首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunoglobulins, containing antibodies against U1-snRNP, have been prepared from a patient with systemic lupus erythematosus. After coupling these antibodies to a Sepharose matrix, U-snRNPs have been isolated and purified from rat liver nuclei by use of immunoaffinity chromatography. The resulting RNPs had the typical protein pattern of U-sn RNPs and a sedimentation coefficient of 12 S. The U-snRNP preparation was associated with an endoribonuclease which required Mg2+ for optimal activity. The enzyme, with an pH optimum of 6.2, degraded only poly(U). Other single-stranded polyribo- and polydeoxyribonucleotides, tRNA, as well as double-stranded RNA and DNA were not digested. The products of a terminal digestion are (U)6-12 with 3'-OH and 5'-P termini. The possible involvement of this endoribonuclease in the splicing of hnRNA is discussed.  相似文献   

2.
A soluble inositolphospholipid-specific phospholipase C (PI-phospholipase C) has been purified 5,800-fold from the cytosolic fraction of calf thymocytes. The purification was achieved by sequential column chromatographies on DEAE-Sepharose CL-6B, heparin-Sepharose CL-6B, Sephacryl S-300, Mono S, and Superose 12, followed by column chromatography on Sephadex G-100 in the presence of 1% sodium cholate. The enzyme thus purified was found to be homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the enzyme was estimated to be 68 kDa by SDS-PAGE. The enzyme is specific for inositol phospholipids. Phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate (PIP2) were hydrolyzed, but phosphatidylcholine and phosphatidylethanolamine were not affected by the enzyme. GTP gamma S-binding activity was detected in the enzyme fractions after all the purification steps, but not in the final enzyme preparation. The PI-phospholipase C and GTP gamma S-binding activities in the partially purified enzyme preparation could be separated by the column chromatography on Sephadex G-100 only in the presence of 1% sodium cholate. Thus, the soluble PI-phospholipase C has affinity to a GTP-binding protein. SDS-PAGE of the GTP-binding fractions eluted from the Sephadex G-100 column gave three visible bands of 54, 41, and 27 kDa polypeptide was specifically ADP-ribosylated by pertussis toxin. Furthermore, it was found that GTP and GTP gamma S (10 microM and 1 mM) could enhance the PIP2 hydrolysis activity of the partially purified enzyme in the presence of 3 mM EGTA, but the purified enzyme after separation from the GTP-binding activity was not affected by GTP and GTP gamma S. The soluble PI-phospholipase C of calf thymocytes may be not only physically but also functionally associated with a GTP-binding protein.  相似文献   

3.
At least three nuclease activities are associated with purified frog virus 3. These activities are endodeoxyribonuclease (pH 7.5, double-stranded [DS] and single-stranded [SS] deoxyribonucleic acid [DNA]); endodeoxyribonuclease (pH 5.0, DS and SS DNA); endoribonuclease (DS and SS ribonucleic acid [RNA], pH 7.5). These activities are not adsorbed to the surface of the virion but are within the viral capsid and require detergent disruption of virions to unmask enzyme activity. Only one activity, deoxyribonuclease (pH 5.0, SS and DS DNA) appears to be core-associated after detergent disruption of virions. The ribonuclease degrades poliovirus replicative-form RNA, reovirus native RNA, and poly(I) poly(C) to a product with a sedimentation coefficient of about 6S. Qbeta 6S DS RNA and 4S transfer RNA are not degraded. The ribonuclease appears to be a late function of the virus and is elicited in a soluble form as well as a virus-associated form.  相似文献   

4.
The severe acute respiratory syndrome (SARS) coronavirus virus non-structural protein 15 is a Mn2+-dependent endoribonuclease with specificity for cleavage at uridylate residues. To better understand structural and functional characteristics of Nsp15, 22 mutant versions of Nsp15 were produced in Escherichia coli as His-tagged proteins and purified by metal-affinity and ion-exchange chromatography. Nineteen of the mutants were soluble and were analyzed for enzymatic activity. Six mutants, including four at the putative active site, were significantly reduced in endoribonuclease activity. Two of the inactive mutants had unusual secondary structures compared to the wild-type protein, as measured by circular dichroism spectroscopy. Gel-filtration analysis, velocity sedimentation ultracentrifugation, and native gradient pore electrophoresis all showed that the wild-type protein exists in an equilibrium between hexamers and monomers in solution, with hexamers dominating at micromolar protein concentration, while native gradient pore electrophoresis also revealed the presence of trimers. A mutant in the N terminus of Nsp15 was impaired in hexamer formation and had low endoribonuclease activity, suggesting that oligomerization is required for endoribonuclease activity. This idea was supported by titration experiments showing that enzyme activity was strongly concentration-dependent, indicating that oligomeric Nsp15 is the active form. Three-dimensional reconstruction of negatively stained single particles of Nsp15 viewed by transmission electron microscopic analysis suggested that the six subunits were arranged as a dimer of trimers with a number of cavities or channels that may constitute RNA binding sites.  相似文献   

5.
A heat-stable endoribonuclease isolated from chicken liver has been purified to homogeneity as evidenced by the presence of a single protein band upon polyacrylamide gel electrophoresis. The enzyme can, in limit digests of 5 S rRNA and 5.8 S rRNA, dinstinguish between cytidylic and uridylic acids bonds at a ratio of 61:1 and, therefore, may be useful in RNA sequence analysis. The means by which the enzyme hydrolyzes substrate is unusual in that kinetic data do not support a simple formation and breakdown of an enzyme . substrate complex. Rather, the existence of a second complex, consisting of 2 mol of substrate and one of enzyme, derived from the initial enzyme . substrate complex, is postulated. In common with the other endonucleases, enzyme activity is inhibited by free poly(A) or tracts of the polypurine present at the 3'-terminus of RNA. Reversal of inhibition and restoration of activity may be achieved by the addition of low concentrations of spermidine to reaction mixtures.  相似文献   

6.
12 S ribonucleoprotein (RNP) particles were separated from a 45 S RNP complex (Bachmann, M., Zahn, R. K. and Müller, W. E. G. (1983) J. Biol. Chem. 258, 7033-7040) isolated from calf thymus and L5178y cells. The particles were determined to be associated with an acidic endoribonuclease (pI 4.1; pH optimum 6.2). the enzyme requires Mg2+ and is sensitively inhibited by higher NaCl concentrations. The nuclease specifically degrades poly(U) and poly(C) in an endonucleolytic manner; the end-products are 3'-UMP (85%) and 2',3'-cyclic UMP (12%). Poly(A) strongly inhibits the pI 4.1 endoribonuclease activity. The Michaelis constant (for poly(U)) was determined as 82 microM and the maximal reaction velocity was 0.54 mumol/microgram per h. The endoribonuclease is distinguished from the known pyrimidine-specific ribonucleases (pancreatic ribonuclease and endoribonuclease VII) by further criteria, e.g., resistance to thiol reagents, inhibition by EDTA, Mg2+ requirement, pI and pH optimum. Using the techniques of counterimmunoelectrophoresis and immunoaffinity column chromatography it was shown that the pI 4.1 endoribonuclease-associated 12 S RNP particles display antigenicity to anti-Sm and anti-(U1)-RNP antibodies. An RNA component, isolated from the 12 S-45 S hypercomplex, was identified as U1-snRNA.  相似文献   

7.
In the presence of Mg2+ or Ca2+ the membranes of the anaerobic glycolytic bacterium Lactobacillus casei hydrolyze 0.1-0.2 mumole ATP/min/mg of protein with a pH optimum 6.4. This activity is inhibited by N,N'-dicyclohexylcarbodiimide and is insensitive to oligomycin, ouabain, vanadate and hydroxylamine. A soluble ATPase was isolated and purified from L. casei membranes. The specific activity of this ATPase is 3.0-4.0 mumole ATP/min/mg of protein. The enzyme homogeneity was established by analytical polyacrylamide gel disc electrophoresis and by analytical centrifugation (S20, omega = 12 +/- 0,5). The molecular weight of the enzyme is 270 000. Polyacrylamide gel electrophoresis of ATPase denaturated by 1% SDS and 8 M urea in the presence of SDS revealed one type of subunits with Mr = 43 000. These subunits could not be separated by isoelectrofocusing in polyacrylamide gel in the presence of 8 M urea and migrated as a single peptide with pI at 4.2. The experimental results suggest that the soluble ATPase from L. casei consists of six identical subunits with Mr of 43 000.  相似文献   

8.
We have purified a Ca2+ dependent ribonuclease from the oocytes of Xenopus leavis. Two properties of this ribonuclease set it apart from other known nucleases. First, Ca2+ was required for ribonuclease activity, and Mg2+ would not substitute. Second, the enzyme specifically degraded RNA and digestion of double or single stranded DNA was not observed. Ca2+ dependent ribonuclease activity of the purified 36-kDa protein was directly observed after renaturation of the protein following electrophoresis in an SDS-Laemmli gel. In addition, the enzyme was shown to have endoribonuclease activity at numerous sites. The Ca2+ dependence suggests that the ribonuclease activity may be modulated by changes in the level of intracellular Ca2+ and thereby provide a direct link to signal transduction systems.  相似文献   

9.
10.
An endoribonuclease which digests a variety of synthetic homoribopolymers and poly(A)-rich mRNA has been identified and purified greater than 500-fold with respect to specific activity from bovine adrenal cortex cytosol. Enzymatic digestion of synthetic poly(riboadenylic acid) was stimulated by Mn-2+ and Mg-2+ and the enzyme exhibited broad pH and salt optima. Poly(cytidylic acid) and poly(uridylic acid), but not poly(guanylic acid), served as substrates for the enzyme preparation; double-stranded RNA, DNA, and DNA-RNA hybrids were not digested by the enzyme. Digestion generated oligonucleotides with 3-hydroxyl and 5'-monophosphoester termini. On isoelectric focusing, the enzymatic activity banded at pH 8.3 plus or minus 0.2. An initial preferential cleavage of the poly(A) tract of poly(A)-rich RNA is suggested by the rapid appearance of a 4-6S digestion product highly enriched for adenylic acid; however, progressive digestion of the RNA occurs with additional incubation.  相似文献   

11.
Allene oxide cyclase (AOC; EC 5.3.99.6) catalyzes the cyclization of 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid to 12-oxo- 10,15(Z)-phytodienoic acid, the precursor of jasmonic acid (JA). This soluble enzyme was purified 2000-fold from dry corn (Zea mays L.) kernels to apparent homogeneity. The dimeric protein has a molecular mass of 47 kD. Allene oxide cyclase activity was not affected by divalent ions and was not feedback-regulated by its product, 12-oxo-l0,15(Z)-phytodienoic acid, or by JA. ([plus or minus])-cis- 12,13-Epoxy-9(Z)-octadecenoic acid, a substrate analog, strongly inhibited the enzyme, with 50% inhibition at 20 [mu]M. Modification of the inhibitor, such as methylation of the carboxyl group or a shift in the position of the epoxy group, abolished the inhibitory effect, indicating that both structural elements and their position are essential for binding to AOC. Nonsteroidal anti-inflammatory drugs, which are often used to interfere with JA biosynthesis, did not influence AOC activity. The purified enzyme catalyzed the cyclization of 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid derived from linolenic acid, but not that of 12,13(S)-epoxy-9(Z),11- octadecadienoic acid derived from linoleic acid.  相似文献   

12.
Identification of a ribonuclease P-like activity from human KB cells.   总被引:11,自引:0,他引:11  
R A Koski  A L Bothwell  S Altman 《Cell》1976,9(1):101-116
An endoribonuclease which cleaves tRNA precursor molecules has been partially purified from human KB tissue culture cells. This activity is found in cytoplasmic fractions but is not detectable in the nucleoplasm. tRNA precursor molecules from both E. coli and KB cells are cleaved by this novel activity to produce 5' phosphate-terminated oligonucleotides. E coli RNAase P and the KB cell nuclease both make a single endonucleolytic scission in E. coli tRNATyr precursor, thereby separating the 41 extra nucleotides on the 5' end of the precursor molecule from the 5' terminal sequence of the mature tRNATyr molecule. The cleavage products generated from other E. coli tRNA precursors by the KB cell activity are identical in size to those produced by RNAase P. The KB cell endoribonuclease requires Mg2+ and a monovalent cation (Na+, K+, or NH4+) for function. The enzymatic activity has a broad pH optimum, centered near pH 8.0, and the activity is inhibited by tRNA. Several KB cell RNAs with long half-lives in vivo, including 5S and bulk 4S RNA, are not cleaved by this nuclease. The KB cell endoribonuclease resembles E. coli RNAase P in its substrate specificity, pH optimum, ion requirements, and sensitivity to tRNA. These properties and the cytoplasmic localization of the novel endoribonuclease indicate its involvement in the biosynthesis of KB cell tRNA.  相似文献   

13.
12 S ribonucleoprotein (RNP) particles were separated from a 45 S RNP complex (Bachmann, M., Zahn, R.K. and Müller, W.E.G. (1983) J. Biol. Chem. 258, 7033–7040) isolated from calf thymus and L5178y cells. The particles were determined to be associated with an acidic endoribonuclease (pI 4.1; pH optimum 6.2). the enzyme requires Mg2+ and is sensitively inhibited by higher NaCl concentrations. The nuclease specifically degrades poly(U) and poly(C) in an endonucleolytic manner; the end-products are 3′-UMP (85%) and 2′,3′-cyclic UMP (12%). Poly(A) strongly inhibits the pI 4.1 endoribonuclease activity. The Michaelis constant (for poly(U)) was determined as 82 μM and the maximal reaction velocity was 0.54 μmol/μg per h. The endoribonuclease is distinguished from the known pyrimidine-specific ribonucleases (pancreatic ribonuclease and endoribonuclease VII) by further criteria, e.g., resistance to thiol reagents, inhibition by EDTA, Mg2+ requirement, pI and pH optimum. Using the techniques of counterimmunoelectrophoresis and immunoaffinity column chromatography it was shown that the pI 4.1 endoribonuclease-associated 12 S RNP particles display antigenicity to anti-Sm and anti-(U1)-RNP antibodies. An RNA component, isolated from the 12 S-45 S hypercomplex, was identified as U1-snRNA.  相似文献   

14.
Neurotensin was inactivated by membrane-bound and soluble degrading activities present in purified preparations of rat brain synaptic membranes. Degradation products were identified by HPLC and amino acid analysis. The major points of cleavage of neurotensin were the Arg8-Arg9, Pro10-Tyr11, and Tyr11-Ile12 peptide bonds with the membrane-bound activity and the Arg8-Arg9 and Pro10-Tyr11 bonds with the soluble activity. Several lines of evidence indicated that the cleavage of the Arg8-Arg9 bond by the membrane-bound activity resulted mainly from the conversion of neurotensin1-10 to neurotensin1-8 by a dipeptidyl carboxypeptidase. In particular, captopril inhibited this cleavage with an IC50 (5.7 nM) close to its K1 (7 nM) for angiotensin-converting enzyme. Thiorphan inhibited the cleavage at the Tyr11-Ile12 bond by the membrane-bound activity with an IC50 (17 nM) similar to its K1 (4.7 nM) for enkephalinase. Both cleavages were inhibited by 1,10-phenanthroline. These and other data suggested that angiotensin-converting enzyme and a thermolysin-like metalloendopeptidase (enkephalinase) were the membrane-bound peptidases responsible for cleavages at the Arg8-Arg9 and Tyr11-Ile12 bonds, respectively. In contrast, captopril had no effect on the cleavage at the Arg8-Arg9 bond by the soluble activity, indicating that the enzyme responsible for this cleavage was different from angiotensin-converting enzyme. The cleavage at the Pro10-Tyr11 bond by both the membrane-bound and the soluble activities appeared to be catalyzed by an endopeptidase different from known brain proline endopeptidases. The possibility is discussed that the enzymes described here participate in physiological mechanisms of neurotensin inactivation at the synaptic level.  相似文献   

15.
An endoribonuclease has been purified nearly to homogeneity from rat liver microsomes, and its mode of action and general properties were studied. The enzyme had an apparent molecular weight of 58 000, as estimated by both gel filtration and SDS-polyacrylamide gel electrophoresis and produced oligonucleotides from poly(A), poly(U) and poly(C). No mononucleotide was obtained by the enzymatic hydrolysis of the above substrates. The enzyme made endonucleolytic cleavages which generated 5'-phosphate-terminated oligonucleotides. It was suggested that the existence of at least (Ado5'P)2 residues at both sides of the cleavage bond was necessary for the action of the endoribonuclease. Divalent cations (Mg2+ or Mn2+) were required for the enzymatic activity, while K+ inhibited the enzyme. Spermine stimulated the enzymatic activity in the presence of 1 mM Mg2+.  相似文献   

16.
The main alpha-glucuronidase (EC 3.2.1.131) of the fungus Schizophyllum commune was purified to homogeneity using standard chromatographic methods; anion exchange, hydrophobic interaction chromatography and gel filtration. The enzyme had a molecular mass of 125 kDa as determined by SDS-polyacrylamide gel electrophoresis and a pI value of 3.6 according to isoelectric focusing. The N-terminal amino acid sequence of the S. commune alpha-glucuronidase did not show any homology with other alpha-glucuronidases. It exhibited maximal activity at pH values from 4.5 to 5.5 and was stable for 24 h between pH 6 and 8 at 40 degrees C. The highest temperature at which the enzyme retained its full activity for 24 h at pH 5.8 was 40 degrees C. The alpha-glucuronidase of S. commune was able to remove almost all 4-O-methylglucuronic acid groups from water-soluble polymeric softwood arabinoglucuronoxylans. The action of the enzyme on birchwood acetyl-glucuronoxylan was limited due to the high amount of acetyl substituents. The degree of hydrolysis of partially soluble deacetylated glucuronoxylan did not exceed 50% of the theoretical maximum. However, together with a xylanase hydrolysing the xylan backbone the action of the alpha-glucuronidase of S. commune on glucuronoxylan was clearly enhanced. It was apparent that the enzyme was able to remove the 4-O-methylglucuronic groups mainly from soluble substrates.  相似文献   

17.
Purification of soluble alpha1,2-mannosidase from Candida albicans CAI-4   总被引:1,自引:0,他引:1  
A soluble alpha-mannosidase from Candida albicans CAI-4 was purified by conventional methods of protein isolation. Analytical electrophoresis of the purified preparation revealed two polypeptides of 52 and 27 kDa, the former being responsible for enzyme activity. The purified, 52 kDa enzyme trimmed Man9GlcNAc2, producing Man8GlcNAc2 isomer B and mannose, and was inhibited preferentially by 1-deoxymannojirimycin. These properties are consistent with an endoplasmic reticulum-resident alpha1,2-mannosidase of the glycosyl hydrolase family 47. Moreover, a proteolytic activity responsible for converting the 52 kDa alpha-mannosidase into a polypeptide of 43 kDa retaining full enzyme activity, was demonstrated in membranes of ATCC 26555, but not in CAI-4 strain.  相似文献   

18.
The spermidine-dependent, sequence-specific endoribonuclease (RNase 65) in mouse FM3A cells consists of protein and transfer RNA lacking its 3' terminus. In vitro properties of this enzyme were characterized using partially purified enzyme. The RNase 65 activity requires spermidine, which is not replaceable with spermine or Mg++. The enzyme cleaves an RNA substrate on the 3' side of the phosphodiester bond. The cleavage reaction has a temperature optimum around 50 degrees C and a pH optimum around 7.0. The optimum KCl concentration for the activity is around 10 mM. Relative cleavage efficiency of two differently folded RNA substrates with the common target sequence was analyzed at 37 degrees C and 50 degrees C. The results of this analysis suggest that unfolding of the target sequence is critical for recognition by RNase 65. Furthermore, in experiments using several point-mutated RNA substrates designed to form basically the same secondary structure as the wild type, one to three nucleotide substitutions in the target sequence all reduced cleavage efficiency. The RNase 65 activity is found only in cytosolic extracts, not in nuclear ones. Gel filtration analysis suggests that the native size of the endoribonuclease is approximately 150 kDa.  相似文献   

19.
A polyphosphatase with the specific activity 2.2 U/mg was purified to apparent homogeneity from a soluble preparation of mitochondria of Saccharomyces cerevisiae. The polyphosphatase is a monomeric protein of approximately 41 kD. The purified enzyme hydrolyzes polyphosphates with an average chain length of 9 to 208 phosphate residues to the same extent, but its activity is approximately 2-fold higher with tripolyphosphate. ATP, PPi, and p-nitrophenyl phosphate are not substrates of this enzyme. The apparent Km values are 300, 18, and 0.25 microM obtained at hydrolysis of polyphosphates with a chain length of 3, 15, and 188 phosphate residues, respectively. Several divalent cations stimulated the enzyme activity 1.2-27-fold (Mg2+ = Co2+ = Mn2+ > Zn2+). Determination of the protein N-terminal sequence and its comparison with the EMBL data library indicates that the soluble polyphosphatase of mitochondria of S. cerevisiae is not encoded by the gene of the major yeast polyphosphatase PPX1.  相似文献   

20.
Soluble adenylate cyclase activity in Neurospora crassa.   总被引:7,自引:6,他引:1       下载免费PDF全文
A soluble form of adenylate cyclase was extracted from mycelia of Neurospora crassa wild-type strains. This enzyme activity was purified by chromatography on hexyl-amino-Sepharose, agarose and Blue Sepharose and preparative polyacrylamide-gel electrophoresis. On sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, peak fractions from the later purification steps showed a main polypeptide band with an apparent molecular weight of about 66 000. The following hydrodynamic and molecular parameters were established for the Neurospora soluble adenylate cyclase activity: sedimentation coefficient, 6.25 S; Stokes radius, 7.3 nm; partial specific volume, 0.74 ml/g; molecular weight, 202 000; frictional ratio, 1.65. The isoelectric point of this enzyme activity was 4.65. The enzyme was not activated by GTP, [beta gamma-imido]GTP, fluoride or cholera toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号