TheV-ATPases are composed of two functional domains. The V1 domain isa 570-kDa peripheral complex composed of eight subunits of molecular weight70—14 kDa (subunits A—H) that is responsible for ATP hydrolysis.The V0 domain is a 260-kDa integral complex composed of fivesubunits of molecular weight 100—17 kDa (subunits a, d, c, c8 and c9)that is responsible for proton translocation. Using chemical modification andsite-directed mutagenesis, we have begun to identify residues that play arole in ATP hydrolysis and proton transport by the V-ATPases. A centralquestion in the V-ATPase field is the mechanism by which cells regulatevacuolar acidification. Several mechanisms are described that may play a rolein controlling vacuolar acidification in vivo. One mechanisminvolves disulfide bond formation between cysteine residues located at thecatalytic nucleotide binding site on the 70-kDa A subunit, leading toreversible inhibition of V-ATPase activity. Other mechanisms includereversible assembly and dissociation of V1 and V0domains, changes in coupling efficiency of proton transport and ATPhydrolysis, and regulation of the activity of intracellular chloride channelsrequired for vacuolar acidification.  相似文献   

10.
The vacuolar (H+)-ATPases (or V-ATPases) function to acidify intracellular compartments in eukaryotic cells, playing an important role in such processes as receptor-mediated endocytosis, intracellular membrane traffic, protein degradation and coupled transport. V-ATPases in the plasma membrane of specialized cells also function in renal acidification, bone resorption and cytosolic pH maintenance. The V-ATPases are composed of two domains. The V1 domain is a 570-kDa peripheral complex composed of 8 subunits (subunits A–H) of molecular weight 70–13 kDa which is responsible for ATP hydrolysis. The V0 domain is a 260-kDa integral complex composed of 5 subunits (subunits a–d) which is responsible for proton translocation. The V-ATPases are structurally related to the F-ATPases which function in ATP synthesis. Biochemical and mutational studies have begun to reveal the function of individual subunits and residues in V-ATPase activity. A central question in this field is the mechanism of regulation of vacuolar acidification in vivo. Evidence has been obtained suggesting a number of possible mechanisms of regulating V-ATPase activity, including reversible dissociation of V1 and V0 domains, disulfide bond formation at the catalytic site and differential targeting of V-ATPases. Control of anion conductance may also function to regulate vacuolar pH. Because of the diversity of functions of V-ATPases, cells most likely employ multiple mechanisms for controlling their activity.  相似文献   

11.
The V-ATPases are ATP-dependent proton pumps present in both intracellular compartments and the plasma membrane. They function in such processes as membrane traffic, protein degradation, renal acidification, bone resorption and tumor metastasis. The V-ATPases are composed of a peripheral V1 domain responsible for ATP hydrolysis and an integral V0 domain that carries out proton transport. Our recent work has focused on structural analysis of the V-ATPase complex using both cysteine-mediated cross-linking and electron microscopy. For cross-linking studies, unique cysteine residues were introduced into structurally defined sites within the B and C subunits and used as points of attachment for the photoactivated cross-linking reagent MBP. Disulfide mediated cross-linking has also been used to define helical contact surfaces between subunits within the integral V0 domain. With respect to regulation of V-ATPase activity, we have investigated the role that intracellular environment, luminal pH and a unique domain of the catalytic A subunit play in controlling reversible dissociation in vivo.  相似文献   

12.
The vacuolar (H+) ATPases (V-ATPases) are large, multimeric proton pumps that, like the related family of F1F0 ATP synthases, employ a rotary mechanism. ATP hydrolysis by the peripheral V1 domain drives rotation of a rotary complex (the rotor) relative to the stationary part of the enzyme (the stator), leading to proton translocation through the integral V0 domain. One mechanism of regulating V-ATPase activity in vivo involves reversible dissociation of the V1 and V0 domains. Unlike the corresponding domains in F1F0, the dissociated V1 domain does not hydrolyze ATP, and the free V0 domain does not passively conduct protons. These properties are important to avoid generation of an uncoupled ATPase activity or an unregulated proton conductance upon dissociation of the complex in vivo. Previous results (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761-21767) showed that subunit H (part of the stator) inhibits ATP hydrolysis by free V1. To test the hypothesis that subunit H accomplishes this by bridging rotor and stator in free V1, cysteine-mediated cross-linking studies were performed. Unique cysteine residues were introduced over the surface of subunit H from yeast by site-directed mutagenesis and used as the site of attachment of the photo-activated cross-linking reagent maleimido benzophenone. After UV-activated cross-linking, cross-linked products were identified by Western blot using subunit-specific antibodies. The results indicate that the subunit H mutant S381C shows cross-linking between subunit H and subunit F (a rotor subunit) in the free V1 domain but not in the intact V1V0 complex. These results indicate that subunits H and F are proximal in free V1, supporting the hypothesis that subunit H inhibits free V1 by bridging the rotary and stator domains.  相似文献   

13.
Ma B  Xiang Y  An L 《Cellular signalling》2011,23(8):1244-1256
Vacuolar-type H+-ATPases (V-ATPases) is a large multi-protein complex containing at least 14 different subunits, in which subunits A, B, C, D, E, F, G, and H compose the peripheral 500-kDa V1 responsible for ATP hydrolysis, and subunits a, c, c′, c″, and d assembly the 250-kDa membrane-integral V0 harboring the rotary mechanism to transport protons across the membrane. The assembly of V-ATPases requires the presence of all V1 and V0 subunits, in which the V1 must be completely assembled prior to association with the V0, accordingly the V0 failing to assemble cannot provide a membrane anchor for the V1, thereby prohibiting membrane association of the V-ATPase subunits. The V-ATPase mediates acidification of intracellular compartments and regulates diverse critical physiological processes of cell for functions of its numerous functional subunits. The core catalytic mechanism of the V-ATPase is a rotational catalytic mechanism. The V-ATPase holoenzyme activity is regulated by the reversible assembly/disassembly of the V1 and V0, the targeting and recycling of V-ATPase-containing vesicles to and from the plasma membrane, the coupling ratio between ATP hydrolysis and proton pumping, ATP, Ca2+, and its inhibitors and activators.  相似文献   

14.
V-ATPases的功能及其抑制剂研究进展   总被引:2,自引:0,他引:2  
V-ATPases作为一类酶,在真核细胞中广泛存在。V-ATPases是一个由多个亚基组成的复合物,主要有两个结构域,分别是位于外周的V1结构域和跨膜的V0结构域。V1结构域可以通过水解ATP供能;而V0结构域是质子的通道。它们发挥作用主要是通过水解ATP供能,泵运H+进入囊泡腔中或泵H+出细胞外。V-ATPases定位于细胞器膜及某些特殊细胞的细胞质膜,参与骨吸收、肿瘤的侵袭及耐药等生理及病理过程,因而V-ATPases是治疗骨质疏松、糖尿病及肿瘤等人类疾病的候选分子靶标。目前有许多研究致力于发现新的潜在的特异的V-ATPase抑制剂。  相似文献   

15.
V-ATPases are membrane protein complexes that pump protons in the lumen of various subcellular compartments at the expense of ATP. Proton pumping is done by a rotary mechanism that requires a static connection between the membrane pumping domain (V(0)) and the extrinsic catalytic head (V(1)). This static connection is composed of several known subunits of the V-ATPase, but their location and topological relationships are still a matter of controversy. Here, we propose a model for the V-ATPase of Neurospora crassa on the basis of single-particle analysis by electron microscopy. Comparison of the resulting map to that of the A-ATPase from Thermus thermophilus allows the positioning of two subunits in the static connecting region that are unique to eukaryotic V-ATPases (C and H). These two subunits seem to be located on opposite sides of a semicircular arrangement of the peripheral connecting elements, suggesting a role in stabilizing the stator in V-ATPases.  相似文献   

16.
The vacuolar (H+)-ATPase (or V-ATPase) is an ATP-dependent proton pump which couples the energy released upon ATP hydrolysis to rotational movement of a ring of proteolipid subunits (c, c', and c') relative to the integral subunit a. The proteolipid subunits each contain a single buried acidic residue that is essential for proton transport, with this residue located in TM4 of subunits c and c' and TM2 of subunit c'. Subunit c' contains an additional buried acidic residue in TM4 that is not required for proton transport. The buried acidic residues of the proteolipid subunits are believed to interact with an essential arginine residue (Arg735) in TM7 of subunit a during proton translocation. We have previously shown that the helical face of TM7 of subunit a containing Arg735 interacts with the helical face of TM4 of subunit c' bordered by Glu145 and Leu147 (Kawasaki-Nishi et al. (2003) J. Biol. Chem. 278, 41908-41913). We have now analyzed interaction of subunits a and c' using disulfide-mediated cross-linking. The results indicate that the helical face of TM7 of subunit a containing Arg735 interacts with the helical face of TM2 of subunit c' centered on Ile105, with the essential glutamic acid residue (Glu108) located near the opposite border of this face compared with TM4 of subunit c'. By contrast, TM4 of subunit c' does not form strong cross-links with TM7 of subunit a, suggesting that these transmembrane segments are not normally in close proximity. These results are discussed in terms of a model involving rotation of interacting helices in subunit a and the proteolipid subunits relative to each other.  相似文献   

17.
Vacuolar H(+)-ATPases (V-ATPases) are highly conserved proton pumps that couple hydrolysis of cytosolic ATP to proton transport out of the cytosol. Although it is generally believed that V-ATPases transport protons by a rotary catalytic mechanism analogous to that used by F(1)F(0)-ATPases, the structure and subunit composition of the central or peripheral stalk of the multisubunit complex are not well understood. We searched for proteins that bind to the E subunit of V-ATPase using the yeast two-hybrid assay and identified the H subunit as an interacting partner. Physical association between the E and H subunits of V-ATPase was confirmed in vitro by precipitation assays. Deletion mapping analysis revealed that a 78-amino acid fragment at the amino terminus of the E subunit was sufficient for binding to the H subunit. Expression of the amino-terminal fragments of the E subunits from human and yeast as dominant-negative mutants resulted in dramatic decreases in bafilomycin A(1)-sensitive ATP hydrolysis and proton transport activities of V-ATPase. Our data demonstrate the physiological significance of the interaction between the E and H subunits of V-ATPase and extend previous studies on the arrangement of subunits on the peripheral stalk of V-ATPase.  相似文献   

18.
Whyteside G  Gibson L  Scott M  Finbow ME 《FEBS letters》2005,579(14):2981-2985
The V-ATPases are ubiquitous enzymes of eukaryotes. They are involved in many cellular processes via their ability to pump protons across biological membranes. They are two domain enzymes comprising an ATP hydrolysing sector and a proton translocating sector. Both sectors are functionally coupled. The proton tanslocating sector, V0, is comprised of five polypeptides in an as yet undetermined stoichiometry. In V0 three homologous proteins, subunit c, c' and c' have previously been reported to be essential for assembly of the enzyme. However, we report that subunit c' is not essential for assembly but is for functional coupling of the enzyme.  相似文献   

19.
Molecular characterization of the yeast vacuolar H+-ATPase proton pore   总被引:1,自引:0,他引:1  
The Saccharomyces cerevisiae vacuolar ATPase (V-ATPase) is composed of at least 13 polypeptides organized into two distinct domains, V(1) and V(0), that are structurally and mechanistically similar to the F(1)-F(0) domains of the F-type ATP synthases. The peripheral V(1) domain is responsible for ATP hydrolysis and is coupled to the mechanism of proton translocation. The integral V(0) domain is responsible for the translocation of protons across the membrane and is composed of five different polypeptides. Unlike the F(0) domain of the F-type ATP synthase, which contains 12 copies of a single 8-kDa proteolipid, the V-ATPase V(0) domain contains three proteolipid species, Vma3p, Vma11p, and Vma16p, with each proteolipid contributing to the mechanism of proton translocation (Hirata, R., Graham, L. A., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1997) J. Biol. Chem. 272, 4795-4803). Experiments with hemagglutinin- and c-Myc epitope-tagged copies of the proteolipids revealed that each V(0) complex contains all three species of proteolipid with only one copy each of Vma11p and Vma16p but multiple copies of Vma3p. Since the proteolipids of the V(0) complex are predicted to possess four membrane-spanning alpha-helices, twice as many as a single F-ATPase proteolipid subunit, only six V-ATPase proteolipids would be required to form a hexameric ring-like structure similar to the F(0) domain. Therefore, each V(0) complex will likely be composed of four copies of the Vma3p proteolipid in addition to Vma11p and Vma16p. Structural differences within the membrane-spanning domains of both V(0) and F(0) may account for the unique properties of the ATP-hydrolyzing V-ATPase compared with the ATP-generating F-type ATP synthase.  相似文献   

20.
Vacuolar-type H+-translocating ATPases (V-ATPases or V-pumps) are complex proteins containing multiple subunits and are organized into two functional domains: a peripheral catalytic sector V1 and a membranous proton channel V0. The functional coupling of ATP hydrolysis activity to proton transport in V-pumps requires a regulatory component known as subunit H (SFD) as has been shown both in vivo and in vitro (Ho, M. N., Hirata, R., Umemoto, N., Ohya, Y., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1993) J. Biol. Chem. 268, 18286-18292; Xie, X. S., Crider, B. P., Ma, Y. M., and Stone, D. K. (1994) J. Biol. Chem. 269, 25809-25815). Ca2+ is thought to uncouple V-pumps because it is found to support ATP hydrolysis but not proton transport, while Mg2+ supports both activities. The direct effect of phospholipids on the coupling of V-ATPases has not been reported, likely due to the fact that phospholipids are constituents of biological membranes. We now report that Ca2+-induced uncoupling of the bovine brain V-ATPase can be reversed by imposition of a favorable membrane potential. Furthermore we report a simple "membrane-free" assay system using the V0 proton channel-specific inhibitor bafilomycin as a probe to detect the coupling of V-ATPase under certain conditions. With this system, we have characterized the functional effect of subunit H, divalent cations, and phospholipids on bovine brain V-ATPase and have found that each of these three factors plays a critical role in the functional coupling of the V-pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号