首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Exposure of the female ovine fetus to male hormones during a sensitive window of in utero life causes disruption to reproductive function. In some animals, androgen exposure completely abolishes reproductive cycles, but in others, cycles are progressively lost with age. The present study tested two predictions: that noncycling, androgenized animals are unable to respond to estrogen with a preovulatory-like surge of LH (estrogen positive feedback), and that the androgenized animals that exhibit a progressive loss of cycles also show a progressive loss of estrogen positive feedback. Androgenized ewes were generated by injection of their mothers with testosterone propionate twice per week from Day 30 to Day 90 of pregnancy (term, 147 days). Control ewes received no injections. Whether ewes could exhibit estrogen positive feedback was tested on five occasions before puberty (30 wk) and once during the anestrous period. All control animals had repeated reproductive cycles in both the first and second breeding season, and all showed robust LH surges during test periods. Despite the fact that 64% of androgenized animals showed reproductive cycles, estrogen positive feedback could be demonstrated in only 6.1% of trials. Subsequent experiments revealed that the lack of response to estrogen in androgenized animals was not because of pituitary insensitivity to GnRH, a requirement for higher concentrations of estrogen, or a surge that was delayed relative to the time of estrogen administration. The mechanisms by which some androgenized ewes can produce normal reproductive cycles in the apparent absence of estrogen positive feedback are currently unknown.  相似文献   

2.
Prenatal exposure of the female sheep to excess testosterone (T) leads to hypergonadotropism, multifollicular ovaries, and progressive loss of reproductive cycles. We have determined that prenatal T treatment delays the latency of the estradiol (E2)-induced LH surge. To extend this finding into a natural physiological context, the present study was conducted to determine if the malprogrammed surge mechanism alters the reproductive cycle. Specifically, we wished to determine if prenatal T treatment 1) delays the onset of the preovulatory gonadotropin surge during the natural follicular phase rise in E2, 2) alters pulsatile LH secretion and the dynamics of the secondary FSH surge, and 3) compromises the ensuing luteal function. Females prenatally T-treated from Day 60 to Day 90 of gestation (147 days is term) and control females were studied when they were approximately 2.5 yr of age. Reproductive cycles of control and prenatally T-treated females were synchronized with PGF2alpha, and peripheral blood samples were collected every 2 h for 120 h to characterize cyclic changes in E2, LH, and FSH and then daily for 14 days to monitor changes in luteal progesterone. To assess LH pulse patterns, blood samples were also collected frequently (each 5 min for 6 h) during the follicular and luteal phases of the cycle. The results revealed that, in prenatally T-treated females, 1) the preovulatory increase in E2 was normal; 2) the latencies between the preovulatory increase in E2 and the peaks of the primary LH and FSH surges were longer, but the magnitudes similar; 3) follicular-phase LH pulse frequency was increased; 4) the interval between the primary and secondary FSH surges was reduced but there was a tendency for an increase in duration of the secondary FSH surge; but 5) luteal progesterone patterns were in general unaltered. Thus, exposure of the female to excess T before birth produces perturbances and maltiming in periovulatory gonadotropin secretory dynamics, but these do not produce apparent defects in cycle regularity or luteal function. To reveal the pathologies that lead to the eventual subfertility arising from excess T exposure during midgestation, studies at older ages must be conducted to assess if there is progressive disruption of neuroendocrine and ovarian function.  相似文献   

3.
To test the hypothesis that the anestrous increase in estradiol negative feedback prevents estrous cycles by suppressing hypothalamic gonadotropin-releasing hormone (GnRH) pulse frequency, a variety of regimens of increasing GnRH pulse frequency were administered to anestrous ewes for 3 days. A luteinizing hormone (LH) surge was induced in 45 of 46 ewes regardless of amplitude or frequency of GnRH pulses, but only 19 had luteal phases. Estradiol administration induced LH surges in 6 of 6 ewes, only 3 having luteal phases. Anestrous luteal phase progesterone profiles were similar in incidence, time course, and amplitude to those of the first luteal phases of the breeding season, which in turn had lower progesterone maxima than late breeding season luteal phases. In the remaining ewes, progesterone increased briefly or not at all, the increases being similar to the transient rises in progesterone occurring in most ewes at the onset of the breeding season. These results demonstrate that increasing GnRH pulse frequency induces LH surges in anestrus and that the subsequent events are similar to those at the beginning of the breeding season. Finally, they support the hypothesis that the negative feedback action of estradiol prevents cycles in anestrus by suppressing the frequency of the hypothalamic pulse generator.  相似文献   

4.
This report provides evidence that an increment in serum gonadotropin levels occurs at puberty in the sheep and that this reflects the critical hormonal event culminating in first ovulation in this species. Blood samples were collected from 6 female lambs at 4-h intervals for a period of approximately 2 mo around the expected time of puberty (32 wk of age) until behavioral estrus was observed and ovulation was verified by assay of serum progesterone. Patterns of circulating LH, FSH, progesterone, and estradiol concentrations were characterized during the peripubertal period for each lamb. A rise in serum levels of both LH and FSH began approximately 7-10 days before the first preovulatory surge of gonadotropins. Although the increase in gonadotropin levels occurred gradually over several days, serum estradiol levels rose only during the final 40-60 h prior to the preovulatory surge of gonadotropin. Serum progesterone profiles revealed, however, that normal (14-16-day) luteal phases were induced in only 2 of 6 females as a result of the first surge. In four lambs, a short luteal phase of 2.5 days' duration occurred, which was followed by another estradiol rise and a preovulatory surge that then resulted in a full luteal phase of 14 days' duration. These data demonstrate clearly that the precipitating event at puberty in the female sheep is an increase in circulating gonadotropin levels and that the estradiol secreted from the newly stimulated follicle provides the signal for the first preovulatory surge.  相似文献   

5.
Prenatal testosterone excess leads to neuroendocrine, ovarian, and metabolic disruptions, culminating in reproductive phenotypes mimicking that of women with polycystic ovary syndrome (PCOS). The objective of this study was to determine the consequences of prenatal testosterone treatment on periovulatory hormonal dynamics and ovulatory outcomes. To generate prenatal testosterone-treated females, pregnant sheep were injected intramuscularly (days 30-90 of gestation, term=147 days) with 100 mg of testosterone-propionate in cottonseed oil semi-weekly. Female offspring born to untreated control females and prenatal testosterone-treated females were then studied during their first two breeding seasons. Sheep were given two injections of prostaglandin F2alpha 11 days apart, and blood samples were collected at 2-h intervals for 120 h, 10-min intervals for 8 h during the luteal phase (first breeding season only), and daily for an additional 15 days to characterize changes in reproductive hormonal dynamics. During the first breeding season, prenatal testosterone-treated females manifested disruptions in the timing and magnitude of primary gonadotropin surges, luteal defects, and reduced responsiveness to progesterone negative feedback. Disruptions in the periovulatory sequence of events during the second breeding season included: 1) delayed but increased preovulatory estradiol rise, 2) delayed and severely reduced primary gonadotropin surge in prenatal testosterone-treated females having an LH surge, 3) tendency for an amplified secondary FSH surge and a shift in the relative balance of FSH regulatory proteins, and 4) luteal responses that ranged from normal to anovulatory. These outcomes are likely to be of relevance to developmental origin of infertility disorders and suggest that differences in fetal exposure or fetal susceptibility to testosterone may account for the variability in reproductive phenotypes.  相似文献   

6.
This study was designed to test the hypothesis that the loss of LH surges in response to the stimulatory actions of estradiol and progesterone in middle-aged, persistent-estrous (PE) rats may be caused by chronic elevations in circulating estradiol. Five groups of regularly cycling young rats received an s.c. estradiol implant immediately after ovariectomy (Day 0). For determination of LH surges, blood samples were collected hourly between 1200-1900 h from each of the five groups at one of the following times: 3 days, or 1, 2, 4, or 8 wk later. On the next day, either progesterone (0.5 mg/100 g BW) or corn oil was injected s.c. at 1200 h, and samples were obtained as before. Incidence and amplitude of estradiol-induced LH surges decreased during the first 2 wk of estradiol treatment, after which no surges occurred. Progesterone enhanced the incidence and amplitude of estradiol-induced LH surges thus delaying their disappearance. These results support our hypothesis and demonstrate that the stimulatory actions of estradiol and progesterone on the LH surge sequentially diminish with time after exposure to estradiol in young rats. Thus, young rats chronically treated with estradiol may be a useful model for studying the mechanisms whereby LH surges are abolished in middle age during the hyperestrogenic state of PE.  相似文献   

7.
Both the onset of puberty in the lamb and the annual resumption of reproductive activity in adult male and female sheep are characterized by increased secretion of LH due to reduced responsiveness to steroid inhibition. However, the timing of puberty is sexually differentiated, for males undergo a reduction in sensitivity to steroid feedback at 10 wk of age, whereas females remain highly responsive to steroid inhibition until 30 wk. This sex difference is determined by androgens in utero. The present study was conducted to determine whether a sex difference exists in the timing of seasonal transitions in adult males and females. We compared serum LH in gonadectomized, estradiol-treated males (n = 7), females (n = 6), and androgenized females (n = 5) from blood samples collected twice weekly for one year. As determined by changes in the pattern of LH secretion, the onset and termination of the autumn breeding season were not different between males, females, and androgenized females (termination: 1 February +/- 4 days, mean +/- SE all groups; onset: males, 22 August +/- 4 days; females, 5 September +/- 18 days; androgenized females, 16 September +/- 10.5 days). However, there was a transient increase in LH (20 May to 23 June) in males, but not in females or androgenized females. Although no effects of prenatal testosterone were evident in the control of LH secretion in adult androgenized females, LH secretion in androgenized males was elevated throughout the nonbreeding season in 3 of 5 animals, indicating that exogenous testosterone may reduce seasonal increases in responsiveness to steroid inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The preovulatory surges of GnRH and LH are activated by increased concentrations of circulating estradiol, but ovulation is blocked when progesterone concentrations are elevated. Although it is has been shown that this action of progesterone is due to a central inhibition of the GnRH surge, the mechanisms that underlie the blockade of the GnRH surge are poorly understood. In this study we investigated whether progesterone can block the estradiol-dependent activation stage of the GnRH surge induction process, and thus prevent expression of the LH surge. The results demonstrated that exposure to progesterone for half or the full duration of the activation stage can prevent the stimulation of LH surges by estradiol (experiment 1), whereas exposure to progesterone midway though a period of estradiol exposure, which in itself is sufficient to activate the surge, did not block the LH surge (experiment 2). These results suggest that progesterone 1) disrupts activation of the surge induction system in response to a stimulatory estradiol signal and 2) does not compromise the ability of animals to respond to a stimulatory estradiol signal applied immediately after progesterone exposure. Because the disruptive effects of activated progesterone in response to estradiol are rapid but transient, it may be that progesterone directly interferes with the activation of estradiol-responsive neural systems to block the GnRH/LH surge.  相似文献   

9.
The interrelationships of progesterone, estradiol, and LH were studied in mares (n=9), beginning at the first ovulation (Day 0) of an interovulatory interval. An increase in mean progesterone concentrations began on Day 0 and reached maximum on Day 6, with luteolysis beginning on Day 14. A common progesterone threshold concentration of about 2 ng/ml for a negative effect on LH occurred at the beginning and end of the luteal phase. Progesterone and LH concentrations decreased at a similar rate from Day 6 until the onset of luteolysis on Day 14, consistent with a decreasing positive effect of LH on progesterone. Concentrations of LH during the increase in the ovulatory surge consisted of two linear regression segments involving a rate of 0.4 ng/ml/day for Days 14-22 and 1.8 ng/ml/day for Day 22 to 1 day after the second ovulation. The end of the first segment and beginning of the second segment was 2 days before ovulation and was the day the ovulatory estradiol surge was at a peak.  相似文献   

10.
The opioid antagonist WIN-44441-3 (WIN-3, Sterling-Winthrop) caused significant increases in LH secretion in ovariectomized ewes treated with progesterone but not in ovariectomized animals treated with oestradiol-17 beta. In the non-breeding season, plasma LH concentrations in ovariectomized ewes without steroid therapy, given oestradiol-17 beta or oestradiol-17 beta and progesterone together were not affected by treatment with WIN-3 on Day 6 after ovariectomy (there was a significant increase in LH as a result of WIN-3 treatment 13 days after ovariectomy in sheep given no steroid therapy). However, WIN-3 treatment of ovariectomized sheep given progesterone resulted in a significant increase in plasma LH. WIN-3 was ineffective when given to intact ewes treated with progesterone during the non-breeding season. With ovariectomized sheep during the breeding season there was again no response to WIN-3 at 6 days after ovariectomy in sheep given oestradiol-17 beta, but significant LH elevations in animals given no steroid, those given progesterone and those given progesterone + oestradiol-17 beta. The lack of an LH response to WIN-3 in ovariectomized sheep treated with oestradiol-17 beta did not result from a reduced pituitary response to GnRH since such animals responded normally to exogenous GnRH treatment. Overall, these results are consistent with the idea that, irrespective of the time of year, progesterone exerts negative feedback upon LH release at least in part through an opioidergic mechanism, whereas oestradiol-17 beta exerts negative feedback through steps unlikely to involve opioids. Progesterone can override the effect of oestradiol-17 beta during the breeding season only. Further, there appears to be a steroid-independent opioid involvement in LH suppression, operating at both times of year.  相似文献   

11.
During the nonbreeding season the pituitary and ovarian responses to a subcutaneous GnRH infusion were investigated in acyclic, lactating Mule ewes which exhibit a deep seasonal anestrus and in Finn x Dorset ewes in which seasonal anestrus is ill-defined. Each breed received 10 d of progestagen priming before being subdivided into 3 groups. In Group L + G, 5 lactating ewes received GnRH (250 ng/h sc) for 96 h; in Group D + G, 5 dry ewes received GnRH (250 ng/h sc) for 96 h; in Group L, 5 lactating ewes received saline vehicle for 96 h. The infusions began when lactating and dry ewes were approximately 28 d and 120 d post partum, respectively. Blood samples were collected for LH, progesterone and estradiol analysis. Estrous behavior was monitored between Day -4 and Day +7. On Day +7 the reproductive tract was also examined. In the Mule ewes the mean plasma LH concentration increased (P < 0.05) following minipump insertion in each treatment group, although mean LH levels were greater (P < 0.05) in Group D + G, than in either Group L + G or Group L. Following the GnRH infusion, mean plasma estradiol levels increased (P < 0.05) in Group D + G but not in Group L + G. A preovulatory LH surge and subsequent ovulation occurred in 5 5 , 2 5 and 0 5 ewes from Group D + G, L + G and L, respectively, and estrus was recorded in 5 5 , 1 5 and 0 5 of these ewes, respectively. The LH surges began earlier (P < 0.05) (43.2 +/- 6.8 h vs 77.0 +/- 1.0 h) and the ovulation rate was greater (2.2 +/- 0.37 vs 1.00 +/- 0.00) in Group D + G than Group L + G. In the Finn x Dorset ewes mean LH concentrations increased (P < 0.05), to a similar level following minipump insertion in Groups D + G and L + G, but not Group L. The elevated LH levels were accompanied by increased (P < 0.05) plasma estradiol levels in Group D + G, but not in Group L + G. The GnRH infusion culminated in an LH surge and estrous behavior in 5 5 , 1 5 and 0 5 ewes from Groups D + G, L + D and L, respectively. The interval to the LH surge was similar between Group D + G (48.4 +/- 6.6 h) and Group L + G (46.0 h). Ovulation was evident in those ewes which exhibited an LH surge plus one additional ewe from Group L + G. The mean ovulation rate was greater in Group D + G (4.00 +/- 1.05) than in Group L + G (1.5 +/- 0.50). These data show that continuous GnRH infusion can consistently induce out of season breeding in the nonlactating Mule and Finn x Dorset ewe but can not break combined seasonal and lactational anestrous in these breeds. Further, between-breed differences are evident in the site along the hypothalamic-pituitary-ovarian axis at which reproduction is compromised in ewes at the same chronological stage post partum.  相似文献   

12.
These studies were designed to examine the effect of anisomycin, a potent and reversible inhibitor of protein synthesis with low systemic toxicity in rodents, on induction of luteinizing hormone (LH) surges by estradiol and their facilitation by progesterone. Immature female rats that received estradiol implants at 0900 h on Day 28 had LH surges approximately 32 h later (1700 h on Day 29). Insertion of progesterone capsules 24 h after estradiol led to premature (by 1400 h) and enhanced LH secretion. Protein synthesis was inhibited by 97%, 95%, 47%, and 16% in the hypothalamus-preoptic area (HPOA) and by 98%, 87%, 35%, and 0% in the pituitary at 30 min, 2 h, 4 h, and 6 h after s.c. injection of anisomycin (10 mg/kg BW), respectively. A single injection of anisomycin at 0, 3, 6, 9, 12, 24, 27, or 30 h after estradiol treatment significantly lowered serum LH levels at 32 h. The effect of injecting anisomycin at 0, 24, or 27 h was overridden by progesterone treatment at 24 h, but LH secretion was delayed serum LH levels were basal (10-30 ng/ml) at 1400 h but elevated (500-800 ng/ml) at 1700 h. Complete suppression of LH surges in estradiol-plus-progesterone-treated rats was achieved with 2 injections of anisomycin on Day 29 at 0900 h and again at 1200 h or 1400 h. Further experiments were designed to examine proteins that might be involved in anisomycin blockade of progesterone-facilitated LH surges. Intrapituitary LH concentrations at 1700 h on Day 29 were 70-80% higher (102 +/- 12.5 micrograms/pituitary) in rats that received 2 injections of anisomycin than in vehicle-treated controls (58.5 +/- 7.7 micrograms/pituitary). There were no significant effects of anisomycin on cytosol progestin receptors in the HPOA (7.1 +/- 1.5 fmol/tissue, anisomycin; 7.2 +/- 0.3, vehicle) or pituitary (8.3 +/- 1.3 fmol/tissue, anisomycin; 11.7 +/- 2.9, vehicle) at this time. The concentration of pituitary gonadotropin-releasing hormone receptors (GnRH-R), however, was significantly lower after anisomycin (265 +/- 30 vs. 365 +/- 37 fmol/mg protein) treatment. These results suggest that both estradiol-induced and progesterone-facilitated LH surges involve protein synthetic steps extending over many hours. Blockade of progesterone-facilitated LH surges by anisomycin appears to be due primarily to an effect on release of LH to which lowering of GnRH-R levels may contribute.  相似文献   

13.
To determine whether the first LH surge of the breeding season initiates a transient rise in progesterone in most ewes, serum progesterone (daily) and LH (every 4 h) concentrations were measured in samples collected from 7 ewes between 19 July and first oestrus or 8 September, whichever came first. In 6 of the 7 ewes, the first LH surge of the breeding season was followed within 5 days by a transient, 2-day rise in progesterone. Within less than 5 (N = 4), or 9 (N = 1) or 10 (N = 1) days later, a second LH surge occurred, which was similar in maximum amplitude and duration to the first surge, and which initiated the first full-length luteal phase of the breeding season. In the remaining ewe, the first LH surge of the breeding season induced an abbreviated (9 days) and insufficient (maximum progesterone, 0.94 ng/ml) luteal phase. These results demonstrate that most ewes have more than one LH surge before the first full-length luteal phase, the first surge inducing a transient rise in progesterone. Therefore, although the seasonal decrease in response to oestradiol negative feedback is sufficient for initiation of the first LH surge of the breeding season, additional endocrine mechanisms may be necessary to induce the first full-length luteal phase.  相似文献   

14.
This study tested the hypothesis that endocrinological threshold levels of progesterone that induce negative feedback effects on the pulsatile and surge modes of LH secretion are different. Our approach was to examine the effects of subnormal progesterone concentrations on LH secretion. Long-term ovariectomized Shiba goats that had received implants of silastic capsules containing estradiol were divided into three groups. The high progesterone (high P) group received a subcutaneous implant of a silastic packet (50 x 70 mm) containing progesterone, and the low progesterone (low P) group received a similar implant of a small packet (25 x 40 mm) containing progesterone. The control (non-P) group received no treatment with exogenous progesterone. Blood samples were collected daily throughout the experiment for the analysis of gonadal steroid hormone levels and at 10-min intervals for 8 h on Days 0, 3, and 7 (Day 0: just before progesterone treatment) for analysis of the pulsatile frequency of LH secretion. Then estradiol was infused into the jugular vein of all animals at a rate of 3 microg/h for 16 h on Day 8 to determine whether an LH surge was induced. Blood samples were collected every 2 h from 4 h before the start of the estradiol infusion until 48 h after the start of the infusion. In each group, the mean +/- SEM concentration after progesterone implant treatment was 3.3 +/- 0.1 ng/ml for the high P group, 1.1 +/- 0.1 ng/ml for the low P group, and <0.1 ng/ml for the non-P group, concentrations similar to the luteal levels, subluteal levels, and follicular phase levels of the normal estrous cycle, respectively. The estradiol concentration ranged from 4 to 8 pg/ml after estradiol capsule implants in all groups. The LH pulse frequency was significantly (P < 0.05) suppressed on Day 3 (6.2 +/- 0.5 pulses/8 h) and on Day 7 (2.6 +/- 0.9 pulses/8 h) relative to Day 0 (9.0 +/- 0.5 pulses/8 h) in the high P group. In both the low P and non-P groups, however, the changes of pulsatile frequency of LH were not significantly different, and high pulses (7-9 pulses/8 h) were maintained on each of the 3 days they were tested. An LH surge (peak concentration, 100.3 +/- 11.0 ng/ml) occurred in all goats in the non-P group, whereas there was no surge mode secretion of LH in either the high P or the low P group. The results of this study support our hypothesis that the threshold levels of progesterone that regulate negative feedback action on the LH pulse and the LH surge are different. Low levels of progesterone, around 1 ng/ml, completely suppressed the LH surge but did not affect the pulsatile frequency of LH secretion.  相似文献   

15.
LH surges occur 3 h later in intact anovulatory hamsters exposed to nonstimulatory photoperiods (6L:18D) for 8 wk than the proestrous LH surges from the same hamsters housed in 6L:18D for 3 weeks. In ovariectomized hamsters housed in 6L:18D for 3 wk, the LH surge was observed at the same time of day as in intact anovulatory hamsters at 8 wk. Implanting Silastic capsules containing estradiol benzoate (EB) advanced the timing of the daily surge of LH in ovariectomized hamsters housed in 6L:18D for 8 wk. EB also affected the magnitude of the LH surge in hamsters housed in 6L:18D for 8 wk. Two days after receiving EB implants, daily LH surges in anovulatory hamsters were suppressed by 75% and in ovariectomized "regressed" hamsters by 37%. This difference between groups was probably due to ovarian progesterone in intact animals. Estrogen is not required for LH surges in anovulatory hamsters but suppresses LH release when administered exogenously. The delay in the timing of the LH surge in anovulatory hamsters may result from the decline in estrogen resulting from short photoperiod exposure.  相似文献   

16.
Administration of 10 mg estradiol valerate (EV) to nonlactating Holstein cows on Days 16 of the estrous cycle prevented ovulation in 7 of 8 cows for 14 days post-injection. In these 7 cows, the timing of luteolysis and the luteinizing hormone (LH) surge was variable but within the normal range. At 14 days post-treatment, each of these cows had a large (greater than 10 mm) follicle, with 558 +/- 98 ng/ml estradiol-17 beta, 120 +/- 31 ng/ml testosterone, and 31 +/- 2 ng/ml progesterone in follicular fluid (means +/- SE). A second group of animals was then either treated with EV as before (n = 22), or not injected (control, n = 17) and ovariectomized on either Day 17, Day 18.5, Day 20, or Day 21.5 (24, 60, 96, or 132 h post-EV). Treatment with EV did not influence the timing of luteolysis, but surges of LH occurred earlier (59 +/- 8 h post-EV vs. 100 +/- 11 h in controls). The interval from luteolysis to LH peak was reduced from 44 +/- 6 h (controls) to 6.9 +/- 1.5 h (treated). Histologically, the largest follicle in controls tended to be atretic before luteolysis, but nonatretic afterwards, whereas the largest follicle in treated animals always tended to be atretic. Nonatretic follicles contained high concentrations of estradiol (408 +/- 59 ng/ml) and moderate amounts of testosterone (107 +/- 33 ng/ml) and progesterone (101 +/- 21 ng/ml), whereas atretic follicles contained low concentrations of estradiol (8 +/- 4 ng/ml) and testosterone (12 +/- 4 ng/ml), and either low (56 +/- 24 ng/ml) or very high (602 +/- 344 ng/ml) concentrations of progesterone. This study suggests that EV prevents ovulation by inducing atresia of the potential preovulatory follicle, which is replaced by a healthy large follicle by 14 days post-treatment.  相似文献   

17.
This study was designed to see if giving exogenous oestradiol, during the follicular phase of the oestrous cycle of intact ewes, during the breeding season or transition into anoestrus, would alter the occurrence, timing or magnitude of the preovulatory surge of secretion of luteinising hormone (LH) or follicle stimulating hormone (FSH). During the breeding season and the time of transition, separate groups of ewes were infused (intravenously) with either saline (30 ml h−1; n = 6) or oestradiol in saline (n = 6) for 30 h. Infusion started 12 h after removal of progestin-containing intravaginal sponges that had been in place for 12 days. The initial dose of oestradiol was 0.02 μg h−1; this was doubled every 4 h for 20 h, followed by every 5 h up to 30 h, to reach a maximum of 1.5 μg h−1. Following progestin removal during the breeding season, peak serum concentrations of oestradiol in control ewes were 10.31 ± 1.04 pg ml−1, at 49.60 ± 3.40 h after progestin removal. There was no obvious peak during transition, but at a time after progestin removal equivalent to the time of the oestradiol peak in ewes at mid breeding season, oestradiol concentrations were 6.70 ± 1.14 pg ml−1 in ewes in transition (P < 0.05). In oestradiol treated ewes, peak serum oestradiol concentrations (24.8 ± 2.1 pg ml−1) and time to peak (41.00 ± 0.05 h) did not differ between seasons (P > 0.05). During the breeding season, all six control ewes and four of six ewes given oestradiol showed oestrus with LH and FSH surges. The two ewes not showing oestrus did not respond to oestrus synchronisation and had persistently high serum concentrations of progesterone. During transition, three of six control ewes showed oestrus but only two had LH and FSH surges; all oestradiol treated ewes showed oestrus and gonadotrophin surges (P < 0.05). The timing and magnitude of LH and FSH surges did not vary with treatment or season. In blood samples collected every 12 min for 6 h, from 12 h after the start of oestradiol infusion, mean serum concentrations of LH and LH pulse frequency were lower in control ewes during transition than during mid breeding season (P < 0.05). Oestradiol treatment resulted in lower mean serum concentrations of LH in season and lower LH pulse frequency in transition (P < 0.05). We concluded that enhancing the height of the preovulatory peak in serum concentrations of oestradiol during the breeding season did not alter the timing or the magnitude of the preovulatory surge of LH and FSH secretion and that at transition into anoestrus, oestradiol can induce oestrus and the surge release of LH and FSH as effectively as during the breeding season.  相似文献   

18.
A controlled study was carried out to investigate the effects of suprabasal plasma progesterone concentrations on blood plasma patterns of progesterone, LH and estradiol-17beta around estrus. Heifers were assigned to receive subcutaneous silicone implants containing 2.5 g (n=4), 5 g (n=4), 6 g (n=3), 7.5 g (n=3) or 10 g (n=4) of progesterone, or implants without hormone (controls, n=5). The implants were inserted on Day 8 of the cycle (Day 0=ovulation) and left in place for 17 d. The time of ovulation was determined by ultrasound scanning. Blood was collected daily from Days 0 to 14 and at 2 to 4-h intervals from Days 15 to 27. Control heifers had the lowest progesterone concentrations on Days 20.5 to 21 (0.5 +/- 0.1 nmol L(-1)); a similar pattern was observed in heifers treated with 2.5 and 5 g of progesterone. In the same period, mean progesterone concentrations in the heifers treated with 6, 7.5 and 10 g were larger (P < 0.05) than in the controls, remaining between 1 and 2.4 nmol L(-1) until implant removal. A preovulatory estradiol increase started on Days 16.4 to 18.4 in all the animals. In the controls and in heifers treated with 2.5 and 5 g of progesterone, estradiol peaked and was followed by the onset of an LH surge. In the remaining treatments, estradiol release was prolonged and increased (P < 0.05), while the LH peak was delayed (P < 0.05) until the end of the increase in estradiol concentration. The estrous cycle was consequently extended (P < 0.05). In all heifers, onset of the LH surge occurred when progesterone reached 0.4 to 1.2 nmol L(-1). The induction of suprabasal levels of progesterone after spontaneous luteolysis caused endocrine asynchronies similar to those observed in cases of repeat breeding. It is suggested that suprabasal concentrations of progesterone around estrus may be a cause of disturbances oestrus/ovulation.  相似文献   

19.
The effect of 5-hydroxytryptophan (5-HTP) on serum progesterone and the possible role of adrenal progesterone in mediating stimulation by 5-HTP of phasic release of luteinizing. hormone (LH) were investigated in estradiol benzoate (EB)-treated ovariectomized rats. LH surges were induced in long-term (at least two weeks) ovariectomized rats by two injections of EB (20 micrograms/rat, s.c.) with an interval of 72 hrs. Administration of 5-HTP (50 mg/kg, i.p.) at 1000 hr in EB-treated ovariectomized rats resulted in a four-fold increase in serum progesterone within 30 mins, and significantly stimulated the LH surge at 1600 hr. This facilitative effect of 5-HTP on serum LH, but not progesterone, was further potentiated in rats pretreated with P-chlorophenylalanine (PCPA) 72 hrs earlier. Adrenalectomy shortly before 5-HTP administration attenuated the LH surge in saline treated controls, and completely blocked the facilitative effect of 5-HTP on the afternoon surge of LH in rats pretreated with PCPA 72 hrs earlier. On the other hand, chronic adrenalectomy (for 6 days) followed by hydrocortisone (0.2 mg/rat/day) replacement not only had no effect on the LH surge in saline treated controls, but also failed to prevent 5-HTP from facilitating the LH surge in PCPA pretreated rats. On the first day of bleeding, the basal LH value at 1000 hr in sham operated controls was significantly suppressed by PCPA pretreatment 48 hrs earlier. The second dose of 5-HTP administered on the next day failed to potentiate LH surges in either sham operated or adrenalectomized rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In the elephant, two distinct LH surges occur 3 wk apart during the nonluteal phase of the estrous cycle, but only the second surge (ovLH) induces ovulation. The function of the first, anovulatory surge (anLH) is unknown, nor is it clear what regulates the timing of these two surges. To further study this observation in the Asian elephant, serum concentrations of LH, FSH, progesterone, inhibin, estradiol, and prolactin were quantified throughout the estrous cycle to establish temporal hormonal relationships. To examine long-term dynamics of hormone secretion, analyses were conducted in weekly blood samples collected from 3 Asian elephants for up to 3 yr. To determine whether differences existed in secretory patterns between the anLH and ovLH surges, daily blood samples were analyzed from 21 nonluteal-phase periods from 7 Asian elephants. During the nonluteal phase, serum LH was elevated for 1-2 days during anLH and ovLH surges with no differences in peak concentration between the two surges. The anLH surge occurred 19.9+/-1.2 days after the end of the luteal phase and was followed by the ovLH surge 20.8+/-0.5 days later. Serum FSH concentrations were highest at the beginning of the nonluteal phase and gradually declined to nadir concentrations within 4 days of the ovLH surge. FSH remained low until after the ovLH surge and then increased during the luteal phase. Serum inhibin concentrations were negatively correlated with FSH during the nonluteal phase (r = -0.53). Concentrations of estradiol and prolactin fluctuated throughout the estrous cycle with no discernible patterns evident. In sum, there were no clear differences in associated hormone secretory patterns between the anLH and ovLH surge. However, elevated FSH at the beginning of the nonluteal phase may be important for follicle recruitment, with the first anLH surge acting to complete the follicle selection process before ovulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号