首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of chilling on the photosynthesis of a chilling-resistant species, pea (Pisum sativum L. cv Alaska) and a chilling-sensitive species, cucumber (Cucumis sativus L. cv Ashley) were compared in order to determine the differences in the photosynthetic chilling sensitivity of these two species. For these experiments, plants were chilled (5°C) for different lengths of time in the dark or light. Following a 1 hour recovery period at 25°C, photosynthetic activity was measured by gas exchange (CO2 uptake and H2O release), quantum yield, and induced chlorophyll fluorescence. The results show that pea photosynthesis was largely unaffected by two consecutive nights of chilling in the dark, or by chilling during a complete light and dark cycle (15 hours/9 hours). Cucumber gas exchange was reduced by one night of chilling, but its quantum yield and variable fluorescence were unaffected by dark chilling. However, chilling cucumber in the light led to reduced CO2 fixation, increased internal leaf CO2 concentration, decreased quantum yield, and loss of variable fluorescence. These results indicate that chilling temperatures in conjunction with light damaged the light reactions of photosynthesis, while chilling in the dark did not.  相似文献   

2.
At low water potential (ψw), dehydration reduces the symplast volume of leaf tissue. The effect of this reduction on photosynthetic capacity was investigated. The influence of osmotic adjustment on this relationship was also examined. To examine these relationships, comparative studies were undertaken on two wheat cultivars, one that osmotically adjusts in response to water deficits (`Condor'), and one that lacks this capacity (`Capelle Desprez'). During a 9-day stress cycle, when water was withheld from plants grown in a growth chamber, the relative water content of leaves declined by 30% in both cultivars. Leaf osmotic potential (ψs) declined to a greater degree in Condor plants. Measuring ψs at full turgor indicated that osmotic adjustment occurred in stressed Condor, but not in Capelle plants. Two methods were used to examine the degree of symplast (i.e. protoplast) volume reduction in tissue rapidly equilibrated to increasingly low ψw. Both techniques gave similar results. With well-watered plants, symplast volume reduction from the maximum (found at high ψw for each cultivar) was the same for Condor and Capelle. After a stress cycle, volume was maintained to a greater degree at low ψw in Condor leaf tissue than in Capelle. Nonstomatally controlled photosynthesis was inhibited to the same degree at low ψw in leaf tissue prepared from well-watered Condor and Capelle plants. However, photosynthetic capacity was maintained to a greater degree at low ψw in tissue prepared from stressed Condor plants than in tissue from stressed Capelle plants. Net CO2 uptake in attached leaves was monitored using an infrared gas analyzer. These studies indicated that in water stressed plants, photosynthesis was 106.5% higher in Condor than Capelle at ambient [CO2] and 21.8% higher at elevated external [CO2]. The results presented in this report were interpreted as consistent with the hypothesis that there is a causal association between protoplast (and presumably chloroplast) volume reduction at low ψw and low ψw inhibition of photosynthesis. Also, the data indicate that osmotic adjustment allows for maintenance of relatively greater volume at low ψw, thus reducing low ψw inhibition of chloroplast photosynthetic potential.  相似文献   

3.
This study aims to elucidate the molecular mechanism for the transient increase in the O2‐uptake rate in tobacco (Nicotiana tabacum cv Xanthi) leaves after turning off actinic lights (ALs). The photosynthetic O2 evolution rate reaches a maximum shortly after the onset of illumination with ALs and then decreases to zero in atmospheric CO2/O2 conditions. After turning off the ALs, tobacco leaves show a transient increase in the O2‐uptake rate, the post‐illumination transient O2‐uptake, and thereafter, the O2‐uptake rate decreases to the level of the dark‐respiration rate. Photosynthetic linear electron flow, evaluated as the quantum yield of photosystem II [Y(II)], maintained a steady‐state value distinct from the photosynthetic O2‐evolution rate. In high‐[CO2] conditions, the photosynthetic O2‐evolution rate and Y(II) showed a parallel behavior, and the post‐illumination transient O2‐uptake was suppressed. On the other hand, in maize leaves (a C4 plant), even in atmospheric CO2/O2 conditions, Y(II) paralleled the photosynthetic O2‐evolution rate and the post‐illumination transient O2‐uptake was suppressed. Hypothesizing that the post‐illumination transient O2‐uptake is driven by C3 plant photorespiration in tobacco leaves, we calculated both the ribulose 1,5‐bisphosphate carboxylase‐ and oxygenase‐rates (Vc and Vo) from photosynthetic O2‐evolution and the post‐illumination transient O2‐uptake rates. These values corresponded to those estimated from simultaneous chlorophyll fluorescence/O2‐exchange analysis. Furthermore, the H+‐consumption rate for ATP synthesis in both photosynthesis and photorespiration, calculated from both Vc and Vo that were estimated from chlorophyll fluorescence/CO2‐exchange analysis, showed a positive linear relationship with the dissipation rate of the electrochromic shift signal. Thus, these findings support our hypothesis.  相似文献   

4.
Photosynthetic CO2 assimilation, transpiration, ribulose-1,5-bisphosphate carboxylase (RuBPCase), and soluble protein were reduced in leaves of water-deficit (stress) `Valencia' orange (Citrus sinensis [L.] Osbeck). Maximum photosynthetic CO2 assimilation and transpiration, which occurred before midday for both control and stressed plants, was 58 and 40%, respectively, for the stress (−2.0 megapascals leaf water potential) as compared to the control (−0.6 megapascals leaf water potential). As water deficit became more severe in the afternoon, with water potential of −3.1 megapascals for the stressed leaves vs. −1.1 megapascals for control leaves, stressed-leaf transpiration declined and photosynthetic CO2 assimilation rapidly dropped to zero. Water deficit decreased both activation and total activity of RuBPCase. Activation of the enzyme was about 62% (of fully activated enzyme in vitro) for the stress, compared to 80% for the control. Water deficit reduced RuBPCase initial activity by 40% and HCO3/Mg2+-saturated activity by 22%. However, RuBPCase for both stressed and control leaves were similar in Kcat (25 moles CO2 per mole enzyme per second) and Km for CO2 (18.9 micromolar). Concentrations of RuBPCase and soluble protein of stressed leaves averaged 80 and 85%, respectively, of control leaves. Thus, reductions in activation and concentration of RuBPCase in Valencia orange leaves contributed to reductions in enzyme activities during water-deficit periods. Declines in leaf photosynthesis, soluble protein, and RuBPCase activation and concentration due to water deficit were, however, recoverable at 5 days after rewatering.  相似文献   

5.
The effect of leaf temperature on stomatal conductance and net CO2 uptake was studied on French bean (Phaseolus vulgaris L.) using either dehydrated attached leaves (25–40% water deficit) or cut leaves supplied with 10–4 M abscisic acid (ABA) solution to the transpiration stream. Decreasing leaf temperature caused stomatal opening and increased net CO2 uptake (which was close to zero at around 25° C) to a level identical to that of control leaves (without water deficit) at around 15° C. (i) The ABA effect on stomatal closure was modulated by temperature and, presumably, ABA is at least partly responsible for stomatal closure of french bean submitted to a drought stress. (ii) For leaf temperatures lower than 15° C, net CO2 uptake was no longer limited by water deficit even on very dehydrated leaves. This shows that dehydrated leaves retain a substantial part of their photosynthetic capacity which can be revealed at normal CO2 concentrations when stomata open at low temperature. In contrast to leaves fed with ABA, decreasing the O2 concentration from 21% to 1% O2 did not increase either the rate of net CO2 uptake or the thermal optimum for photosynthesis of dehydrated leaves. The quantum yield of PSII electron flow (measured by F/Fm) was lower in 1% O2 than in 21% O2 for each leaf pretreatment given (non-dehydrated leaves, dehydrated leaves, and leaves fed with ABA) even within a temperature range in which leaf photosynthesis at normal CO2 concentration was the same in these two O2 concentrations. It is concluded that this probably indicates an heterogeneity of photosynthesis, since this difference in quantum yield disappears when using high CO2 concentrations during measurements.Abbreviations and Symbols ABA abscisic acid - Fm maximum chlorophyll fluorescence - F difference between steady-state chlorophyll fluorescence and Fm - PPFD photosynthetic photon flux density We would like to thank Dr. J.-M. Briantais (Laboratoire d'écologie végétale, Orsay, France) for help during fluorescence measurements and Ms. J. Liebert for technical assistance.  相似文献   

6.
Impairment of photosynthesis by chilling-temperatures in tomato   总被引:23,自引:9,他引:14       下载免费PDF全文
Chilling of attached tomato leaves (cv. Rutgers) in the dark for 16 hours at 1 C decreased both photosynthesis and transpiration. To separate the effects of chilling on stomatal CO2 conductance from more direct effects of chilling on the chloroplasts' activities, measurements of photosynthesis and transpiration were made at atmospheric and saturating CO2 levels. At atmospheric CO2, the inhibition of photosynthesis was approximately 60%, of which about 35% was attributable to the impairment of chloroplast function and about 25% was attributable to decreased stomatal conductance. However, the affinity of the photosynthetic apparatus for CO2 was not changed by chilling, since the dependence of the relative rate of photosynthesis on the intercellular CO2 concentration was unaltered. The apparent quantum requirement for CO2 reduction also was identical in chilled and unchilled plants. This observation contradicts the widely held notion that the chilling-induced inhibition of photosynthesis is caused by an impairment of the water oxidation mechanism. The impairment of chloroplast activity was not a consequence of an unfavorable water status within the leaf, since chilling caused only a small drop (1 bar) in water potential. A small loss of chlorophyll resulted as a secondary effect of chilling, but this loss of chlorophyll was eliminated as a cause of the inhibition of photosynthesis.  相似文献   

7.
Abstract. Fully expanded leaves of 25°C grown Phaseolus vulgaris and six other species were exposed for 3 h to chilling temperatures at photon flux densities equivalent to full sunlight. In four of the species this treatment resulted in substantial inhibition of the subsequent quantum yield of CO2 uptake, indicating reduction of the photochemical efficiency of photosynthesis. The extent of inhibition was dependent on the photon flux density during chilling and no inhibition occurred when chilling occurred at a low photon flux density. No inhibition occurred at temperatures above 11.5°C, even in the presence of the equivalent of full sunlight. This interaction between chilling and light to cause inhibition of photosynthesis was promoted by the presence of oxygen at normal air partial pressures and was unaffected by the CO2 partial pressure present when chilling occurred in air. When chilling occurred at low O2 partial pressures, CO2 was effective in reducing the degree of inhibition. Apparently, when leaves of chilling-sensitive plants are exposed to chilling temperatures in air of normal composition then light is instrumental in inducing rapid damage to the photochemical efficiency of photosynthesis.  相似文献   

8.
Chilling‐induced photosynthetic impairment was examined in leaves of maize (Zea mays L.) seedlings of two cultivars, one adapted to western Europe and one adapted to Mexican highlands. Three experiments were performed in a controlled environment. The effects of chilling night temperatures, of chilling at high light intensity and of variable chilling day temperatures on photosynthetic parameters, were evaluated. Chilling in the dark period resulted in stomatal limitation of net photosynthesis. Chilling at moderate to high light intensities caused chilling‐dependent photoinhibition of CO2 uptake. Photobleached maize leaves did not resume normal photosynthetic function. Maize cv. Batan 8686 from the highlands of Mexico was less susceptible to photosynthetic damage than maize cv. Bastion adapted for cultivation in W. Europe, when exposed to chilling night temperatures, or to mild chilling photoinhibitory conditions.  相似文献   

9.
Studies were undertaken to examine the relationship between water deficit effects on photosynthesis and the extent of protoplast volume reduction which occurs in leaves at low water potential (Ψw). This relationship was monitored in two cultivars (`Condor' and `Capelle Desprez') of cultivated wheat (Triticum aestivum) that differed in sensitivity to drought, and in a wild relative of cultivated wheat (Triticum kotschyi) that has been previously found to be `drought resistant.' When subjected to periods of water stress, Condor and T. kotschyi plants underwent osmotic adjustment; Capelle plants did not. Photosynthetic capacity was maintained to different extents in the three genotypes as leaf Ψw declined during stress; Capelle plants were most severely affected. Calculations of internal leaf [CO2] and stomatal conductance from gas exchange measurements indicated that differences in photosynthetic inhibition at low Ψw among the genotypes were primarily due to nonstomatal effects. The extent of protoplast volume reduction that occurred in leaves at low Ψw was also found to be different in the three genotypes; maintenance of protoplast volume and photosynthetic capacity in stressed plants of the genotypes appeared to be correlated. When the extent of water stress-induced inhibition of photosynthesis was plotted as a function of declining protoplast volume, this relationship appeared identical for the three genotypes. It was concluded that there is a correlative association between protoplast volume and photosynthetic capacity in leaves of wheat plants subjected to periods of water stress.  相似文献   

10.
Lauer MJ  Boyer JS 《Plant physiology》1992,98(4):1310-1316
Observations of nonuniform photosynthesis across leaves cast doubt on internal CO2 partial pressures (pi) calculated on the assumption of uniformity and can lead to incorrect conclusions about the stomatal control of photosynthesis. The problem can be avoided by measuring pi directly because the assumptions of uniformity are not necessary. We therefore developed a method that allowed pi to be measured continuously in situ for days at a time under growth conditions and used it to investigate intact leaves of sunflower (Helianthus annuus L.), soybean (Glycine max L. Merr.), and bush bean (Phaseolus vulgaris L.) subjected to high or low leaf water potentials (ψw) or high concentrations of abscisic acid (ABA). The leaves maintained a relatively constant differential (Δp) between ambient CO2 and measured pi throughout the light period when water was supplied. When water was withheld, ψw decreased and the stomata began to close, but measured pi increased until the leaf reached a ψw of −1.76 (bush bean), −2.12 (sunflower) or −3.10 (soybean) megapascals, at which point Δp = 0. The increasing pi indicated that stomata did not inhibit CO2 uptake and a Δp of zero indicated that CO2 uptake became zero despite the high availability of CO2 inside the leaf. In contrast, when sunflower leaves at high ψw were treated with ABA, pi did not increase and instead decreased rapidly and steadily for up to 8 hours even as ψw increased, as expected if ABA treatment primarily affected stomatal conductance. The accumulating CO2 at low ψw and contrasting response to ABA indicates that photosynthetic biochemistry limited photosynthesis at low ψw but not at high ABA.  相似文献   

11.
Zelitch I 《Plant physiology》1989,90(4):1457-1464
Plants were obtained with novel O2-resistant photosynthetic characteristics. At low CO2 (250-350 μL CO2 L−1) and 30°C when O2 was increased from 1% to 21% to 42%, the ratio of net CO2 uptake in O2-resistant whole plants or leaf discs compared to wild type increased progressively, and this was not related to stomatal opening. Dihaploid plantlets regenerated from anther culture were initially screened and selected for O2-resistant growth in 42% O2/160 μL CO2 L−1 and 0.18% of the plantlets showed O2-resistant photosynthesis. About 30% of the progeny (6 of 19 plants) of the first selfing of a fertile plant derived from a resistant dihaploid plant had O2-resistant photosynthesis, and after a second selfing this increased to 50% (6 of 12 plants). In 21% O2 and low CO2, net photosynthesis of the resistant plants was about 15% greater on a leaf area basis than wild type. Net photosynthesis was compared in leaf discs at 30 and 38°C in 21% O2, and at the higher temperature O2-resistant plants showed still greater photosynthesis than wild type. The results suggest that the O2-resistant photosynthesis described here is associated with a decreased stoichiometry of CO2 release under conditions of rapid photorespiration. This view was supported by the finding that leaves of O2-resistant plants averaged 40% greater catalase activity than wild type.  相似文献   

12.
Leaves of C3 plants which exhibit a normal O2 inhibition of CO2 fixation at less than saturating light intensity were found to exhibit O2-insensitive photosynthesis at high light. This behavior was observed in Phaseolus vulgaris L., Xanthium strumarium L., and Scrophularia desertorum (Shaw.) Munz. O2-insensitive photosynthesis has been reported in nine other C3 species and usually occurred when the intercellular CO2 pressure was about double the normal pressure. A lack of O2 inhibition of photosynthesis was always accompanied by a failure of increased CO2 pressure to stimulate photosynthesis to the expected degree. O2-insensitive photosynthesis also occurred after plants had been water stressed. Under such conditions, however, photosynthesis became O2 and CO2 insensitive at physiological CO2 pressures. Postillumination CO2 exchange kinetics showed that O2 and CO2 insensitivity was not the result of elimination of photorespiration.

It is proposed that O2 and CO2 insensitivity occurs when the concentration of phosphate in the chloroplast stroma cannot be both high enough to allow photophosphorylation and low enough to allow starch and sucrose synthesis at the rates required by the rest of the photosynthetic component processes. Under these conditions, the energy diverted to photorespiration does not adversely affect the potential for CO2 assimilation.

  相似文献   

13.
The extent and occurrence of water stress-induced “patchy” CO2 uptake across the surface of leaves was evaluated in a number of plant species. Leaves, while still attached to a plant, were illuminated and exposed to air containing [14C]CO2 before autoradiographs were developed. Plant water deficits that caused leaf water potential depression to −1.1 megapascals during a 4-day period did result in heterogenous CO2 assimilation patterns in bean (Phaseolus vulgaris). However, when the same level of stress was imposed more gradually (during 17 days), no patchy stomatal closure was evident. The patchy CO2 assimilation pattern that occurs when bean plants are subjected to a rapidly imposed stress could induce artifacts in gas exchange studies such that an effect of stress on chloroplast metabolism is incorrectly deduced. This problem was characterized by examining the relationship between photosynthesis and internal [CO2] in stressed bean leaves. When extent of heterogenous CO2 uptake was estimated and accounted for, there appeared to be little difference in this relationship between control and stressed leaves. Subjecting spinach (Spinacea oleracea) plants to stress (leaf water potential depression to −1.5 megapascals) did not appear to cause patchy stomatal closure. Wheat (Triticum aestivum) plants also showed homogenous CO2 assimilation patterns when stressed to a leaf water potential of −2.6 megapascals. It was concluded that water stress-induced patchy stomatal closure can occur to an extent that could influence the analysis of gas exchange studies. However, this phenomenon was not found to be a general response. Not all stress regimens will induce patchiness; nor will all plant species demonstrate this response to water deficits.  相似文献   

14.
Olive (Olea europea L) is one of the most valuable and widespread fruit trees in the Mediterranean area. To breed olive for resistance to salinity, an environmental constraint typical of the Mediterranean, is an important goal. The photosynthetic limitations associated with salt stress caused by irrigation with saline (200 mm ) water were assessed with simultaneous gas‐exchange and fluorescence field measurements in six olive cultivars. Cultivars were found to possess inherently different photosynthesis when non‐stressed. When exposed to salt stress, cultivars with inherently high photosynthesis showed the highest photosynthetic reductions. There was no relationship between salt accumulation and photosynthesis reduction in either young or old leaves. Thus photosynthetic sensitivity to salt did not depend on salt exclusion or compartmentalization in the old leaves of the olive cultivars investigated. Salt reduced the photochemical efficiency, but this reduction was also not associated with photosynthesis reduction. Salt caused a reduction of stomatal and mesophyll conductance, especially in cultivars with inherently high photosynthesis. Mesophyll conductance was generally strongly associated with photosynthesis, but not in salt‐stressed leaves with a mesophyll conductance higher than 50 mmol m?2 s?1. The combined reduction of stomatal and mesophyll conductances in salt‐stressed leaves increased the CO2 draw‐down between ambient air and the chloroplasts. The CO2 draw‐down was strongly associated with photosynthesis reduction of salt‐stressed leaves but also with the variable photosynthesis of controls. The relationship between photosynthesis and CO2 draw‐down remained unchanged in most of the cultivars, suggesting no or small changes in Rubisco activity of salt‐stressed leaves. The present results indicate that the low chloroplast CO2 concentration set by both low stomatal and mesophyll conductances were the main limitations of photosynthesis in salt‐stressed olive as well as in cultivars with inherently low photosynthesis. It is consequently suggested that, independently of the apparent sensitivity of photosynthesis to salt, this effect may be relieved if conductances to CO2 diffusion are restored.  相似文献   

15.
Abstract Oxygen effects on apparent photosynthetic and dark respiratory O2 exchange rates of detached leaves of Elodea canadensis Michx. (Hydrocharitaceae) were determined over a range of conditions which the submersed plant is likely to experience in shallow water. Apparent photosynthesis is inhibited by O2 under all the experimental regimes of light, temperature, CO2 concentration and pH. This inhibition is not caused solely by an accelerated rate of dark respiration, and the observed variations in O2 inhibition are comparable to O2 effects on photosynthesis and photorespiration of terrestrial C3 plants. Percentage inhibition of apparent photosynthesis is enhanced by high O2 and also by low CO2. These results indicate that high O2, high pH and low CO2 conditions could cause major losses in photosynthetic activity under field conditions. This may account for some of the losses in biomass that are observed under still water conditions.  相似文献   

16.
Luronium natans (L.) Raf. (Floating Water-plantain) is an endangered amphibious freshwater species endemic to Europe. We examined the plasticity in carbon acquisition and photosynthesis in L. natans to assess if lack of plasticity could contribute to explain the low competitive ability of the species. The plasticity of photosynthesis in submerged leaves towards inorganic carbon availability was examined and the photosynthesis of submerged, floating and aerial leaves was contrasted. L. natans was shown to be plastic in inorganic carbon uptake, as it was able to effectively acclimate to changed concentrations of free-CO2. The photosynthetic apparatus was down-regulated in plants grown at high CO2. Chlorophyll concentration, Rubisco activity and maximum photosynthesis were significantly lower in submerged leaves of plants grown at high CO2 (200 μM free-CO2) compared to plants grown at low CO2 (18 μM free-CO2). Furthermore, bicarbonate utilization was down-regulated in response to high CO2. Carbon acquisition of submerged, floating and aerial leaves of L. natans differed significantly. The aerial leaves were superior in photosynthesising in air and, surprisingly, the floating leaves had the highest rates of photosynthesis in water. The study did not support the hypothesis that the low competitive ability of L. natans is caused by inefficient photosynthesis or a lack of plasticity in photosynthesis. However, the somewhat low photosynthetic performance of the submerged leaves may be a contributing factor.  相似文献   

17.
Chilling-induced photooxidation was studied in detached leaves of chilling-sensitive (CS) cucumber (Cucumis sativus L.) and chilling resistant (CR) pea (Pisum sativum L.). The rates of photosynthesis and respiration, measured as O2 exchange, were found to be comparable in the two species over a temperature range of 5 to 35°C. Chilling at 5°C for 12 hours in high light (1000 microeinsteins per square meter per second) decreased CO2 uptake 75% in detached pea leaves whereas CO2 uptake by cucumber was reduced to zero within 2 hours. Respiration was unaffected in either species by the chilling and light treatment. Although ultrastructural alterations were apparent in chloroplasts of both species, cucumber's were affected sooner and more severely. The mechanism of photooxidative lipid peroxidation was investigated by following the production of ethane gas under a variety of conditions. Maximum ethane production occurred in the CS cucumber at low temperature (5°C) and high light (1000 microeinsteins per square meter per second). Atrazine, an inhibitor of photosynthetic electron transport, almost completely halted this chilling- and light-induced ethane production. These data, taken with those reported in an accompanying article (RR Wise, AW Naylor 1986 Plant Physiol 83: 278-282) suggest that the superoxide anion radical is generated in cucumber chloroplasts (probably via a Mehler-type reaction) during chilling-enhanced photooxidation. Parallel experiments were conducted on pea, a CR species. Detached pea leaves could only be made to generate ethane in the cold and light if they were pretreated with the herbicide parquat, a known effector of O2 production. Even so, pea showed no lipid peroxidation for 6 hours, at which time ethane production began and was at a rate equal to that for the chilled and irradiated cucumber leaves. The results indicate that pea has an endogenous mechanism(s) for the removal of toxic oxygen species prior to lipid peroxidation. This mechanism breaks down in pea after 6 hours in the cold, light, and the presence of paraquat.  相似文献   

18.
The net CO2 assimilation by leaves of maize (Zea mays L. cv. Adonis) plants subjected to slow or rapid dehydration decreased without changes in the total extractable activities of phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH) and malic enzyme (ME). The phosphorylation state of PEPC extracted from leaves after 2–3 h of exposure to light was not affected by water deficit, either. Moreover, when plants which had been slowly dehydrated to a leaf relative water content of about 60% were rehydrated, the net CO2 assimilation by leaves increased very rapidly without any changes in the activities of MDH, ME and PEPC or phosphorylation state of PEPC. The net CO2-dependent O2 evolution of a non-wilted leaf measured with an oxygen electrode decreased as CO2 concentration increased and was totally inhibited when the CO2 concentration was about 10%. Nevertheless, high CO2 concentrations (5–10%) counteracted most of the inhibitory effect of water deficit that developed during a slow dehydration but only counteracted a little of the inhibitory effect that developed during a rapid dehydration. In contrast to what could be observed during a rapidly developing water deficit, inhibition of leaf photosynthesis by cis-abscisic acid could be alleviated by high CO2 concentrations. These results indicate that the inhibition of leaf net CO2 uptake brought about by water deficit is mainly due to stomatal closure when a maize plant is dehydrated slowly while it is mainly due to inhibition of non-stomatal processes when a plant is rapidly dehydrated. The photosynthetic apparatus of maize leaves appears to be as resistant to drought as that of C3 plants. The non-stomatal inhibition observed in rapidly dehydrated leaves might be the result of either a down-regulation of the photosynthetic enzymes by changes in metabolite pool sizes or restricted plasmodesmatal transport between mesophyll and bundle-sheath cells.  相似文献   

19.
Martin B  Ort DR 《Plant physiology》1982,70(3):689-694
Chilling tomato plants (Lycopersicon esculentum Mill. cv. Rutgers and cv. Floramerica) in the dark resulted in a sizable inhibition in the rate of light- and CO2-saturated photosynthesis. However, at low light intensity, the inhibition disappeared and the absolute quantum yield of CO2 reduction was diminished only slightly. The quantum yield of photosystem II (PSII) electron flow was 18% lower when measured in chloroplasts isolated from chilled leaves than in chloroplasts isolated from unchilled leaves. Even though the maximum rate of PSII turnover in these chloroplasts was 12% lower subsequent to chilling, it was in all cases two or more times that required to support the light- and CO2-saturated rate of photosynthesis measured in the attached leaf. The concentration of active PSII centers in chloroplasts isolated from leaves either before or after chilling was determined by measurement of the products of water oxidation from a series of saturating flashes short enough to turnover the electron transport carriers only a single time. There was no significant change in the concentration of active PSII centers due to dark chilling.

It was concluded that PSII activity and water oxidation capacity are not significantly impaired in tomato by chilling in the dark and therefore are not primary aspects of the inhibition of CO2 reduction observed in attached leaves.

  相似文献   

20.
Using 14CO2 gas exchange and metabolite analyses, stomatal as well as total internal CO2 uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to −2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO2 exchange was drastically reduced, whereas the total CO2 uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO2. This `CO2 recycling' consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO2 recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed `coefficient of actinic light quenching,' was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号