首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Large scale gene expression data are often analysed by clustering genes based on gene expression data alone, though a priori knowledge in the form of biological networks is available. The use of this additional information promises to improve exploratory analysis considerably. RESULTS: We propose constructing a distance function which combines information from expression data and biological networks. Based on this function, we compute a joint clustering of genes and vertices of the network. This general approach is elaborated for metabolic networks. We define a graph distance function on such networks and combine it with a correlation-based distance function for gene expression measurements. A hierarchical clustering and an associated statistical measure is computed to arrive at a reasonable number of clusters. Our method is validated using expression data of the yeast diauxic shift. The resulting clusters are easily interpretable in terms of the biochemical network and the gene expression data and suggest that our method is able to automatically identify processes that are relevant under the measured conditions.  相似文献   

2.
MOTIVATION: Microarray technology enables large-scale inference of the participation of genes in biological process from similar expression profiles. Our aim is to induce classificatory models from expression data and biological knowledge that can automatically associate genes with novel hypotheses of biological process. RESULTS: We report a systematic supervised learning approach to predicting biological process from time series of gene expression data and biological knowledge. Biological knowledge is expressed using gene ontology and this knowledge is associated with discriminatory expression-based features to form minimal decision rules. The resulting rule model is first evaluated on genes coding for proteins with known biological process roles using cross validation. Then it is used to generate hypotheses for genes for which no knowledge of participation in biological process could be found. The theoretical foundation for the methodology based on rough sets is outlined in the paper, and its practical application demonstrated on a data set previously published by Cho et al. (Nat. Genet., 27, 48-54, 2001). AVAILABILITY: The Rosetta system is available at http://www.idi.ntnu.no/~aleks/rosetta. SUPPLEMENTARY INFORMATION: http://www.lcb.uu.se/~hvidsten/bioinf_cho/  相似文献   

3.
We propose a statistical method for estimating a gene network based on Bayesian networks from microarray gene expression data together with biological knowledge including protein-protein interactions, protein-DNA interactions, binding site information, existing literature and so on. Microarray data do not contain enough information for constructing gene networks accurately in many cases. Our method adds biological knowledge to the estimation method of gene networks under a Bayesian statistical framework, and also controls the trade-off between microarray information and biological knowledge automatically. We conduct Monte Carlo simulations to show the effectiveness of the proposed method. We analyze Saccharomyces cerevisiae gene expression data as an application.  相似文献   

4.
MOTIVATION: As biomedical researchers are amassing a plethora of information in a variety of forms resulting from the advancements in biomedical research, there is a critical need for innovative information management and knowledge discovery tools to sift through these vast volumes of heterogeneous data and analysis tools. In this paper we present a general model for an information management system that is adaptable and scalable, followed by a detailed design and implementation of one component of the model. The prototype, called BioSifter, was applied to problems in the bioinformatics area. RESULTS: BioSifter was tested using 500 documents obtained from PubMed database on two biological problems related to genetic polymorphism and extracorporal shockwave lithotripsy. The results indicate that BioSifter is a powerful tool for biological researchers to automatically retrieve relevant text documents from biological literature based on their interest profile. The results also indicate that the first stage of information management process, i.e. data to information transformation, significantly reduces the size of the information space. The filtered data obtained through BioSifter is relevant as well as much smaller in dimension compared to all the retrieved data. This would in turn significantly reduce the complexity associated with the next level transformation, i.e. information to knowledge.  相似文献   

5.
Cytoscape是一个广泛应用于分子相互作用网络可视化的软件.发展了一个基于java的Cytoscape插件PNmerger.对于一个蛋白质相互作用网络,PNmerger能够使用KEGG数据库中的通路信息自动注释网络中的蛋白质.并通过网络和通路的比较发现网络中已知的通路元件,预测可能的通路元件及通路交联元件.该软件可以可视化网络中存在的通路模块,并将连接不同通路间的潜在交联元件显示出来.PNmerger软件能够有效地帮助实验人员发现网络中重要的功能线索,帮助实验人员进行实验设计.用户可以通过网站http://www.hupo.org.cn/PNmerger下载PNmerger插件.  相似文献   

6.
MOTIVATION: The ambiguity of biomedical entities, particularly of gene symbols, is a big challenge for text-mining systems in the biomedical domain. Existing knowledge sources, such as Entrez Gene and the MEDLINE database, contain information concerning the characteristics of a particular gene that could be used to disambiguate gene symbols. RESULTS: For each gene, we create a profile with different types of information automatically extracted from related MEDLINE abstracts and readily available annotated knowledge sources. We apply the gene profiles to the disambiguation task via an information retrieval method, which ranks the similarity scores between the context where the ambiguous gene is mentioned, and candidate gene profiles. The gene profile with the highest similarity score is then chosen as the correct sense. We evaluated the method on three automatically generated testing sets of mouse, fly and yeast organisms, respectively. The method achieved the highest precision of 93.9% for the mouse, 77.8% for the fly and 89.5% for the yeast. AVAILABILITY: The testing data sets and disambiguation programs are available at http://www.dbmi.columbia.edu/~hux7002/gsd2006  相似文献   

7.
MOTIVATION: Natural language processing (NLP) techniques are increasingly being used in biology to automate the capture of new biological discoveries in text, which are being reported at a rapid rate. Yet, information represented in NLP data structures is classically very different from information organized with ontologies as found in model organisms or genetic databases. To facilitate the computational reuse and integration of information buried in unstructured text with that of genetic databases, we propose and evaluate a translational schema that represents a comprehensive set of phenotypic and genetic entities, as well as their closely related biomedical entities and relations as expressed in natural language. In addition, the schema connects different scales of biological information, and provides mappings from the textual information to existing ontologies, which are essential in biology for integration, organization, dissemination and knowledge management of heterogeneous phenotypic information. A common comprehensive representation for otherwise heterogeneous phenotypic and genetic datasets, such as the one proposed, is critical for advancing systems biology because it enables acquisition and reuse of unprecedented volumes of diverse types of knowledge and information from text. RESULTS: A novel representational schema, PGschema, was developed that enables translation of phenotypic, genetic and their closely related information found in textual narratives to a well-defined data structure comprising phenotypic and genetic concepts from established ontologies along with modifiers and relationships. Evaluation for coverage of a selected set of entities showed that 90% of the information could be represented (95% confidence interval: 86-93%; n = 268). Moreover, PGschema can be expressed automatically in an XML format using natural language techniques to process the text. To our knowledge, we are providing the first evaluation of a translational schema for NLP that contains declarative knowledge about genes and their associated biomedical data (e.g. phenotypes). AVAILABILITY: http://zellig.cpmc.columbia.edu/PGschema  相似文献   

8.
One of the main goals in proteomics is to solve biological and molecular questions regarding a set of identified proteins. In order to achieve this goal, one has to extract and collect the existing biological data from public repositories for every protein and afterward, analyze and organize the collected data. Due to the complexity of this task and the huge amount of data available, it is not possible to gather this information by hand, making it necessary to find automatic methods of data collection. Within a proteomic context, we have developed Protein Information and Knowledge Extractor (PIKE) which solves this problem by automatically accessing several public information systems and databases across the Internet. PIKE bioinformatics tool starts with a set of identified proteins, listed as the most common protein databases accession codes, and retrieves all relevant and updated information from the most relevant databases. Once the search is complete, PIKE summarizes the information for every single protein using several file formats that share and exchange the information with other software tools. It is our opinion that PIKE represents a great step forward for information procurement and drastically reduces manual database validation for large proteomic studies. It is available at http://proteo.cnb.csic.es/pike .  相似文献   

9.
10.
Gene expression datasets are large and complex, having many variables and unknown internal structure. We apply independent component analysis (ICA) to derive a less redundant representation of the expression data. The decomposition produces components with minimal statistical dependence and reveals biologically relevant information. Consequently, to the transformed data, we apply cluster analysis (an important and popular analysis tool for obtaining an initial understanding of the data, usually employed for class discovery). The proposed self-organizing map (SOM)-based clustering algorithm automatically determines the number of 'natural' subgroups of the data, being aided at this task by the available prior knowledge of the functional categories of genes. An entropy criterion allows each gene to be assigned to multiple classes, which is closer to the biological representation. These features, however, are not achieved at the cost of the simplicity of the algorithm, since the map grows on a simple grid structure and the learning algorithm remains equal to Kohonen's one.  相似文献   

11.
ABSTRACT: BACKGROUND: An important question in the analysis of biochemical data is that of identifying subsets of molecular variables that may jointly influence a biological response. Statistical variable selection methods have been widely used for this purpose. In many settings, it may be important to incorporate ancillary biological information concerning the variables of interest. Pathway and network maps are one example of a source of such information. However, although ancillary information is increasingly available, it is not always clear how it should be used nor how it should be weighted in relation to primary data. RESULTS: We put forward an approach in which biological knowledge is incorporated using informative prior distributions over variable subsets, with prior information selected and weighted in an automated, objective manner using an empirical Bayes formulation. We employ continuous, linear models with interaction terms and exploit biochemically-motivated sparsity constraints to permit exact inference. We show an example of priors for pathway- and network-based information and illustrate our proposed method on both synthetic response data and by an application to cancer drug response data. Comparisons are also made to alternative Bayesian and frequentist penalised-likelihood methods for incorporating network-based information. CONCLUSIONS: The empirical Bayes method proposed here can aid prior elicitation for Bayesian variable selection studies and help to guard against mis-specification of priors. Empirical Bayes, together with the proposed pathway-based priors, results in an approach with a competitive variable selection performance. In addition, the overall procedure is fast, deterministic, and has very few user-set parameters, yet is capable of capturing interplay between molecular players. The approach presented is general and readily applicable in any setting with multiple sources of biological prior knowledge.  相似文献   

12.
Small molecules play crucial role in the modulation of biological functions by interacting with specific macromolecules. Hence small molecule interactions are captured by a variety of experimental methods to estimate and propose correlations between molecular structures to their biological activities. The tremendous expanse in publicly available small molecules is also driving new efforts to better understand interactions involving small molecules particularly in area of drug docking and pharmacogenomics. We have studied and designed a functional group identification system with the associated ontology for it. The functional group identification system can detect the functional group components from given ligand structure with specific coordinate information. Functional group ontology (FGO) proposed by us is a structured classification of chemical functional group which acts as an important source of prior knowledge that may be automatically integrated to support identification, categorization and predictive data analysis tasks. We have used a new annotation method which can be used to construct the original structure from given ontological expression using exact coordinate information. Here, we also discuss about ontology-driven similarity measure of functional groups and uses of such novel ontology for pharmacophore searching and de-novo ligand designing.  相似文献   

13.
14.
Bell L  Chowdhary R  Liu JS  Niu X  Zhang J 《PloS one》2011,6(6):e21474
A significant part of our biological knowledge is centered on relationships between biological entities (bio-entities) such as proteins, genes, small molecules, pathways, gene ontology (GO) terms and diseases. Accumulated at an increasing speed, the information on bio-entity relationships is archived in different forms at scattered places. Most of such information is buried in scientific literature as unstructured text. Organizing heterogeneous information in a structured form not only facilitates study of biological systems using integrative approaches, but also allows discovery of new knowledge in an automatic and systematic way. In this study, we performed a large scale integration of bio-entity relationship information from both databases containing manually annotated, structured information and automatic information extraction of unstructured text in scientific literature. The relationship information we integrated in this study includes protein-protein interactions, protein/gene regulations, protein-small molecule interactions, protein-GO relationships, protein-pathway relationships, and pathway-disease relationships. The relationship information is organized in a graph data structure, named integrated bio-entity network (IBN), where the vertices are the bio-entities and edges represent their relationships. Under this framework, graph theoretic algorithms can be designed to perform various knowledge discovery tasks. We designed breadth-first search with pruning (BFSP) and most probable path (MPP) algorithms to automatically generate hypotheses--the indirect relationships with high probabilities in the network. We show that IBN can be used to generate plausible hypotheses, which not only help to better understand the complex interactions in biological systems, but also provide guidance for experimental designs.  相似文献   

15.
Pathway analysis using random forests classification and regression   总被引:3,自引:0,他引:3  
MOTIVATION: Although numerous methods have been developed to better capture biological information from microarray data, commonly used single gene-based methods neglect interactions among genes and leave room for other novel approaches. For example, most classification and regression methods for microarray data are based on the whole set of genes and have not made use of pathway information. Pathway-based analysis in microarray studies may lead to more informative and relevant knowledge for biological researchers. RESULTS: In this paper, we describe a pathway-based classification and regression method using Random Forests to analyze gene expression data. The proposed methods allow researchers to rank important pathways from externally available databases, discover important genes, find pathway-based outlying cases and make full use of a continuous outcome variable in the regression setting. We also compared Random Forests with other machine learning methods using several datasets and found that Random Forests classification error rates were either the lowest or the second-lowest. By combining pathway information and novel statistical methods, this procedure represents a promising computational strategy in dissecting pathways and can provide biological insight into the study of microarray data. AVAILABILITY: Source code written in R is available from http://bioinformatics.med.yale.edu/pathway-analysis/rf.htm.  相似文献   

16.
Systematic extraction of relevant biological facts from available massive scientific knowledge source is emerging as a significant task for the science community. Its success depends on several key factors, including the precision of a given search, the time of its accomplishment, and the communicative prowess of the mined information to the users. GeneCite - a stand-alone Java-based high-throughput data mining tool - is designed to carry out these tasks for several important knowledge sources simultaneously, allowing the users to integrate the results and interpret biological significance in a time-efficient manner. GeneCite provides an integrated high-throughput search platform serving as an information retrieval (IR) tool for probing online literature database (PubMed) and the sequence-tagged sites' database (UniSTS), respectively. It also operates as a data retrieval (DR) tool to mine an archive of biological pathways integrated into the software itself. Furthermore, GeneCite supports a retrieved data management system (DMS) showcasing the final output in a spread-sheet format. Each cell of the output file holds a real-time connection (hyperlink) to the given online archive reachable at the users' convenience. The software is free and currently available online www.bioinformatics.org; www.wrair.army.mil/Resources.  相似文献   

17.
Recognizing names in biomedical texts: a machine learning approach   总被引:9,自引:0,他引:9  
MOTIVATION: With an overwhelming amount of textual information in molecular biology and biomedicine, there is a need for effective and efficient literature mining and knowledge discovery that can help biologists to gather and make use of the knowledge encoded in text documents. In order to make organized and structured information available, automatically recognizing biomedical entity names becomes critical and is important for information retrieval, information extraction and automated knowledge acquisition. RESULTS: In this paper, we present a named entity recognition system in the biomedical domain, called PowerBioNE. In order to deal with the special phenomena of naming conventions in the biomedical domain, we propose various evidential features: (1) word formation pattern; (2) morphological pattern, such as prefix and suffix; (3) part-of-speech; (4) head noun trigger; (5) special verb trigger and (6) name alias feature. All the features are integrated effectively and efficiently through a hidden Markov model (HMM) and a HMM-based named entity recognizer. In addition, a k-Nearest Neighbor (k-NN) algorithm is proposed to resolve the data sparseness problem in our system. Finally, we present a pattern-based post-processing to automatically extract rules from the training data to deal with the cascaded entity name phenomenon. From our best knowledge, PowerBioNE is the first system which deals with the cascaded entity name phenomenon. Evaluation shows that our system achieves the F-measure of 66.6 and 62.2 on the 23 classes of GENIA V3.0 and V1.1, respectively. In particular, our system achieves the F-measure of 75.8 on the "protein" class of GENIA V3.0. For comparison, our system outperforms the best published result by 7.8 on GENIA V1.1, without help of any dictionaries. It also shows that our HMM and the k-NN algorithm outperform other models, such as back-off HMM, linear interpolated HMM, support vector machines, C4.5, C4.5 rules and RIPPER, by effectively capturing the local context dependency and resolving the data sparseness problem. Moreover, evaluation on GENIA V3.0 shows that the post-processing for the cascaded entity name phenomenon improves the F-measure by 3.9. Finally, error analysis shows that about half of the errors are caused by the strict annotation scheme and the annotation inconsistency in the GENIA corpus. This suggests that our system achieves an acceptable F-measure of 83.6 on the 23 classes of GENIA V3.0 and in particular 86.2 on the "protein" class, without help of any dictionaries. We think that a F-measure of 90 on the 23 classes of GENIA V3.0 and in particular 92 on the "protein" class, can be achieved through refining of the annotation scheme in the GENIA corpus, such as flexible annotation scheme and annotation consistency, and inclusion of a reasonable biomedical dictionary. AVAILABILITY: A demo system is available at http://textmining.i2r.a-star.edu.sg/NLS/demo.htm. Technology license is available upon the bilateral agreement.  相似文献   

18.
In this paper, we present a novel approach Bio-IEDM (biomedical information extraction and data mining) to integrate text mining and predictive modeling to analyze biomolecular network from biomedical literature databases. Our method consists of two phases. In phase 1, we discuss a semisupervised efficient learning approach to automatically extract biological relationships such as protein-protein interaction, protein-gene interaction from the biomedical literature databases to construct the biomolecular network. Our method automatically learns the patterns based on a few user seed tuples and then extracts new tuples from the biomedical literature based on the discovered patterns. The derived biomolecular network forms a large scale-free network graph. In phase 2, we present a novel clustering algorithm to analyze the biomolecular network graph to identify biologically meaningful subnetworks (communities). The clustering algorithm considers the characteristics of the scale-free network graphs and is based on the local density of the vertex and its neighborhood functions that can be used to find more meaningful clusters with different density level. The experimental results indicate our approach is very effective in extracting biological knowledge from a huge collection of biomedical literature. The integration of data mining and information extraction provides a promising direction for analyzing the biomolecular network  相似文献   

19.
Context-sensitive data integration and prediction of biological networks   总被引:4,自引:0,他引:4  
MOTIVATION: Several recent methods have addressed the problem of heterogeneous data integration and network prediction by modeling the noise inherent in high-throughput genomic datasets, which can dramatically improve specificity and sensitivity and allow the robust integration of datasets with heterogeneous properties. However, experimental technologies capture different biological processes with varying degrees of success, and thus, each source of genomic data can vary in relevance depending on the biological process one is interested in predicting. Accounting for this variation can significantly improve network prediction, but to our knowledge, no previous approaches have explicitly leveraged this critical information about biological context. RESULTS: We confirm the presence of context-dependent variation in functional genomic data and propose a Bayesian approach for context-sensitive integration and query-based recovery of biological process-specific networks. By applying this method to Saccharomyces cerevisiae, we demonstrate that leveraging contextual information can significantly improve the precision of network predictions, including assignment for uncharacterized genes. We expect that this general context-sensitive approach can be applied to other organisms and prediction scenarios. AVAILABILITY: A software implementation of our approach is available on request from the authors. SUPPLEMENTARY INFORMATION: Supplementary data are available at http://avis.princeton.edu/contextPIXIE/  相似文献   

20.
The integration of proteomics data with biological knowledge is a recent trend in bioinformatics. A lot of biological information is available and is spread on different sources and encoded in different ontologies (e.g. Gene Ontology). Annotating existing protein data with biological information may enable the use (and the development) of algorithms that use biological ontologies as framework to mine annotated data. Recently many methodologies and algorithms that use ontologies to extract knowledge from data, as well as to analyse ontologies themselves have been proposed and applied to other fields. Conversely, the use of such annotations for the analysis of protein data is a relatively novel research area that is currently becoming more and more central in research. Existing approaches span from the definition of the similarity among genes and proteins on the basis of the annotating terms, to the definition of novel algorithms that use such similarities for mining protein data on a proteome-wide scale. This work, after the definition of main concept of such analysis, presents a systematic discussion and comparison of main approaches. Finally, remaining challenges, as well as possible future directions of research are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号