首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular dynamics (MD) simulations of the N-terminal region of saposin C, containing amino acid residues 4-20 (saposin C4-20), were performed over 2.5 ns in 1,2-dioleoyl-sn-glycero-3-phosphoserine (DOPS) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) monolayers. The simulations revealed several strong specific interactions of lysine 13 (Lys13) and lysine 17 (Lys17) in saposin C4-20 with the anionic phospholipids, which are required for membrane anchoring of the peptide. Membrane anchoring of saposin C4-20 facilitates saposin C-induced liposomal membrane fusion. Substitutions of Lys13 or Lys17 with alanine or glutamic acid led to a substantial loss of saposin C's fusogenicity. However, arginine replacement of Lys13 or Lys17 caused a partial loss of saposin C's fusogenic activity. The membrane anchoring of saposin C was altered in the presence of 0.4 M sodium chloride. Differential salt effects on Lys-mutant saposin Cs were observed using Trp fluorescence analysis. Low salt concentration had a more significant impact on Lys-mutant saposin C with a negatively charged amino acid residue replacement than those mutants with a positively charged or neutral residue replacement. These results indicate that positively charged amino acids at positions 13 and 17 are required for the fusogenic function of saposin C. In addition, the side-chain structure of lysine is crucial to the precise membrane anchoring which is necessary for the total fusion activity of saposin C. The MD simulations and vesicle size measurements of lysine-mutant saposins confirm the importance of the two lysine residues in saposin C4-20 for saposin C-induced fusion of negatively charged phospholipid membranes.  相似文献   

2.
Saposin C is a small Trp-free, multifunctional glycoprotein that enhances the hydrolytic activity of acid beta-glucosidase in lysosomes. Saposin C's functions have been shown to include neuritogenic/neuroprotection effects and membrane fusion induction. Here, the mechanism and kinetics of saposin C's fusogenic activity were evaluated by fluorescence spectroscopic methods including dequenching, fluorescence resonance energy transfer, and stopped-flow analyses. Trp or dansyl groups were introduced as fluorescence reporters into selected sites of saposin C to serve as topological probes for protein-protein and protein-membrane interactions. Saposin C induction of liposomal vesicle enlargement was dependent upon anionic phospholipids and acidic pH. The initial fusion burst was completed in the timeframe of a few seconds to minutes and was dependent upon the unsaturated anionic phospholipid content. Two events were associated with saposin C-membrane interaction: membrane insertion of the saposin C terminal helices and reorientation of its central helical region. The latter conformational change likely exposed a binding site for saposins anchored on vesicles. Addition of selected saposin C peptides prior to intact saposin C in reaction mixtures abolished the liposomal fusion. These results indicated that saposin-membrane and saposin-saposin interactions are needed for the fusion process.  相似文献   

3.
Inherited defects in the RDS gene cause a multiplicity of progressive retinal diseases in humans. The gene product, peripherin/rds (P/rds), is a member of the tetraspanin protein family required for normal vertebrate photoreceptor outer segment (OS) architecture. Although its molecular function remains uncertain, P/rds has been suggested to catalyze membrane fusion events required for the OS renewal process. This study investigates the importance of two charged residues within a predicted C-terminal helical region for protein biosynthesis, localization, and interaction with model membranes. Targeted mutagenesis was utilized to neutralize charges at Glu(321) and Lys(324) individually and in combination to generate three mutant variants. Studies were conducted on variants expressed as 1) full-length P/rds in COS-1 cells, 2) glutathione S-transferase fusion proteins in Escherichia coli, and 3) membrane-associated green fluorescent protein fusion proteins in transgenic Xenopus laevis. None of the mutations affected biosynthesis of full-length P/rds in COS-1 cells as assessed by Western blotting, sedimentation velocity, and immunofluorescence microscopy. Although all mutations reside within a recently identified localization signal, none altered the ability of this region to direct OS targeting in transgenic X. laevis retinas. In contrast, individual or simultaneous neutralization of the charged amino acids Glu(321) and Lys(324) abolished the ability of the C-terminal domain to promote model membrane fusion as assayed by lipid mixing. These results demonstrate that, although overlapping, C-terminal determinants responsible for OS targeting and fusogenicity are separable and that fusogenic activity has been uncoupled from other protein properties. The observation that subunit assembly and OS targeting can both proceed normally in the absence of fusogenic activity suggests that properly assembled and targeted yet functionally altered proteins could potentially generate pathogenic effects within the vertebrate photoreceptor.  相似文献   

4.
We studied fusion of negatively charged artificial phospholipid vesicles (liposomes) in the presence of two electrophoretic fractions (molecular mass of about 90 and 50 kdalton) of latrotoxin-like (L) protein. It was shown that both fractions are capable of causing liposome fusion in acidic media. Treatment of native preparations of L protein with NEM depressed their fusogenic activity. Some common characteristics of L protein and well-known fusogenic proteins allow us to account for the possibility of participation of L protein in fusion of the membranes in the cell.  相似文献   

5.
Saposin C is a sphingolipid activator protein of 8.5 kDa that activates lysosomal glucocerebrosidase. Previously, we synthesized and characterized a synthetic full-length human saposin C protein that displays 85% of the activity of the native saposin C. In this study we use shorter synthetic peptides derived from the saposin C sequence to map binding and activation sites. By determining the activity and kinetic constant (Kact) values of these peptides, we have identified two functional domains, each comprising a binding site adjacent to or partially overlapping with an activation site. Domains 1 and 2 are located within amino acid positions 6-34 and 41-60, respectively. The activation sites span residues 27-34 and 41-49, whereas binding sites encompass residues 6-27 and 45-60. Peptides containing the sequences of either domain displayed 90% of the activity of the full-length synthetic saposin C. Domain 2, however, bound to glucocerebrosidase by at least an order of magnitude more strongly than domain 1. Binding sites within these domains contain sequences that are excellent candidates for forming amphipathic helical structures. Competition assays demonstrated that the binding of one domain to glucocerebrosidase prevents binding of the other domain, and that saposin A and saposin C bind to the same sites on glucocerebrosidase. A model predicting a saposin C:glucocerebrosidase complex with a stoichiometry of 4:2, respectively, is presented.  相似文献   

6.
de Alba E  Weiler S  Tjandra N 《Biochemistry》2003,42(50):14729-14740
Saposin C binds to membranes to activate lipid degradation in lysosomes. To get insights into saposin C's function, we have determined its three-dimensional structure by NMR and investigated its interaction with phospholipid vesicles. Saposin C adopts the saposin-fold common to other members of the family. In contrast, the electrostatic surface revealed by the NMR structure is remarkably different. We suggest that charge distribution in the protein surface can modulate membrane interaction leading to the functional diversity of this family. We find that the binding of saposin C to phospholipid vesicles is a pH-controlled reversible process. The pH dependence of this interaction is sigmoidal, with an apparent pK(a) for binding close to 5.3. The pK(a) values of many solvent-exposed Glu residues are anomalously high and close to the binding pK(a). Our NMR data are consistent with the absence of a conformational change prior to membrane binding. All this information suggests that the negatively charged electrostatic surface of saposin C needs to be partially neutralized to trigger membrane binding. We have studied the membrane-binding behavior of a mutant of saposin C designed to decrease the negative charge of the electrostatic surface. The results support our conclusion on the importance of protein surface neutralization in binding. Since saposin C is a lysosomal protein and pH gradients occur in lysosomes, we propose that lipid degradation in the lysosome could be switched on and off by saposin C's reversible binding to membranes.  相似文献   

7.
Saposins are small, heat-stable glycoprotein activators of lysosomal glycosphingolipid hydrolases that derive from a single precursor, prosaposin, by proteolytic cleavage. Three of these saposins (B, C, and D) share common structural features including a lack of tryptophan, a single glycosylation sequence, the presence of three conserved disulfide bonds, and a common multiamphipathic helical bundle motif. Saposin A contains an additional glycosylation site and a single tryptophan. The oligosaccharides on saposins are not required for in vitro activation functions. Saposins A and C were produced in Escherichia coli to contain single tryptophans at various locations to serve as intrinsic fluorescence reporters, i.e. as topological probes, for interaction with phospholipid membranes. Maximum emission shifts, aqueous and solid quenching, and resonance energy transfer were quantified by fluorescence spectroscopy. Amphipathic helices at the amino- and carboxyl termini of saposins A and C were shown to insert into the lipid bilayer to about five carbon bond lengths. In comparison, the middle region of saposins A or C were either embedded in the bilayer or solvent-exposed, respectively. Conformational changes of saposin C induced by phosphatidylserine interaction suggested the reorientation of functional helical domains. Differential interaction models are proposed for the membrane-bound saposins A and C. By site-directed mutagenesis of saposin A and C, their membrane topological structures were correlated with their activation effects on acid beta-glucosidase. These findings show that proper orientation of the middle segment of saposin C to the outside of the membrane surface is critical for its specific and multivalent interaction with acid beta-glucosidase. Such membrane interactions and orientations of the saposins determine the proximity of their activation and/or binding sites to lysosomal hydrolases or lipoid substrates.  相似文献   

8.
Many plant aspartic proteases contain an additional sequence of ∼100 amino acids termed the plant-specific insert, which is involved in host defense and vacuolar targeting. Similar to all saposin-like proteins, the plant-specific insert functions via protein-membrane interactions; however, the structural basis for such interactions has not been studied, and the nature of plant-specific insert-mediated membrane disruption has not been characterized. In the present study, the crystal structure of the saposin-like domain of potato aspartic protease was resolved at a resolution of 1.9 Å, revealing an open V-shaped configuration similar to the open structure of human saposin C. Notably, vesicle disruption activity followed Michaelis-Menten-like kinetics, a finding not previously reported for saposin-like proteins including plant-specific inserts. Circular dichroism data suggested that secondary structure was pH-dependent in a fashion similar to influenza A hemagglutinin fusion peptide. Membrane effects characterized by atomic force microscopy and light scattering indicated bilayer solubilization as well as fusogenic activity. Taken together, the present study is the first report to elucidate the membrane interaction mechanism of plant saposin-like domains whereby pH-dependent membrane interactions resulted in bilayer fusogenic activity that probably arose from a viral type pH-dependent helix-kink-helix motif at the plant-specific insert N terminus.  相似文献   

9.
Saposin D is generated together with three similar proteins, saposins A, B and C, from a common precursor, called prosaposin, in acidic organelles such as late endosomes and lysosomes. Although saposin D has been reported to stimulate the enzymatic hydrolysis of sphingomyelin and ceramide, its physiological role has not yet been clearly established. In the present study we examined structural and membrane-binding properties of saposin D. At acidic pH, saposin D showed a great affinity for phospholipid membranes containing an anionic phospholipid such as phosphatidylserine or phosphatidic acid. The binding of saposin D caused destabilization of the lipid surface and, conversely, the association with the membrane markedly affected the fluorescence properties of saposin D. The presence of phosphatidylserine-containing vesicles greatly enhanced the intrinsic tyrosine fluorescence of saposin D, which contains tyrosines but not tryptophan residues. The structural properties of saposin D were investigated in detail using advanced MS analysis. It was found that the main form of saposin D consists of 80 amino acid residues and that the six cysteine residues are linked in the following order: Cys5-Cys78, Cys8-Cys72 and Cys36-Cys47. The disulfide pattern of saposin D is identical with that previously established for two other saposins, B and C, which also exhibit a strong affinity for lipids. The common disulfide structure probably has an important role in the interaction of these proteins with membranes. The analysis of the sugar moiety of saposin D revealed that the single N-glycosylation site present in the molecule is mainly modified by high-mannose-type structures varying from two to six hexose residues. Deglycosylation had no effect on the interaction of saposin D with phospholipid membranes, indicating that the glycosylation site is not related to the lipid-binding site. The association of saposin D with membranes was highly dependent on the composition of the bilayer. Neither ceramide nor sphingomyelin, sphingolipids whose hydrolysis is favoured by saposin D, promoted its binding, while the presence of an acidic phospholipid such as phosphatidylserine or phosphatidic acid greatly favoured the interaction of saposin D with vesicles at low pH. These results suggest that, in the acidic organelles where saposins are localized, anionic phospholipids may be determinants of the saposin D topology and, conversely, saposin D may affect the lipid organization of anionic phospholipid-containing membranes.  相似文献   

10.
The colicin A polypeptide chain (592 amino acid residues) contains three domains which are linearly organized and participate in the sequential steps involved in colicin action. We have compared the penetrating ability in phospholipid monolayers and the ability to promote vesicle fusion at acidic pH of colicin A and of protein derivatives containing various combinations of its domains. The NH2-terminal domain (171 amino acid residues), required for translocation across the outer membrane, has little affinity for dilauroylphosphatidylglycerol (DLPG) monolayers at all pHs tested. The central domain has a pH-dependent affinity, although lower than that of the entire colicin A. The COOH-terminal domain contains a high-affinity lipid binding site, but in addition an electrostatic interaction is required as a first step in the process of penetration into negatively charged DLPG films. In contrast to the constructs containing the ionophoric domain, the NH2-terminal domain alone has no fusogenic activity for liposomes. These results are discussed with regard to the mechanism of entry and action of colicin A in sensitive cells. Our results suggest the existence of a pH-dependent interaction between the receptor binding domain (amino acid residues 172-388) and the pore-forming domain of colicin A (amino acid residues 389-592).  相似文献   

11.
K Klappe  J Wilschut  S Nir  D Hoekstra 《Biochemistry》1986,25(25):8252-8260
A kinetic and quantitative characterization of the fusion process between Sendai virus and phospholipid vesicles is presented. Membrane fusion was monitored in a direct and continuous manner by employing an assay which relies on the relief of fluorescence self-quenching of the probe octadecylrhodamine B chloride which was located in the viral membrane. Viral fusion activity was strongly dependent on the vesicle lipid composition and was most efficient with vesicles solely consisting of acidic phospholipids, particularly cardiolipin (CL). This result implies that the fusion of viruses with liposomes does not display an absolute requirement for specific membrane receptors. Incorporation of phosphatidylcholine (PC), rather than phosphatidylethanolamine (PE), into CL bilayers strongly inhibited fusion, suggesting that repulsive hydration forces interfere with the close approach of viral and target membrane. Virus-liposome fusion products were capable of fusing with liposomes, but not with virus. In contrast to fusion with erythrocyte membranes, fusion between virus and acidic phospholipid vesicles was triggered immediately, did not strictly depend on viral protein conformation, and did not display a pH optimum around pH 7.5. On the other hand, with vesicles consisting of PC, PE, cholesterol, and the ganglioside GD1a, the virus resembled more closely the fusogenic properties that were seen with erythrocyte target membranes. Upon decreasing the pH below 5.0, the viral fusion activity increased dramatically. With acidic phospholipid vesicles, maximal activity was observed around pH 4.0, while with GD1a-containing zwitterionic vesicles the fusion activity continued to increase with decreasing pH down to values as low as 3.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Phospholipid liposomes composed of phosphatidylcholine (PC) and cholesterol (chol), bearing the sialoglycoprotein glycophorin (GP), are able to effectively bind Sendai virus particles, but not to be lysed by them. Incorporation of gangliosides (gangl) into the above phospholipid vesicles (yielding liposomes composed of PC/chol/gangl/GP), although not increasing their ability to interact with Sendai virions, rendered them susceptible to the viral lytic activity. This was inferred from the ability of the virus to induce release of carboxyfluorescein (CF) upon interaction at 37 degrees C with liposomes composed of PC/chol/gangl/GP. Lysis of liposomes required the presence of the two viral envelope glycoproteins, namely the hemagglutinin/neuraminidase (HN) and the fusion (F) polypeptides, and was inhibited by phenylmethyl sulfonylfluoride (PMSF), dithiothreitol (DTT) and trypsin, showing that virus-induced lysis of PC/chol/gangl/GP liposomes reflects the fusogenic activity of the virus. Incubation of Sendai virus particles with liposomes containing the acidic phospholipid dicetylphosphate (DCP) but lacking sialic acid containing receptors, also resulted in release of the liposome content. Lysis of these liposomes was due to the activity of the viral HN glycoprotein, therefore not reflecting the natural viral fusogenic activity. Fluorescence dequenching studies, using fluorescently labeled reconstituted Sendai virus envelopes (RSVE), have shown that the viral envelopes are able to fuse with neutral, almost to the same extent, as with negatively charged liposomes. However, fusion with negatively charged liposomes, as opposed to fusion with neutral liposomes, was mediated by the viral HN glycoprotein and not by the viral fusion polypeptide.  相似文献   

13.
The envelope glycoprotein G of vesicular stomatitis virus induces membrane fusion at low pH. Site-directed mutagenesis of specific amino acids within a segment spanning amino acids 123 to 137 of G protein, which is highly conserved in vesiculoviruses and was previously shown by us to be involved in fusogenic activity (Y. Li, C. Drone, E. Sat, and H. P. Ghosh, J. Virol. 67:4070-4077, 1993), was used to determine the role of this region in low-pH-induced membrane fusion. The mutant glycoproteins expressed in COS cells were assayed for acid-pH-induced cell-cell fusion. Substitution of the variant Pro-123 with Leu had no effect on the fusogenic activity, while substitution of conserved Phe-125 and Asp-137 with Tyr and Asn, respectively, shifted the pH optimum of membrane fusion to a more acidic pH value and decreased the fusion efficiency. The deletion of amino acid residues 124 to 127, 131 to 137, or 124 to 137 produced mutants defective in transport. Mutation of the conserved residues Gly-124 and Pro-127 to Ala and to Gly or Leu, respectively, inhibited cell-cell fusion activity by about 90% without affecting transport of the mutant proteins to the cell surface, suggesting that these two residues may be present within the fusion peptide and thus may be directly involved in fusion. This highly conserved domain containing neutral amino acids of G protein may therefore represent the putative fusion domain of vesicular stomatitis virus G protein.  相似文献   

14.
You HX  Yu L  Qi X 《FEBS letters》2001,503(1):97-102
The enzymatic activity of glucosylceramidase depends on the presence of saposin C (Sap C) and acidic phospholipid-containing membranes. In order to delineate the mechanism underlying Sap C stimulation of the enzyme activity, it is important to understand how Sap C interacts with phospholipid membranes. We studied the dynamic process of Sap C interaction with planar phospholipid membranes, in real time, using atomic force microscopy (AFM). The phospholipid membrane underwent restructuring upon addition of Sap C. The topographic characteristics of the membrane restructuring include the appearance of patch-like new features, initially emerged at the edge of phospholipid membranes and extended laterally with time. Changes in the image contrast of the phospholipid membrane observed after the Sap C addition indicate that a new phase of lipid-protein structure has formed during membrane restructuring. The process of membrane restructuring is dynamic, commencing shortly after Sap C addition, and continuing throughout the duration of AFM imaging (about 30 min, sometimes over 1 h). This study demonstrated the potential of AFM real-time imaging in studying protein-membrane interactions.  相似文献   

15.
Acidic phospholipids and saposins associations are involved in the degradation process of glycosphingolipids/sphingolipids in late endosomes/lysosomes. In this report, we showed the colocalization of saposin C and lysobisphosphatidic acid (LBPA) in human fibroblasts by using cytoimmunofluorescence analysis. This colocalization pattern was not seen with other saposins. Large numbers of saposins A, B, and D illustrated the staining patterns that differ from LBPA. In addition, ingested anti-LBPA antibody altered the location of saposin C in human wild-type fibroblasts. In vitro assays demonstrated that saposin C at nM concentrations induced membrane fusion of LBPA containing phospholipid vesicles. Under the same condition, other saposins had no fusion induction on these vesicles. These results suggested a specific interaction between saposin C and LBPA. Total saposin-deficient fibroblasts showed a massive accumulation of multivesicular bodies (MVBs) by electron microscopic analysis. No significant increase of MVBs was found in saposins A and B deficient cells. Interestingly, the accumulated MVBs were significantly reduced by loading saposin C alone into the total saposin-deficient cells. Therefore, we propose that saposin C-LBPA interaction plays a role in the regulation of MVB formation in cells.  相似文献   

16.
D Odell  E Wanas  J Yan    H P Ghosh 《Journal of virology》1997,71(10):7996-8000
Chimeric proteins in which the transmembrane anchoring sequence (TM) or both the TM and the cytoplasmic tail (CT) of vesicular stomatitis virus glycoprotein G were replaced with corresponding domains of viral or cellular integral membrane proteins were used to examine the influence of these domains on acidic-pH-induced membrane fusion by G protein. The TM and CT of G were also replaced with the lipid anchor glycosylphosphatidylinositol. Hybrids containing foreign TM or TM and CT sequences were fusogenic at acidic pH but glycosylphosphatidylinositol-anchored G was nonfusogenic at acidic pH. The results suggest that the fusogenic activity of G protein requires membrane anchoring by a hydrophobic peptide sequence and the specific amino acid sequence of the TM has no influence on fusogenic activity.  相似文献   

17.
C8, a short peptide characterized by three regularly spaced Trp residues, belongs to the membrane-proximal external functional domains of the feline immunodeficiency virus coat protein gp36. It elicits antiviral activity as a result of blocking cell entry and exhibits membranotropic and fusogenic activities.Membrane-proximal external functional domains of virus coat proteins are potential targets in the development of new anti-HIV drugs that overcome the limitations of the current anti-retroviral therapy.In the present work, we studied the conformation of C8 and its interaction with micellar surfaces using circular dichroism, nuclear magnetic resonance and fluorescence spectroscopy. The experimental data were integrated by molecular dynamics simulations in a micelle–water system.Our data provide insight into the environmental conditions related to the presence of the fusogenic peptide C8 on zwitterionic or negatively charged membranes. The membrane charge modulates the conformational features of C8. A zwitterionic membrane surface induces C8 to assume canonical secondary structures, with hydrophobic interactions between the Trp residues and the phospholipid chains of the micelles. A negatively charged membrane surface favors disordered C8 conformations and unspecific superficial interactions, resulting in membrane destabilization.  相似文献   

18.
Theoretical and functional analysis of the SIV fusion peptide.   总被引:8,自引:0,他引:8       下载免费PDF全文
The fusion domain of simian immunodeficiency virus (SIV) envelope glycoproteins is a hydrophobic region located at the amino-terminal extremity of the transmembrane protein (gp32). Assuming an alpha helical structure for the SIV fusogenic domain of gp32 in a lipid environment, theoretical studies have predicted that the fusion peptide would insert obliquely in the lipid bilayer. This oblique insertion could be an initial step of the fusion process by disorganizing locally the structure of the lipid bilayer. We have tested this hypothesis by selectively mutagenizing the SIV gp160 expressed via a vaccinia virus vector, to alter the theoretical angle of insertion of the fusion peptide. The fusogenic activity of the wild-type and mutant glycoproteins was tested after infection of T4 lymphocytic cell lines by the recombinant vaccinia virus, and measure of syncytia formation. Mutations that modified the oblique orientation reduced the fusogenic activity. In contrast, mutations that conserve the oblique orientation did not alter the fusogenic properties. Our results support the hypothesis that oblique orientation is important for fusogenic activity.  相似文献   

19.
The procedures for purification and reconstitution of rat brain microsomal membrane protein that causes fusion of liposomes at acidic pH are described. A 1,860-fold purification was achieved, starting from the detergent-solubilized microsomal membranes. The fusion process was assayed spectrofluorimetrically by monitoring the formation of terbium-dipicolinic acid complex (Wilschut, J. et al. 1980. Biochemistry 19:6011–6021) evoked by the protein after mixing of two populations of liposomes. The fusogenic activity of the protein inserted into the membrane of Tb3+-containing vesicles was found to be strongly dependent on phospholipid composition and was higher in vesicles enriched with exogenous phosphatidylserine, phosphatidylglycerol and phosphatidylethanolamine than in those prepared with an excess of phosphatidylcholine. The vesicles enriched in negatively charged phospholipids were bound to Concanavalin A coupled to Sepharose-4B and could be released from this column only in the presence of a high concentration of -methylmannopyranoside and detergent, indicating a glycoprotein nature of the fusogenic protein. Furthermore, these data show that protein inserted into membrane has its oligosaccharide chains exposed to the environment.Mr. Carlo Ricci is thanked for his skillful technical assistance. This work was supported by a grant from the Ministry of Education, Rome, Italy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号