首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lon protease, which plays a major role in degradation of abnormal proteins inEscherichia coli, was overproduced and efficiently purified using the maltose-binding protein (MBP) fusion vector. The MBP-Lon fusion protein was expressed in a soluble form inE. coli and purified to homogeneity by amylose resin in a single step. Lon protease was split from MBP by cleaving a fusion point between MBP and Lon with factor Xa and purified by amylose resin and subsequent gel filtration. In this simple method, Lon protease was purified to homogeneity. Purified MBP-Lon fusion protein and Lon protease showed similar breakdown activities with a peptide (succinyl-l-phenylalanyl-l-leucyl-phenylalanyl--d-methoxynaphthylamide) and protein (-casein) in the presence of ATP. Therefore, the gene-fusion approach described in this study is useful for the production of functional Lon protease. MBP-Lon fusion protein, which both binds to the amylose resin and has ATP-dependent protease activity, should be especially valuable for its application in the degradation of abnormal proteins by immobilized enzymes.  相似文献   

2.
The first hyperthermophilic d-arabitol dehydrogenase from Thermotoga maritima was heterologously purified from Escherichia coli. The protein was purified with and without a Strep-tag. The enzyme exclusively catalyzed the NAD(H)-dependent oxidoreduction of d-arabitol, d-xylitol, d-ribulose, or d-xylulose. A twofold increase of catalytic rates was observed upon addition of Mg2+ or K+. Interestingly, only the tag-less protein was thermostable, retaining 90% of its activity after 90 min at 85 °C. However, the tag-less form of d-arabitol dehydrogenase had similar kinetic parameters compared to the tagged enzyme, demonstrating that the Strep-tag was not deleterious to protein function but decreased protein stability. A single band at 27.6 kDa was observed on SDS-PAGE and native PAGE revealed that the protein formed a homohexamer and a homododecamer. The enzyme catalyzed oxidation of d-arabitol to d-ribulose and therefore belongs to the class of d-arabitol 2-dehydrogenases, which are typically observed in yeast and not bacteria. The product d-ribulose is a rare ketopentose sugar that has numerous industrially applications. Given its thermostability and specificity, d-arabitol 2-dehydrogenase is a desirable biocatalyst for the production of rare sugar precursors.  相似文献   

3.
An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 °C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 °C, with a t 50 of 45 min at 60 °C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl α-d-maltoside, methyl-α-d-glucopyranoside, pullulan, α- and β-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in α-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-α-d-glucan glucohydrolase).  相似文献   

4.
Lectin is a cell-agglutinating and carbohydrate-binding protein present in many plants. The lectin ofCanavalia ensiformis shoot with specific affinity ford-glucose was purified by affinity chromatography using Sephadex G-100, and some of its biochemical characterizations were studied. Lectin was purified 8.87-fold and exhibited final specific activity of 225.74 units/mg protein with a 2.3% yield. SDS-PAGE analysis demonstrated that the purified shoot lectin exists as a tetramer of 102 kD, composed of two subunits with molecular weight of 29 and 22 kD. The purified lectin was observed to agglutinate rabbit blood cell. The optimal temperature for the activity of this lectin was 40°C, and this lectin was relatively stable to heat with the highest activity at 50∼60°C. The maximal activity was observed at pH 7.2.  相似文献   

5.
The ATP·Mg-dependent protein phosphatase activating factor (Fa) has been identified and purified to near homogeneity from brain. In this report, as evidenced on SDS-polyacrylamide gel electrophoresis followed by autoradiography, factorFa has further been identified as a cAMP and Ca2+-independent brain kinase that could phosphorylate synapsin I, a neuronal protein that coats synaptic vesicles, binds to cytoskeleton, and is believed to be involved in the modulation of neurotransmission. Kinetic study further indicated that factorFa could phosphorylate synapsin I with a lowK m value of about 2 µM and with a molar ratio of 1 mol of phosphate per mole of protein. Peptide mapping analysis revealed that factorFa specifically phosphorylated the tail region of synapsin I but on a unique site distinct from those phosphorylated by Ca2+/calmodulin-dependent protein kinase II and cAMP-dependent protein kinase, the two well-established synapsin I kinases. Functional study further revealed that factorFa could phosphorylate this unique specific site on the tail region of synapsin I and thereby inhibit cross-linking of synapsin I with microtubules. The results further suggest the possible involvement of factorFa as a synapsin I kinase in the regulation of axonal transport process of synaptic vesicles via the promotion of vesicles motility during neurotransmission.  相似文献   

6.
Achromobacter xylosoxidans is known to utilize d-glucose via the modified Entner-Doudoroff pathway. Although d-gluconate dehydratase produced from this bacterium was purified and partially characterized previously, a gene that encodes this enzyme has not yet been identified. To obtain protein information on bacterial d-gluconate dehydratase, we partially purified d-gluconate dehydratase in A. xylosoxidans and investigated its biochemical properties. Two degenerate primers were designed based on the N-terminal amino acid sequence of the partially purified d-gluconate dehydratase. Through PCR performed using degenerate primers, a 1,782-bp DNA sequence encoding the A. xylosoxidans d-gluconate dehydratase (gnaD) was obtained. The deduced amino acid sequence of A. xylosoxidans gnaD showed strong similarity with that of proteins belonging to the dihydroxy-acid dehydratase/phosphogluconate dehydratase family (COG0129). This is in contrast to the archaeal d-gluconate dehydratase, which belongs to the enolase superfamily (COG4948). The phylogenetic tree showed that A. xylosoxidans d-gluconate dehydratase is closer to the 6-phosphogluconate dehydratase than the dihydroxy-acid dehydratase. Interestingly, a clade containing A. xylosoxidans enzyme was clustered with proteins annotated as a second and a third dihydroxy-acid dehydratase in the genomes of Clostridium acetobutylicum (Cac_ilvD2) and Streptomyces ceolicolor (Sco_ilvD2, Sco_ilvD3), indicating that the function of these enzymes is the dehydration of d-gluconate.  相似文献   

7.
Summary A membrane extract enriched with the Na+-dependentd-glucose transport system was obtained by differential cholate solubilization of rat renal brush border membranes in the presence of 120mm Na+ ions. Sodium ions were essential in stabilizing the transport system during cholate treatment. This membrane extract was further purified with respect to its Na+-coupledd-glucose transport activity and protein content by the use of asolectin-equilibrated hydroxylapatite. The reconstituted proteoliposomes prepared from this purified fraction showed a transient accumulation ofd-glucose in response to a Na+ gradient. The observed rate of Na+-coupledd-glucose uptake by the proteoliposomes represented about a sevenfold increase as compared to that of the reconstituted system derived from an initial 1.2% cholate extract of the membranes. Other Na+-coupled transport systems such asl-alanine, -ketoglutarate and phosphate were not detected in these reconstituted proteoliposomes.  相似文献   

8.
A novel enzyme, l-carnitine amidase, was purified about 140-fold from a newly screened microorganism (DSM 6320) to yield a homogeneous protein. The native enzyme has a molecular mass of 125 kDa (gel filtration) and consists of two identical subunits as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Edman degradation. The pH optimum was found around pH 8.5. Out of 60 chemicals tested as substrates (amides of various aliphatic and aromatic acids, nitriles, amino acid amides and dipeptide amides) the amidase hydrolysed only l-carnitine amide. The Michaelis constant (Km) was found to be 11.6 mm, and the pure protein had a specific activity of 328 units/mg. Complex kinetics were observed with the racemic mixture of d,l-carnitine amide as starting material during enzymatic hydrolysis. Correspondence to: M.-R. Kula  相似文献   

9.
The α-l-arabinosidase, AraB, was induced when Bacillus pumilus ARA was grown at 50°C in a minimal medium containing xylan. A 56-kDa protein with α-l-arabinosidase activity was purified from culture supernatant to gel electrophoretic homogeneity. The optimal activity was at pH 6.4 and 60°C over a 10-min assay. The purified enzyme was stable over a pH range of 5.2–7.6 and had a 1-h half life at 70°C. The enzyme released arabinose from oat spelt xylan. Kinetic experiments at 60°C with p-nitrophenyl α-l-arabinofuranoside as substrate gave a K m, and V max of 1.05 mM and 240 U per mg of protein. The NH2-terminal amino acid sequence of the enzyme was determined, and its gene araB was subsequently cloned, sequenced, and over-expressed in Escherichia coli. The open reading frame of araB consists of a 1,479-bp fragment encoding a protein of 472 amino acids, which belonged to family 51 of the glycoside hydrolases with an identity of 67% to the protein encoded by abfB of Bacillus subtilis 168.  相似文献   

10.
Summary Inducible resistance to the glycopeptide antibiotics vancomycin and teicoplanin is mediated by plasmid pIP816 in Enterococcus faecium strain BM4147. Vancomycin induced the synthesis of a ca. 40 kDa membrane-associated protein designated VANA. The resistance protein was partially purified and its N-terminal sequence was determined. A 1761 by DNA restriction fragment of pIP816 was cloned into Escherichia coli and sequenced. When expressed in E. coli, this fragment encoded a ca. 40 kDa protein that comigrated with VANA from enterococcal membrane fractions. The ATG translation initiation codon for VANA specified the methionine present at the N-terminus of the protein indicating the absence of signal peptide processing. The amino acid sequence deduced from the sequence of the vanA gene consisted of 343 amino acids giving a protein with a calculated Mr of 37400. VANA was structurally related to the d-alanyl-d-alanine (d-ala-d-ala) ligases of Salmonella typhimurium (36% amino acid identity) and of E. coli (28%). The vanA gene was able to transcomplement an E. coli mutant with thermosensitive d-ala-d-ala ligase activity. Thus, the inducible resistance protein VANA was structurally and functionally related to cytoplasmic enzymes that synthesize the target of glycopeptide antibiotics. Based on these observations we discuss the possibility that resistance is due to modification of the glycopeptide target.  相似文献   

11.
A new tyrosinase was isolated from Aeromonas media strain WS and purified to homogeneity. The purified tyrosinase, termed TyrA, had a molecular mass of 58 kDa and an isoelectric point of 4.90. It exhibited optimal monophenol and diphenol oxidase activities under basic conditions (pH > 8.0). TyrA had a relatively higher affinity to diphenol substrate l-dihydroxyphenylalanine (l-dopa) than many other tyrosinases. EDTA or glutathione notably inhibited the enzymatic activities of TyrA, whereas Triton X-100 and SDS activated them. The full-length TyrA gene was cloned, and it encodes a 518 amino acid protein with little similarities to other reported tyrosinases. However, the purified recombinant TyrA expressed in Escherichia coli demonstrated tyrosinase activity. These results suggest that TyrA is the first reported distinct tyrosinase involved in melanin production in the genus Aeromonas.  相似文献   

12.
l-glutamine (Gln) is an important conditionally necessary amino acid in human body and potential demand in food or medicine industry is expected. High efficiency of l-Gln production by coupling genetic engineered bacterial glutamine synthetase (GS) with yeast alcoholic fermentation system has been developed. We report here first the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of recombinant Bacillus subtilis GS. In order to obtain GS with high Gln-forming activity, safety and low cost for food and pharmaceutics industry, 0.1% (w/v) lactose was selected as inducer. The fusion protein was expressed in totally soluble form in E. coli, and expression was verified by SDS–PAGE and western blot analysis. The fusion protein was purified to 90% purity by nickel nitrilo-triacetic acid (Ni–NTA) resin chromatography with a yield of 625 mg per liter fermentation culture. After the SUMO/GS fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni–NTA column. Finally, about 121 mg recombinant GS was obtained from 1 l fermentation culture with no less than 96% purity. The recombinant purified GS showed great transferase activity (23 U/mg), with 25 U recombinant GS in a 50 ml reaction system, a biosynthesis yield of 27.5 g/l l-Gln was detected by high pressure liquid chromatography (HPLC) or thin-layer chromatography. Thus, the application of SUMO technology to the expression and purification of GS potentially could be employed for the industrial production of l-Gln.  相似文献   

13.
Lactobacillus delbrückii ssp. lactis DSM7290 possesses an X-prolyl-dipeptidyl-aminopeptidase, designated PepX, which catalyses the hydrolytic removal of N-terminal dipeptidyl residues from peptides containing proline in the penultimate position. Using the specific substrate L-Ala-L-Pro-p-nitroanilide, PepX was purified by a four-step procedure including ammonium sulphate fractionation, hydrophobic interaction chromotography, ion exchange chromotography, and affinity chromotography. The N-terminus of the purified protein was sequenced. Screening of a gene library of chromosomal Lactobacillus delbrückii ssp. lactis DSM7290 DNA in the low-copy-number vector pLG339 resulted in the identification of the pepX gene in Escherichia coli using a specific plate assay with Gly-L-Pro--naphthalamide as substrate. Nucleotide sequence analysis revealed an open reading frame of 2376 bp, coding for a protein of 792 amino acids with a molecular mass of 88449 Da. Correspondence to: E. C. Meyer-Barton  相似文献   

14.
N-carbamoyl-l-cysteine amidohydrolase (NCC amidohydrolase) was purified and characterized from the crude extract of Escherichia coli in which the gene for NCC amidohydrolase of Pseudomonas sp. strain ON-4a was expressed. The enzyme was purified 58-fold to homogeneity with a yield of 16.1% by three steps of column chromatography. The results of gel filtration on Sephacryl S-300 and SDS-polyacrylamide gel electrophoresis suggested that the enzyme was a tetramer protein of identical 45-kDa subunits. The optimum pH and temperature of the enzyme activity were pH 9.0 and 50°C, respectively. The enzyme required Mn2+ ion for activity expression and was inhibited by EDTA, Hg2+ and sulfhydryl reagents. The enzyme was strictly specific for the l-form of N-carbamoyl-amino acids as substrates and exhibited high activity in the hydrolysis of N-carbamoyl-l-cysteine as substrate. These results suggested that the NCC amidohydrolase is a novel l-carbamoylase, different from the known l-carbamoylases.  相似文献   

15.
Kidney bean (Phaseolus vulgaris L.) ornithine carbamoyltransferase (OCT; EC 2.1.3.3) was purified to homogeneity from leaf homogenates in a single-step procedure, using δ-N-(phosphonoacetyl)-l-ornithine-Sepharose 6B affinity chromatography. The 8540-fold-purified OCT exhibited a specific activity of 526 micromoles citrulline per minute per milligram of protein at 35 °C and pH 8.0. The enzyme represents approximately 0.01% of the total soluble protein in the leaf. The molecular mass of the native enzyme was approximately 109 kDa as estimated by Sephacryl S-200 gel filtration chromatography. The purified protein ran as a single band of molecular mass 36 kDa when subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and at a single isoelectric point of 6.6 when subjected to denaturing isoelectric focusing. These results suggest that the enzyme is a trimer of identical subunits. Among the tested amino acids, l-cysteine and S-carbamoyl-l-cysteine were the most effective inhibitors of the enzyme. The OCT of kidney bean showed a very low activity towards canaline. The OCTs of canavanine-deficient plants have very low canaline-dependent activities, but the OCTs of canavanine-containing plants showed high canaline-dependent activities. It was assumed that the substrate specificity of this enzyme determines the canavanine synthetic activity of the urea cycle. Received: 22 July 1997 / Accepted: 4 December 1997  相似文献   

16.
The objective of this study was to purify and characterize a mouse hepatic enzyme that directly generates CH3SeH from seleno-l-methionine (l-SeMet) by the α,γ-elimination reaction. The l-SeMet α,γ-elimination enzyme was ubiquitous in tissues from ICR mice and the activity was relatively high in the large intestine, brain, and muscle, as well as the liver. Aging and sex of the mice did not have any significant influence on the activity in the liver. The enzyme was purified from the mouse liver by ammonium sulfate precipitation and four kinds of column chromatography. These procedures yielded a homogeneous enzyme, which was purified approx 1000-fold relative to mouse liver extract. Overall recovery was approx 8%. The purified enzyme had a molecular mass of approx 160 kDa with four identical subunits. The K m value of the enzyme for the catalysis of l-SeMet was 15.5 m M, and the V max was 0.29 units/mg protein. Pyridoxal 5′-phosphate (pyridoxal-P) was required as a cofactor because the holoenzyme could be resolved to the apoenzyme by incubation with hydroxylamine and reconstituted by addition of pyridoxal-P. The enzyme showed the optimum activity at around pH 8.0 and the highest activity at 50°C; it catalyzed the α,γ-elimination reactions of several analogs such as d,l-homocysteine and l-homoserine in addition to l-SeMet. This enzyme also catalyzed the α,β-elimination reaction of Se-methylseleno-l-cysteine. However, l-methionine was inerts. Therefore, the purified enzyme was different from the bacterial l-methionine γ-lyase that metabolizes l-SeMet to CH3SeH, in terms of the substrate specificity. These results were the first identification of a mammalian enzyme that specifically catalyzes the α,γ-elimination reaction of l-SeMet and immediately converts it to CH3SeH, an important metabolite of Se.  相似文献   

17.
A protein was isolated and purified from the ventral portion of the Potca fish, Tetraodon patoca. The method was accomplished by gel filtration of crude protein extract on Sephadex G-50 followed by Ion exchange chromatography on DEAE-cellulose and finally by affinity chromatography on ConA-Sepharose matrix. The molecular weight of the protein, determined by the gel filtration and SDS-PAGE was about 82,000 and 80,000 respectively, but 42,000 and 38,000 were indicated by SDS-PAGE in the presence of 2-mercaptoethanol. The protein agglutinated rat red blood cells and in a haptein-inhibition test, the protein was inhibited specifically by the d-mannose and mannose containing saccharides. The protein is glycoprotein with neutral sugar content of about 0.35%. The purified protein also showed strong cytotoxic effects, which was performed by brine shrimp lethality bioassay and histopathological examinations. The N-terminal amino acid sequences of both the subunits of the protein were also identified and used a blast search on N-terminal amino acid sequences of the subunits revealed that the protein showed significant homology with the homologous proteins in database.  相似文献   

18.
l-Asparaginase fromEnterobacter aerogenes was purified by a simple method involving sonication of the crude cell mass, gel filtration with Sephacryl S-100 as the separating material, followed by ultrafiltration. Recent methods involve complex purification procedures of 5–6 steps. The isolation process resulted in 10-fold purification of the enzyme with a specific activity of 55 IU/mg protein and recovery of 54%. The purity was tested by capillary electrophoresis, used for the first time for documenting the purification ofl-asparaginase. The choice of the column material was critical in the purification process.  相似文献   

19.
Mucosal crude microsomes, prepared from proximal rat small intestine, exhibited significant Mg-dependent, Zn-ATPase activity; V max = 23 μmoles Pi/mg protein/hr, K m = 160 nm, and Hill Coefficient, n= 1.5. Partial purification (∼10-fold) was achieved by detergent extraction, and centrifugation through 250 mm sucrose: V max = 268 units, K m = 1 nm, and n= 6. In partially purified preparations, the assay was linear with time to 60 min, and with protein concentration to 1 μg/300 μl. Activities at pH 8 and 8.5 were higher than at pH 7.2. The ATP K m was 0.7 mm, with an optimal ATP/Mg ratio of ∼2. Ca elicited ATPase activity but did not augment the Zn-dependent activity. In partially purified preparations, the homologous salts of Co, Cd, Cu, and Mn exhibited no detectable activity. Vanadate inhibition studies yielded two component kinetics with a K i of 12 μm for the first component, and 96 μm for the second component, in partially purified preparations. Tissue distribution analyses revealed gradients of activity. In the proximal half of the small intestine, Mg/Zn activity increased progressively from crypt to villus tip. In long axis studies, this activity decreased progressively from proximal to distal small bowel. Received: 12 September 2000/Revised 6 January 2001  相似文献   

20.
A type-1 ribosome-inactivating protein (RIP) designated TK-35 has been purified from the supernatant of suspension cultures of Agrobacterium rhizogenes-transformed stem sections of Trichosanthes kirilowii. The protein was purified from the supernatant by PerSeptive SH/M cation exchange and Sephadex G-75 S gel permeation chromatography. The protein occurs as a monomer, with a molecular weight of 35,117, and is glycosylated. A protein translation inhibition assay indicates that TK-35 has an IC50 value of 2.45 nm and is able to release the rRNA N-glycosidase diagnostic fragment from rabbit reticulocyte lysate. TK-35 is quite thermally stable. Analysis of its N-terminal sequence and two lys-C-protease-digested polypeptides (internal) amino acid sequence indicates that this protein is not homologous to trichosanthin and other type-1 RIPs in Cucurbitaceae family. Received: 20 August 1997 / Revision received: 30 September 1997 / Accepted: 11 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号