首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steroid secreting activities of dispersed granulosa and theca interna cells from preovulatory follicles of prepubertal gilts 72 h after pregnant mare's serum gonadotropin treatment (750 IU) were compared. The cells were cultured for 24 h with or without steroid substrate (10(-8) to 10(-5) M progesterone, 17 alpha-hydroxyprogesterone, or androstenedione), FSH (100 ng/mL), LH (100 ng/mL), and cyanoketone (0.25 microM, an inhibitor of 3 beta-hydroxysteroid dehydrogenase). Granulosa cells cultured alone secreted mainly progesterone. Theca interna cells secreted mainly 17 alpha-hydroxyprogesterone and androstenedione, with secretion being markedly enhanced by LH. In the presence of cyanoketone, which inhibited endogenous progesterone production, theca interna but not granulosa cells were able to convert exogenous progesterone to 17 alpha-hydroxyprogesterone and androstenedione, and exogenous 17 alpha-hydroxyprogesterone to androstenedione and estradiol-17 beta in high yield. The secretion of the latter steroids from exogenous substrates was unaffected by LH. Theca interna cells secreted more estradiol-17 beta than did granulosa cells in the absence of aromatizable substrate, but estradiol-17 beta secretion by the latter was markedly increased after the addition of androstenedione. These apparent differences in steroid secreting activity between the cell types suggest that the enzymes responsible for conversion of C21 to C19 steroids, i.e., 17 alpha-hydroxylase and C17,20-lyase, reside principally in the theca interna cells. However, aromatase activity appears to be much higher in granulosa cells.  相似文献   

2.
Peripheral plasma samples from Brahman cows with single and twin pregnancies were assayed for progesterone and estradiol-17beta throughout pregnancy. The twin pregnancies were obtained by transfer of Friesian embryos to inseminated single-ovulating Brahman cows. The twin-bearing cows had significantly higher levels of progesterone at 8 and 36 weeks of pregnancy. There were no differences in estradiol-17beta levels until the pre-parturient rise which occurred earlier in twin pregnancies. Intra-muscular injection of progesterone had no measurable effect on peripheral plasma levels of estradiol-17beta in Charolais cows 31 - 32 weeks pregnant.  相似文献   

3.
By day-90, the placenta secretes half of the circulating progesterone and 85% of the circulating estradiol-17beta [Weems YS, Vincent D, Tanaka Y, et al. Effects of prostaglandin F(2alpha) on sources of progesterone and pregnancy in intact, ovariectomized, and hysterectomized 90-100 day pregnant ewes. Prostaglandins 1992;43:203-22; Weems YS, Vincent DL, Nusser K, et al. Effects of prostaglandin F(2alpha) (PGF(2alpha)) on secretion of estradiol-17beta and cortisol in 90-100 day hysterectomized, intact, or ovariectomized pregnant ewes. Prostaglandins 1994;48:139-57]. Ovariectomy (OVX) or prostaglandin (PG) F(2alpha) (PGF(2alpha)) does not abort intact or OVX 90-day pregnant ewes and PGF(2alpha) regresses the corpus luteum, but does not affect placental progesterone secretion in vivo [Weems YS, Vincent D, Tanaka Y, et al. Effects of prostaglandin F(2alpha) on sources of progesterone and pregnancy in intact, ovariectomized, and hysterectomized 90-100 day pregnant ewes. Prostaglandins 1992;43:203-22]. Luteal progesterone secretion in vitro at day-90 of pregnancy in ewes is regulated by PGE(1)and/or PGE(2), not by ovine luteinizing hormone (LH; 3). Concentrations of PGE in uterine or ovarian venous plasma averaged 6 ng/ml at 90-100 days of pregnancy in ewes [Weems YS, Vincent DL, Tanaka Y, Nusser K, Ledgerwood KS, Weems CW. Effect of prostaglandin F(2alpha) on uterine or ovarian secretion of prostaglandins E and F(2alpha) (PGE; PGF(2alpha)) in vivo in 90-100 day hysterectomized, intact or ovariectomized pregnant ewes. Prostaglandins. 1993;46:277-96]. Ovine placental PGE secretion is regulated by LH up to day-50 and by pregnancy specific protein B (PSPB) after day-50 of pregnancy [Weems YS, Kim L, Humphreys V, Tsuda V, Weems CW. Effect of luteinizing hormone (LH), pregnancy specific protein B (PSPB), or arachidonic acid (AA) on ovine endometrium of the estrous cycle or placental secretion of prostaglandins E(2) (PGE(2)) and F(2alpha) (PGF(2alpha)), and progesterone in vitro. Prostaglandins Other Lipid Mediators 2003;71:55-73]. Indomethacin (INDO), a prostaglandin synthesis inhibitor [Lands WEM. The biosynthesis and metabolism of prostaglandins. Annu Rev Physiol 1979;41:633-46], lowers jugular venous progesterone [Bridges PJ, Weems YS, Kim L, et al. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on pregnancy, progesterone and pregnancy specific protein B (PSPB) secretion in 88-90 day pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:113-24] and inferior vena cava PGE of pregnant ewes with ovaries by half at day-90 [Bridges PJ, Weems YS, Kim L, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on prostaglandin E (PGE), PGF(2alpha) and estradiol-17beta secretion in 88-90 day pregnant sheep. Prostaglandins Other Lipid Mediators 1999;58:167-78]. In addition, treatment of 90 day ovine diced placental slices with androstenedione in vitro increased placental estradiol-17beta, but treatment with PGF(2alpha)in vitro did not decrease placental progesterone secretion, which indicates that ovine placenta progesterone secretion is resistant to the luteolytic action of PGF(2alpha) [Weems YS, Bridges PJ, LeaMaster BR, Sasser RG, Vincent DL, Weems CW. Secretion of progesterone, estradiol-17beta, prostaglandins (PG) E (PGE), F(2alpha) (PGF(2alpha)), and pregnancy specific protein B (PSPB) by day 90 intact or ovariectomized pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:139-48]. This also explains why ovine uterine secretion of decreased around day-50 [Weems YS, Kim L, Humphreys V, Tsuda V, Weems CW. Effect of luteinizing hormone (LH), pregnancy specific protein B (PSPB), or arachidonic acid (AA) on ovine endometrium of the estrous cycle or placental secretion of prostaglandins E(2) (PGE(2)) and F(2alpha) (PGF(2alpha)), and progesterone in vitro. Prostaglandins Other Lipid Mediators 2003;71:55-73], when placental estradiol-17beta secretion is increasing [Weems C, Weems Y, Vincent D. Maternal recognition of pregnancy and maintenance of gestation in sheep. In: Reproduction and animal breeding: advances and strategies. Enne G, Greppi G, Lauria A, editors, Elsevier Pub., Amsterdam 1995. p. 277-93]. Treatment of 90 day pregnant ewes with estradiol-17beta+ PGF(2alpha), but not either treatment alone, caused a linear increase in both estradiol-17beta and PGF(2alpha) and ewes were aborting [Bridges PJ, Weems YS, Kim L, Sasser RG, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on pregnancy, progesterone and pregnancy specific protein B (PSPB) secretion in 88-90 day pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:113-24; Bridges PJ, Weems YS, Kim L, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on prostaglandin E (PGE), PGF(2alpha) and estradiol-17beta secretion in 88-90 day pregnant sheep. Prostaglandins Other Lipid Mediators 1999;58:167-78]. Pregnant ewes OVX on day 83 of pregnancy and placental slices cultured in vitro secretes 2-3-fold more estradiol-17beta, PSPB, PGE, and progesterone than placental slices from 90 day intact pregnant ewes, but placental PGF(2alpha) secretion by placental slices from intact or OVX ewes did not change [Denamur R, Kann G, Short R V. How does the corpus luteum of the sheep know that there is an embryo in the uterus? In: Pierrepont G, editor. Endocrinology of pregnancy and parturition, vol. 2. Cardiff, Wales, UK: Alpha Omega Pub Co.; 1973. p. 4-38]. The objective of these experiments was to determine what regulates ovine placental progesterone and estradiol-17beta secretion at day-90 of pregnancy, since the hypophysis [Casida LE, Warwick J. The necessity of the corpus luteum for maintenance of pregnancy in the ewe. J Anim Sci 1945;4:34-9] or ovaries [Weems CW, Weems YS, Randel RD. Prostaglandins and reproduction in female farm animals. Vet J 2006;171:206-28] are not necessary after day-55 to maintain pregnancy. In Experiment 1, diced placental slices from day-90 intact or OVX pregnant ewes that were ovariectomized or laparotomized and ovaries were not removed on day 83 were collected on day-90 and incubated in vitro in M-199 with Vehicle, ovine luteinizing hormone (oLH), ovine follicle stimulating hormone (oFSH), ovine placental lactogen (oPL), PGE(l), PGE(2), PGD(2), PGI(2), insulin-like growth factor (IGF) 1 or 2 (IGF(l); IGF(2)), leukotriene C(4) (LTC(4)), platelet activating factor (PAF) 16 or 18 (PAF-16; PAF-18) at doses of 0, 1, 10, or 100ng/ml for 4h. In Experiment 2, placental slices from day-90 intact and OVX (intact or OVX laporotomized 7 days earlier) pregnant ewes were incubated in vitro with vehicle, INDO, Meclofenamate (MECLO), PGE(l), PGE(2), INDO+PGE(1), MECLO+PGE(l), INDO+PGE(2), or MECLO+PGE(2) for 4h. Media were analyzed for progesterone, estradiol-17beta, PGE, or PGF(2alpha) by RIA. Hormone data in media were analyzed in Experiment 1 by a 2x3x13 and in Experiment 2 by a 2x9 Factorial Design for ANOVA. In Experiment 1, placental progesterone, PGE, or estradiol-17beta secretion were increased (P< or =0.05) two-fold by OVX. Progesterone was not increased (P> or =0.05) by any treatment other than OVX and only FSH increased (P< or =0.05) estradiol-17beta secretion by placental slices in both OVX and intact ewes 90-day pregnant ewes. In Experiment 2, INDO or MECLO decreased (P< or =0.05) placental progesterone secretion by 88% but did not decrease (P> or =0.05) placental estradiol-17beta secretion from intact or OVX ewes. PGE(l) or PGE(2) increased (P< or =0.05) progesterone secretion only in ewes treated with INDO or MECLO. It is concluded that FSH probably regulates day-90 ovine placental estradiol-17beta secretion, while PGE(l) or PGE(2) regulates day-90 placental progesterone secretion.  相似文献   

4.
B Rao 《Prostaglandins》1979,18(1):93-100
In vitro synthesis of progesterone and estradiol-17 beta from endogenous precursors was studied in the placenta from women in early stage of gestation (less than 7 weeks). Radioimmunoassay techniques were used to measure progesterone and estradiol-17 beta. It was shown that placental tissue from as early as six weeks of gestation can synthesize both progesterone and estradiol-17 beta in vitro. Prostaglandins F2 alpha and E2 in concentration of 100 micrograms/ml of the incubation media did not have any significant effect on the in vitro synthesis of progesterone and estradiol-17 beta in the placental tissue. It seems unlikely that the abortifacient effect of natural prostaglandins PGE2 and PGF2 alpha is due to their direct action on the synthesis of progesterone and estradiol-17 beta in the placenta.  相似文献   

5.
This study was carried out to determine the effects of a transient doe-litter separation on plasma prolactin, LH, FSH, estradiol-17beta and progesterone concentrations before artificial insemination and during the subsequent pregnancy. Control does (n=12) had free access to nursing, whereas separated does (n=12) were kept away from their litters for 48 hours before artificial insemination. Both groups were inseminated on day 11 after parturition. Teat stimulation by suckling caused a high increase in prolactin concentrations in separated does (p < 0.0001). Basal prolactin concentrations were observed in both groups on days 8 and 18 of pregnancy. No effect of the treatment was detected on LH and FSH concentrations during the sampling period. A rise of estradiol-17beta concentrations was observed 48 hours after doe-litter separation, compared to control does and to previous values (p < 0.003). Both groups showed low progesterone concentrations before artificial insemination. Pregnant rabbits in both groups showed increased progesterone concentrations on days 8 and 18 of pregnancy. Lower estradiol-17beta concentrations were observed in control does on day 18 of pregnancy compared with separated rabbits (p < 0.003). The results suggest that a transient separation of nursing does from their litters before artificial insemination may promote high follicular steroidogenesis activity leading to increased estradiol-17beta concentrations. This hormonal change could be a result of several stimulatory actions probably triggered by the absence of suckling episodes and may affect the luteotrophic function during the subsequent pregnancy.  相似文献   

6.
One objective of this experiment was to evaluate our hypotheses that estradiol-17beta regulates secretion of pregnancy specific protein B (PSPB) and that secretion of progesterone during pregnancy is regulated by a prostanoid by examining the effects of prostaglandin F2alpha (PGF2alpha), a luteolyic agent; indomethacin, a prostanoid synthesis inhibitor; tamoxifen, an estrogen receptor antagonist; estradiol 17-beta; and interaction of these factors on the incidence of abortion and progesterone and PSPB secretion. Another objective was to determine if there is a luteal source of PSPB. Weights of corpora lutea were decreased (P < or = 0.05) by PGF2alpha, indomethacin, PGF2alpha + tamoxifen, PGF2alpha + indomethacin, and PGF2alpha + estradiol-17beta but not (P > or = 0.05) by tamoxifen or estradiol-17beta alone. No ewe treated with PGF2alpha alone aborted (P > or = 0.05). Forty percent of ewes treated with PGF2alpha + estradiol-17beta aborted (P < or = 0.05), but ewes were not aborted by any other treatment within the 72-h sampling period. Profiles of progesterone in jugular venous blood differed (P < or = 0.05) among control, indomethacin-, tamoxifen-, and PGF2alpha + indomethacin-treated ewes. Progesterone in jugular venous blood of control ewes decreased (P < or = 0.05) by 24 h, followed by a quadratic increase (P < or = 0.05) from 24 to 62 h. Progesterone in jugular venous blood of indomethacin-, PGF2alpha-, PGF2alpha- + tamoxifen-, PGF2alpha + indomethacin-, PGF2alpha + estradiol-17beta-, and tamoxifen-treated ewes was reduced (P < or = 0.05) by 18 h and did not vary (P > or = 0.05) for the remainder of the 72-h sampling period. Progesterone in vena cava and in uterine venous blood was reduced (P < or = 0.05) at 72 h in PGF2alpha-, indomethacin-, tamoxifen-, PGF2alpha + indomethacin-, PGF2alpha + tamoxifen-, and PGF2alpha + estradiol-17beta-treated ewes. Weights of placentomes did not differ among treatment groups (P > or = 0.05). Profiles of PSPB in inferior vena cava blood differed (P < or = 0.05) among control, estradiol-17beta-, indomethacin-, tamoxifen-, PGF2alpha + indomethacin-, and PGF2alpha + tamoxifen-treated 88- to 90-day pregnant ewes. Concentrations of PSPB in inferior vena cava blood were increased (P < or = 0.05) in indomethacin-, estradiol-17beta-, tamoxifen-, PGF2alpha + tamoxifen-, and PGF2alpha + indomethacin-treated 88- to 90-day pregnant ewes within 6 h and did not vary (P > or = 0.05) for the remainder of the 72-h sampling period. Concentrations of PSPB in uterine venous blood of indomethacin-, tamoxifen-, PGF2alpha + tamoxifen-, and PGF2alpha + indomethacin-treated ewes were greater (P < or = 0.05) at 72 h than at 0 h. PSPB in ovarian venous blood did not differ (P > or = 0.05) adjacent or opposite to the ovary with the corpus luteum. It is concluded from these data that estrogen regulates placental secretion of PSPB and that a prostanoid, presumably prostaglandin E, regulates placental secretion of progesterone during 88-90 days of gestation in sheep and that there is no luteal source of PSPB.  相似文献   

7.
Changes in immunoreactive (ir-) inhibin concentrations in serum throughout pregnancy and early lactation up to one month after parturition were characterized in 6 Japanese monkeys (Macaca fuscata fuscata) by a heterologous radioimmunoassay (RIA) based on a bovine RIA. Serum levels of FSH, LH/monkey chorionic gonadotropin (mCG), estradiol-17 beta, and progesterone were also monitored for the entire period. Ir-inhibin levels in the serum were low (under 0.5 ng/ml) before conception. Three marked increases in serum ir-inhibin levels were found during pregnancy. The first increase was noted during early pregnancy, with a peak (2.2 +/- 0.2 ng/ml) at Day 22 of pregnancy (Day 0 = day of LH surge). The second increase was noted after Day 38 until Day 72 of pregnancy, when a peak value was noted (19.0 +/- 1.4 pg/ml). Plateau levels were maintained until late pregnancy, and a final rise was evident near the term with a peak (36.7 +/- 3.8 ng/ml) at Day 158 of pregnancy, 5 days before parturition. After parturition, ir-inhibin levels in the serum plummeted to nonpregnant levels within one day, and were maintained during early lactation. The first rise in serum inhibin during pregnancy was parallel to the rise of mCG and estradiol-17 beta, and the second and third rise were well correlated with serum estradiol-17 beta. Serum FSH was maintained at low levels throughout pregnancy, followed by a slight increase after parturition when serum inhibin decreased abruptly. Both bioactivity and immunoreactivity of inhibin were detected in the placental homogenates obtained at 120 days of pregnancy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
During early pregnancy, the steroid hormone progesterone induces differentiation of uterine stroma to decidual cells, which regulate embryo-uterine interactions. The progesterone-induced signaling molecules that participate in the formation and function of decidua remain poorly understood. We recently utilized high-density oligonucleotide microarrays to identify several genes whose expression is markedly altered in pregnant uterus in response to RU486, a well characterized antagonist of the progesterone receptor (PR). Our study revealed that the gene encoding cytotoxic T-lymphocyte antigen-2beta (CTLA-2beta), a cysteine protease inhibitor, is expressed during PR-induced decidualization. The spatio-temporal expression of CTLA-2beta mRNA precisely overlapped with the decidual phase of pregnancy. Interestingly, administration of progesterone to estrogen-primed ovariectomized mice failed to induce CTLA-2beta expression. A concomitant artificial decidual stimulation was necessary to trigger this expression. Uteri of PR knockout mice failed to express this mRNA, even after a combined administration of steroid hormones and artificial stimulation. The uterine expression of CTLA-2beta was, therefore, dependent on PR as well as other unknown factor(s) associated with decidual response. To identify the molecular target(s) of CTLA-2beta,we analyzed its interaction with proteins present in soluble extracts prepared from day 7 pregnant uteri containing implanted embryos. A protein affinity strategy employing recombinant CTLA-2beta helped us to determine that cathepsin L, a cysteine protease, is one of its targets in the pregnant uterus. Consistent with this finding, expression of cathepsin L was detected in the giant trophoblast cells of the ectoplacental cone on day 7 of pregnancy. Collectively, our results support the hypothesis that expression of CTLA-2beta in the decidua may regulate implantation of the embryo by neutralizing the activities of one or more proteases generated by the proliferating trophoblast.  相似文献   

9.
Homogeneous Silastic rods containing ethinylestradiol (EE) (1.5 or 4 g), estradiol-17 beta (E) (4 g) or progesterone (P) (6 g) were implanted into feral mares (Equus caballus) between 4- and 10-yr-old. Six treatment groups (greater than or equal to 10 mares/group) of non-pregnant mares received 36 g P and 12 g E (P+E), 36 g P and 8 g EE (P+HEE), 1.5 g EE (LEE), 3 g EE (MEE, 8 g EE (HEE) or control-implanted mares (CI). CI received implants containing no steroid. Two groups of pregnant mares received P+HEE or HEE. Stallions were placed with the mares 15 to 26 mo after implanting. Blood was collected biweekly for up to 28 mo after implanting and serum analyzed for P by radioimmunoassay. A single P value greater than or equal to 2.5 ng/ml indicated ovulation and 2 consecutive values greater than or equal to 2.5 ng/ml indicated pregnancy. Serum from blood collected before and at 4, 12, 24, 50, 64 and 89 wk after implanting was analyzed for EE concentrations. All animals pregnant at the time of contraceptive placement delivered normal foals. Contraceptive efficacy for groups LEE, MEE, HEE and P+HEE were 75, 75, 100, and 100%, respectively after two breeding seasons. Suppression of ovulation appeared to be inversely related to the concentration of EE used in the implant. The percent of animals ovulating after 2 yr of contraception in each group was 100, 100, 88, 62, 20, and 12 for groups CI, P+E, LEE, MEE, HEE and P+HEE, respectively. The pregnancy rate for the same groups was 100, 78, 25, 25, 0 and 0%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
1. Serum progesterone, estradiol-17 beta and cortisol, as well as cholesterol and cholesterol ester concentrations in pregnant and lactating rabbits (New Zealand white hybrids, n = 9), were measured. These parameters were also studied in the amniotic fluid, the milk and the fetal serum (28-day old fetuses). 2. Serum progesterone and estradiol-17 beta were significantly enhanced during gestation, while the content of cortisol showed a marked elevation at the end of pregnancy. The concentrations of these hormones decreased before parturition. 3. Serum cholesterol and cholesterol ester concentrations markedly decreased in the second half of gestation (74 and 76%, respectively) and elevated after parturition and in the first week of lactation.  相似文献   

11.
The aromatase inhibitor CGS-16949A was used to determine whether CGS-16949A altered secretion of progesterone, estradiol-17beta, PGE (PGE1 + PGE2), PGF2alpha and PSPB. Ninety day pregnant ewes were ovariectomized and received vehicle, PGF2alpha, CGS-16949A or PGF2alpha+CGS-16949A. None of the ewes treated with PGF2alpha, CGS-16949A or PGF2alpha+CGS-16949A aborted (P > or = 0.05) during the 108-h experimental period. Treatment with CGS-16949A lowered (P < or = 0.05) progesterone in jugular venous plasma but concentrations of progesterone were not affected (P > or = 0.05) by treatment with PGF2alpha. Concentrations of estradiol-17beta and PSPB in jugular venous plasma and PGE in inferior vena cava plasma were decreased (P < or = 0.05) by treatment with CGS-16949A. Concentrations of PGF2alpha in inferior vena cava plasma were not affected (P > or = 0.05) by treatment with CGS-16949A. Decreases in estradiol-17beta occurred before decreases in PSPB, which was then followed by decreases in PGE (P < or = 0.05). It is concluded that these data support the hypothesis that estradiol-17beta regulates placental secretion of PSPB; PSPB regulates placental secretion of PGE; and PGE regulates placental secretion of progesterone during mid-pregnancy in ewes.  相似文献   

12.
Treatment with PGF2alpha plus estradiol-17beta aborts 90-day pregnant ewes, whereas PGF2alpha or estradiol-17beta alone does not abort ewes. The objective of this experiment was to evaluate whether tamoxifen, an estrogen receptor antagonist, estradiol-17beta, prostaglandin F2alpha (PGF2alpha), indomethacin, or some of their interactions affected ovine uterine/placental secretion of PGF2alpha, estradiol-17beta or prostaglandins E (PGE), because a single treatment with PGF2alpha and estradiol-17beta given every 6 h aborts 90-day pregnant ewes. Concentrations of PGF2alpha in uterine venous blood were increased (P < or = 0.05) by estradiol-17beta, PGF2alpha + estradiol-17beta, and PGF2alpha + tamoxifen, and decreased (P < or = 0.05) by indomethacin or PGF2alpha + indomethacin at 72 h when compared to the 0 h samples. Concentrations of PGE in uterine venous blood were decreased (P < or = 0.05) by indomethacin and PGF2alpha + indomethacin and increased (P < or = 0.05) by PGF2alpha + estradiol-17beta at 72 h when compared to the 0 h samples. Concentrations of PGF2alpha in inferior vena cava blood at 6 h were increased (P < or = 0.05) by PGF2alpha either alone or in combination with indomethacin, tamoxifen, or estradiol-17beta, which is due to the PGF2alpha injected. Concentrations of PGF2alpha in inferior vena cava blood in PGF2alpha + estradiol-17beta-treated 88- to 90-day pregnant ewes increased (P < or = 0.05) linearly over the 72-h sampling period and averaged 4.0 + 0.4 ng/ml. Concentrations of PGF2alpha in inferior vena cava blood of control, PGF2alpha, tamoxifen, PGF2alpha + indomethacin, PGF2alpha + tamoxifen, and estradiol-17beta-treated ewes did not differ (P > or = 0.05) and averaged 0.4 + 0.04 ng/ml. Profiles of PGE in inferior vena cava blood of 88- to 90-day pregnant ewes treated with vehicle, PGF2alpha, estradiol-17beta, tamoxifen, tamoxifen + PGF2alpha, or estradiol-17beta + PGF2alpha did not differ (P > or = 0.05). Concentrations of PGE in inferior vena cava blood of 88- to 90-day pregnant ewes treated with indomethacin or PGF2alpha + indomethacin were lower (P < or = 0.05) than in control ewes. Concentrations of estradiol-17beta in jugular venous plasma of PGF2alpha + estradiol-17beta-treated 88- to 90-day pregnant ewes increased linearly and differed (P < or = 0.05) from controls. Profiles of estradiol-17beta in jugular venous plasma of PGF2alpha, indomethacin, tamoxifen, and PGF2alpha + tamoxifen and PGF2alpha + indomethacin, estradiol-17beta, and controls did not differ (P > or = 0.05). It is concluded that treatment with a single injection of PGF2alpha and estradiol-17beta given every 6 h causes a linear increase in PGF2alpha and estradiol-17beta.  相似文献   

13.
Serum gonadotropin concentrations were high and variable and fluctuated episodically in short and long term ovariectomized ewes. Treatment with solid silastic implants releasing progesterone (serum levels 1.81 +/- 0.16 ng/ml) had no consistent effect. Treatment with implants releasing estradiol-17beta significantly depressed mean serum gonadotropin concentrations and peak height to values usually seen in intact ewes. This occurred regardless of implant size and serum estradiol-17beta concentrations (range 11 +/- 0.3 pg/ml to 98 +/- 12.8 pg/ml). Progesterone and estradiol-17beta together significantly depressed the frequency of peaks in LH concentration. Following progesterone removal, 95% of the ewes treated with progesterone and estradiol-17beta implants experienced a transient increase in serum LH concentrations similar to the preovulatory surge in intact ewes. Eighty-four percent of the LH surges were accompanied by a surge in serum FSH concentrations. However, following progesterone removal, 5.1 +/- 2.1 FSH surges were observed over six days. Gonadotropin surges occurred regardless of estradiol-17beta implant size and with or without the influence of supplemental estradiol-17beta.  相似文献   

14.
The objective of this experiment was to determine the effect of mifepristone, a progesterone receptor antagonist, on pregnancy and secretion of steroids, pregnancy-specific protein B (PSPB) and prostaglandins at mid-pregnancy in ewes. Ninety-day pregnant ewes were ovariectomized (OVX) and treatments were initiated 72 h post-OVX. Ewes received (1) vehicle, (2) prostaglandin F2alpha (PGF2alpha, 8 mg/58 kg/bw, i.m.) 84 h post-OVX, (3) mifepristone (50 mg intrajugular at 72, 84, 96, and 108 h post-OVX), (4) mifepristone (50mg) + PGF2alpha, (5) mifepristone (100 mg intrajugular at 72, 84, 96, and 108 h), and (6) mifepristone (100 mg) + PGF2alpha. Ewes treated with vehicle or PGF2alpha alone did not abort (P > or = 0.05). But, 60, 80, 60, and 100% of ewes treated with mifepristone (50 mg), mifepristone (50 mg) + PGF2alpha, mifepristone (100 mg), and mifepristone (100 mg) + PGF2alpha, respectively, aborted (P < or = 0.05). Profiles of progesterone, estradiol-17beta, prostaglandin E (PGE), or PSPB did not differ (P > or = 0.05) among treatment groups. Profiles of PGF2alpha of treatment groups receiving mifepristone with or without PGF2alpha differed (P < 0.05) from vehicle or PGF2alpha alone-treated ewes. It is concluded that progesterone actions are necessary to suppress uterine/placental secretion of PGF2alpha and that maintenance of critical progesterone: estradiol-17beta and PGE:PGF2alpha ratios are necessary for maintenance of pregnancy.  相似文献   

15.
M.H. Briggs 《Steroids》1973,22(4):547-553
The effects of eleven different steroid hormones on in vitro development of fertilizing capacity by hamster sperm were examined. Capacitation of epididymal sperm occurred only in the presence of female genital tract secretions. Fertilizing ability of sperm was poor if estradiol-17β, cortisol, chlormadinone acetate, medroxyprogesterone acetate, or megestrol acetate were present in the incubation medium at 10?5M, whereas similar concentrations of estradiol-17α, progesterone, norethisterone acetate, ethynodiol diacetate, or norgestrel had little effect. Testosterone was a weak inhibitor of capacitation. Capacitation activity of female uterus and oviduct washings was higher at estrus than diestrus. This activity was reduced by treating intact animals with progesterone, cortisol, or testosterone, but increased by estradiol-17β or HCG. Estradiol-17α has no effect. Activity was low in pregnant or ovariectomized hamsters. Treatment of ovariectomized animals with estradiol-17β increased capacitation activity, but estradiol-17α, HCG or progesterone treatment was ineffective.  相似文献   

16.
In vitro synthesis of progesterone and estradiol-17β from endogenous precursors was studied in the placenta from women in early stage of gestation (< 7 weeks). Radioimmunoassay techniques were used to measure progesterone and estradiol-17β.It was shown that placental tissue from as early as six weeks of gestation can synthesize both progesterone and estradiol-17β in vitro. Prostaglandins F and E2 in concentration of 100 μg/ml of the incubation media did not have any significant effect on the in vitro synthesis of progesterone and estradiol-17β in the placental tissue.It seems unlikely that the abortifacient effect of natural prostaglandins PGE2 and PGF is due to their direct action on the synthesis of progesterone and estradiol-17β in the placenta.  相似文献   

17.
Fifteen ewes were assigned as they came into estrus to the following randomized treatment groups: 1) Vehicle (1 ml corn oil + vehicle Na2CO3 buffer), 2) Estradiol-17 beta + vehicle and 3) Estradiol-17 beta + PGE2 (500 micrograms) in Na2CO3 buffer (5 ewes/treatment group). Prostaglandin E2 was given through an intrauterine cannula every four hours from days 8 through 15 postestrus. PGE2 prevented a luteolytic dose of estradiol-17 beta given on days 9 and 10 from causing a precocious luteolysis. PGE2 maintained concentrations of progesterone in peripheral blood (days 8 through 15) and weights and concentrations of progesterone in corpora lutea on day 15 postestrus of ewes receiving estradiol-17 beta. It is concluded that chronic intrauterine infusions of PGE2 can prevent an estradiol-17 beta-induced premature luteolysis.  相似文献   

18.
Ninety-day pregnant sheep were ovariectomized and received vehicle or trilostane every 12 h through 132 h, starting at 72 h postovariectomy. All trilostane-treated ewes aborted (P < or = 0.05) between 36 and 50 h after initiation of treatment. Profiles of progesterone in jugular venous blood differed (P < or = 0.05) and was lower (P < or = 0.05) in trilostane-treated ewes. Profiles of estradiol-17beta in jugular venous plasma of trilostane-treated ewes differed (P < or = 0.05) from controls. Estradiol-17beta increased after the first two treatments, followed by a return 2 h later to pretreatment levels (P > or = 0.05), which was followed by a sustained increase (P < or = 0.05) in estradiol-17beta. Profiles of PGF2alpha in inferior vena cava plasma of trilostane-treated ewes differed and were greater (P < or = 0.05) and occurred with the sustained increase in estradiol-17beta and the onset of most of the abortions. Profiles of PGE in inferior vena cava plasma between control and trilostane-treated 90-day pregnant ewes did not differ (P > or = 0.05). It is concluded that abortions occur at midpregnancy in sheep when the estradiol-17beta : progesterone ratio changes sufficiently to cause a sustained increase in estradiol-17beta and PGF2alpha but without changing placental secretion of PGE.  相似文献   

19.
Compared with other domestic animals, relatively little is known about the changes in, and temporal relations between, reproductive hormones around the time of ovulation in the domestic bitch. Therefore, plasma concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol-17beta, progesterone, prolactin (PRL), and alpha-melanocyte-stimulating hormone (alpha-MSH) were determined one to six times daily from the start of the follicular phase until 5 days after the estimated day of ovulation in six Beagle bitches. In all bitches, the pre-ovulatory LH surge was accompanied by a pre-ovulatory FSH surge. A pre-ovulatory PRL or alpha-MSH surge was not observed. The pre-ovulatory FSH and LH surges started concomitantly in four bitches, but in two bitches the FSH surge started 12 h earlier than the LH surge. The FSH surge (110+/-8 h) lasted significantly longer than the LH surge (36+/-5 h). In contrast with the pre-ovulatory FSH surge, the pre-ovulatory LH surge was bifurcated in four of six bitches. The mean plasma LH concentrations before (1.9+/-0.4 microg/L) and after (1.9+/-0.3 microg/L) the LH surge were similar, but the mean plasma FSH concentration before the FSH surge (1.6+/-0.3 U/L) was significantly lower than that after the FSH surge (3.1+/-0.2 U/L). In most bitches the highest plasma estradiol-17beta concentration coincided with or followed the start of the pre-ovulatory LH surge. In five of the six bitches the plasma progesterone concentration started to rise just before or concurrently with the start of the LH surge. In conclusion, the results of this study provide evidence for the differential regulation of the secretion of LH and FSH in the bitch. In addition, the interrelationship of the plasma profiles of estradiol-17beta and LH suggests a positive feedback effect of estradiol-17beta on LH surge release. The start of the pre-ovulatory LH surge is associated with an increase in the plasma progesterone concentration in this species.  相似文献   

20.
Mass fragmentographic determinations of 11 estrogens in urine, bile, or plasma of pregnant and nonpregnant subjects were made. The estrogens (estriol, estrone, 2-methoxyestrone, estradiol-17beta, estradiol-17alpha, 16-epiestriol, 17-epiestriol, 16-alpha-hydroxyestrone, 16beta-hydroxyestrone, 16oxoestradiol-17beta, and 15alpha-hydroxyestrone) were quantitatively determined in bile from 1 male and 3 postmenopausal women, in the urine of a nonpregnant woman, and in a 20 ml pool of late pregnancy plasma obtained from 10 women. The specificity of mass fragmentography as compared with gas chromatography is considered better because a characteristic ion is monitored rather than the total ion current measured by flame ionization detection and reliable measurements can be made in the presence of larger amounts of impurities, resulting in a shortened fractionation procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号