首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cloning of sucrase genes from Streptococcus mutans in bacteriophage lambda   总被引:4,自引:0,他引:4  
Abstract An extracellular peroxidase was purified by chromatofocusing column chromatography from the growth medium of ligninolytic cultures of the white-rot fungus Phanerochaete chrysosporium Burds BKM-1767. The enzyme was electrophoretically pure with an M r of 45 000–47 000. It contained an easily dissociable heme, and required Mn2+ ions for activity. In the presence of hydrogen peroxide and Mn2+ it oxidized compounds such as vanillylacetone, 2,6-dimethyloxyphenol, curcumin, syringic acid, guaiacol, syringaldazine, divanillylacetone, and coniferyl alcohol. It did not oxidize veratryl alcohol. In reactions requiring Mn2+ and O2, but not hydrogen peroxide, the enzyme oxidized glutathione, dithiothreitol, and NADPH with production of hydrogen peroxide. The hydrogen peroxide produced could be used as a co-substrate by ligninases such as those that oxidize veratryl alcohol, or by the peroxidase itself to oxidize lignin model compounds.  相似文献   

2.
Ca2+ and Mn2+ activate the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) by root microsomes of Vicia lens as they do in other similar systems. The preparation of microsomes in the presence of Mn2+ greatly increases their ability to convert ACC into ethylene, without addition of Mn2+ in the reaction mixture. Ca2+ does not have this property. The effect could not be attributed to Mn2+ entrapping into membrane vesicles (sonication followed by repelleting had no effect) but, possibly, in part to Mn2+-mediated binding to microsomes of a soluble factor favouring the conversion of ACC to C2H4. Although no direct correlation could be established in vitro between ethylene-forming-enzyme (EFE) and peroxidase activities, some soluble peroxidases might be this soluble factor. Mn2+ favoured attachment to membranes of some peroxidase activity from the soluble fraction and from commercial HRP and lipoxygenase. This binding effect of Mn2+ cannot be readily distinguished from its role in the generation of a chain of free radicals and in redox mechanisms.  相似文献   

3.
Rubbing applied to a young tomato internode inhibited the elongation of this internode and increased soluble peroxidase activity. These morphological and biochemical changes were observed both at the site of rubbing (local response) and in the neighbouring internode (systemic response). The cellular, biochemical, and molecular mechanisms leading to inhibition of internode elongation are not fully understood. It was proposed that mechanical stimuli increased the oxidation of IAA, via the induction of specific peroxidases and stimulated the lignification processes. In order to gain more information about the role of these enzymes, analysis of changes in peroxidase activities were performed. Qualitative analysis of isoperoxidases, by means of native cathodic PAGE, showed four induced isoforms termed C1, C2, C3, and C4. The major isoform (C2) was purified to homogeneity and partially characterized. This isoform is probably unglycosylated, with a molecular mass of 36 kDa and a neutral pI of 7.1. The effects of pH and temperature on the activity were determined with guaiacol as electron donor. Optima were obtained at pH 5 and at a temperature of 55°C. The activity of the purified enzyme was not affected by Ca2+, Mg2+ and Mn2+ as was reported for some basic peroxidases. Analysis of substrate specificity revealed that this isoperoxidase acted on ABTS, o -dianisidine, pyrogallol, guaiacol, coniferyl alcohol (monolignol) and IAA but not on syringaldazine. Activitiy of C2 isoperoxidase on coniferyl alcohol and IAA suggests a possible role of peroxidase C2 in inhibition of internode elongation, observed in rubbed plants, probably via an increase in lignification processes and regulation of IAA levels in internode tissues.  相似文献   

4.
5.
Two major peroxidases are secreted by the fungus Pleurotus eryngii in lignocellulose cultures. One is similar to Phanerochaete chrysosporium manganese-dependent peroxidase. The second protein (PS1), although catalyzing the oxidation of Mn2+ to Mn3+ by H2O2, differs from the above enzymes by its manganese-independent activity enabling it to oxidize substituted phenols and synthetic dyes, as well as the lignin peroxidase (LiP) substrate veratryl alcohol. This is by a mechanism similar to that reported for LiP, as evidenced by p-dimethoxybenzene oxidation yielding benzoquinone. The apparent kinetic constants showed high activity on Mn2+, but methoxyhydroquinone was the natural substrate with the highest enzyme affinity (this and other phenolic substrates are not efficiently oxidized by the P. chrysosporium peroxidases). A three-dimensional model was built using crystal models from four fungal peroxidase as templates. The model suggests high structural affinity of this versatile peroxidase with LiP but shows a putative Mn2+ binding site near the internal heme propionate, involving Glu36, Glu40, and Asp181. A specific substrate interaction site for Mn2+ is supported by kinetic data showing noncompetitive inhibition with other peroxidase substrates. Moreover, residues reported as involved in LiP interaction with veratryl alcohol and other aromatic substrates are present in peroxidase PS1 such as His82 at the heme-channel opening, which is remarkably similar to that of P. chrysosporium LiP, and Trp170 at the protein surface. These residues could be involved in two different hypothetical long range electron transfer pathways from substrate (His82-Ala83-Asn84-His47-heme and Trp170-Leu171-heme) similar to those postulated for LiP.  相似文献   

6.
Trametes cervina lignin peroxidase (LiP) is a unique enzyme lacking the catalytic tryptophan strictly conserved in all other LiPs and versatile peroxidases (more than 30 sequences available). Recombinant T. cervina LiP and site-directed variants were investigated by crystallographic, kinetic, and spectroscopic techniques. The crystal structure shows three substrate oxidation site candidates involving His-170, Asp-146, and Tyr-181. Steady-state kinetics for oxidation of veratryl alcohol (the typical LiP substrate) by variants at the above three residues reveals a crucial role of Tyr-181 in LiP activity. Moreover, assays with ferrocytochrome c show that its ability to oxidize large molecules (a requisite property for oxidation of the lignin polymer) originates in Tyr-181. This residue is also involved in the oxidation of 1,4-dimethoxybenzene, a reaction initiated by the one-electron abstraction with formation of substrate cation radical, as described for the well known Phanerochaete chrysosporium LiP. Detailed spectroscopic and kinetic investigations, including low temperature EPR, show that the porphyrin radical in the two-electron activated T. cervina LiP is unstable and rapidly receives one electron from Tyr-181, forming a catalytic protein radical, which is identified as an H-bonded neutral tyrosyl radical. The crystal structure reveals a partially exposed location of Tyr-181, compatible with its catalytic role, and several neighbor residues probably contributing to catalysis: (i) by enabling substrate recognition by aromatic interactions; (ii) by acting as proton acceptor/donor from Tyr-181 or H-bonding the radical form; and (iii) by providing the acidic environment that would facilitate oxidation. This is the first structure-function study of the only ligninolytic peroxidase described to date that has a catalytic tyrosine.  相似文献   

7.
Versatile peroxidase (VP) is defined by its capabilities to oxidize the typical substrates of other basidiomycete peroxidases: (i) Mn(2+), the manganese peroxidase (MnP) substrate (Mn(3+) being able to oxidize phenols and initiate lipid peroxidation reactions); (ii) veratryl alcohol (VA), the typical lignin peroxidase (LiP) substrate; and (iii) simple phenols, which are the substrates of Coprinopsis cinerea peroxidase (CIP). Crystallographic, spectroscopic, directed mutagenesis, and kinetic studies showed that these 'hybrid' properties are due to the coexistence in a single protein of different catalytic sites reminiscent of those present in the other basidiomycete peroxidase families. Crystal structures of wild and recombinant VP, and kinetics of mutated variants, revealed certain differences in its Mn-oxidation site compared with MnP. These result in efficient Mn(2+) oxidation in the presence of only two of the three acidic residues forming its binding site. On the other hand, a solvent-exposed tryptophan is the catalytically-active residue in VA oxidation, initiating an electron transfer pathway to haem (two other putative pathways were discarded by mutagenesis). Formation of a tryptophanyl radical after VP activation by peroxide was detected using electron paramagnetic resonance. This was the first time that a protein radical was directly demonstrated in a ligninolytic peroxidase. In contrast with LiP, the VP catalytic tryptophan is not beta-hydroxylated under hydrogen peroxide excess. It was also shown that the tryptophan environment affected catalysis, its modification introducing some LiP properties in VP. Moreover, some phenols and dyes are oxidized by VP at the edge of the main haem access channel, as found in CIP. Finally, the biotechnological interest of VP is discussed.  相似文献   

8.
Abstract 3 New spectrophotometric enzyme assays were developed for the study of microbial lignin-degrading enzymes. The conversion of 2-methoxy-3-phenylbenzoic acid to 2-hydroxy-3-phenylbenzoic acid led to the discovery of an extracellular, aromatic methyl ether demethylase produced by the white-rot fungus Phanerochaete chrysosporium . The conversion of methyl 2-hydroxy-3-phenylbenzoate to 2-hydroxy-3-phenylbenzoic acid allowed the identification of an extracellular, aromatic methyl ester esterase produced by this fungus. The Phanerochaete sp. also excreted an enzyme complex that oxidized 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, probably to aliphatic products. All 3 novel enzyme activities were produced together with, and probably comprise a part of, the Phanerochaete ligninolytic enzyme complex. Unlike previously known ligninases, these enzymes did not oxidize 3,4-dimethoxybenzyl alcohol. All 3 were H2O2-dependent and were activated by Mn2+ ions.  相似文献   

9.
The cloning and sequencing of the rbpa gene coding for a versatile peroxidase from a novel Bjerkandera strain is hereby reported. The 1777 bp isolated fragment contained a 1698 bp peroxidase-encoding gene, interrupted by 11 introns. The 367 amino acid-deduced sequence includes a 27 amino acid-signal peptide. The molecular model, built via homology modelling with crystal structures of four fungal peroxidases, highlighted the amino acid residues putatively involved in manganese binding and aromatic substrate oxidation. The potential heme pocket residues (R44, F47, H48, E79, N85, H177, F194 and D239) include both distal and proximal histidines (H48 and H177). RBP possesses potential calcium-binding residues (D49, G67, D69, S71, S178, D195, T197, I200 and D202) and eight cysteine residues (C3, C15, C16, C35, C121, C250, C286, C316). In addition, RBP includes residues involved in substrate oxidation: three acidic residues (E37, E41 and D183)--putatively involved in manganese binding and H83 and W172--potentially involved in oxidation of aromatic substrates. Characterisation of nucleotide and amino acid sequences include RBP in versatile peroxidase group sharing catalytic properties of both LiP and MnP. In addition, the RBP enzyme appears to be closely related with the ligninolytic peroxidases from the Trametes versicolor strain.  相似文献   

10.
Manganese (Mn2+) is an essential metal involved in normal functioning of a range of physiological processes. However, occupational overexposure to Mn2+ causes neurotoxicity. The dopaminergic system is a particular target for Mn2+ neurotoxicity. Tyrosine hydroxylase (TH) is the rate limiting enzyme for dopamine synthesis and is regulated acutely by phosphorylation at Ser40 and chronically by protein synthesis. In this study we used pheochromocytoma 12 cells to investigate the effects of Mn2+ exposure on the phosphorylation and activity of TH. Mn2+ treatment for 24 h caused a sustained increase in Ser40 phosphorylation and TH activity at a concentration of 100 μM, without altering the level of TH protein or PC12 cell viability. Inhibition of protein kinase A and protein kinase C and protein kinases known to be involved in sustained phosphorylation of TH in response to other stimuli did not block the effects of Mn2+ on Ser40 phosphorylation. A substantial increase in H2O2 production occurred in response to 100 μM Mn2+. The antioxidant TroloxTM completely inhibited H2O2 production but did not block TH phosphorylation at Ser40, indicating that oxidative stress was not involved. Sustained TH phosphorylation at Ser40 and the consequent activation of TH both occurred at low concentrations of Mn2+ and this provides a potential new mechanism for Mn2+-induced neuronal action that does not involve H2O2-mediated cell death.  相似文献   

11.
Abstract Transport of Mn2+ was repressed in Candida utilis cells grown in continuous culture in high-Mn2+ (100 μM Mn2+) medium as compared to cells grown in basic (0.45 μM Mn2+) and low-Mn2+ (< 0.05 μM Mn2+) media. In contrast, no repression of Cu2+ uptake occurred in high-Cu2+-grown (25 μM Cu2+) cells as compared to cells grown in basic medium (0.54 μM Cu2+). Cu2+-limited cells did not hyperaccumulate Cu2+ and there was not significant difference in initial uptake rates for all 3 Cu2+ conditions. Mn2+ uptake appears to be regulated by a mechanism sensitive to the external Mn2+ concentration, whereas Cu2+ transport is not governed in this way by the external Cu2+.  相似文献   

12.
NADP+-malic enzyme ( l -malate: NADP+ oxidoreductase, decarboxylating EC 1.1.1.40) from pod walls of chickpea was purified 51-fold by ammonium sulphate fractionation, DEAE- cellulose chromatography and gel filtration through Sepharose 4B. The purified enzyme required a divalent cation, either Mn2+ or Mg2+, for its activity. Km values at pH 7.8 for malate, NADP+ and Mn2+ were 4.0, 0.031 and 0.71 m M , respectively. Mn2+-dependent activity was inhibited by heavy metal ions such as Cd2+, Zn2+, Hg2+, and to a lesser extent by Pb2+ and Al3+. Among the organic acids examined, sodium salts of oxalate and oxaloacetate were inhibitory. Kinetics of the reaction mechanism showed sequential binding of malate and NADP+ to the enzyme. Products of reaction, viz. pyruvate, bicarbonate and NADPH, inhibited the enzyme activity. At limiting concentrations of NADP+, pyruvate and bicarbonate induced a positive cooperative effect by malate. It is proposed that the activity of NADP+-malic enzyme is controlled by intracellular concentrations of substrates and products.  相似文献   

13.
Abstract: Electron microscopic and biochemical studies of lignocellulose degradation by wood-rotting fungi have shown that enzymes such as lignin peroxidases, manganese-dependent peroxidases, laccases and cellulases are too large to penetrate undegraded secondary wood cell walls. Degradation occurs by surface interaction between cell wall and enzymes, but initiation of decay at a distance from the fungal hyphae must involve diffusible low-molecular mass agents. The roles of hydrogen peroxide, veratryl alcohol, oxalate, Fe2+-Fe3+ and Mn2+-Mn3+, as such agents in lignocellulose degradation are discussed.  相似文献   

14.
The reductive carboxylation of α-ketoglutarate by purified NADP+-isocitrate dehydrogenase (EC 1.1.1.42) from maturing castor bean seeds ( Ricinus communis L. ) has been characterized. The optimum pH for the reaction was 6.5, whereas pH 8.5 was optimum for oxidation of isocitrate (forward reaction). The enzyme utilized NADH as well as NADPH as the reducing agent in the reverse reaction, but only NADP+ in the forward reaction. The Km values for NADPH and NADH were 0.044 and 2.8 m M respectively, and for α-ketoglutarate and HCO3 4.1 and 3.7 m M. The enzyme was activated by various cations including Mg2+, Mn2+, Co2+, Zn2+, Ni2+ and Co2+. Km values for Mg2+ Mn2+, Co2+ and Zn2+ were 12, 34, 37 and 49μ M respectively.  相似文献   

15.
NADP+-dependent malic enzyme (L-malate : NADP+ oxidoreductase, decarboxylating, EC 1.1.1.40) was extracted from the leaves of yellow lupine. The purification procedure included fractionation with (NH4)2SO4 and Sephadex G-25 chromatography, followed by purification on DEAE-cellulose and Sephadex G-200 columns. The enzyme was purified 122-fold. The enzyme affinity towards L-malate was found to be significantly higher with Mn2+ than with Mg2+. The Hill coefficient for Mg2+ depended on concentration and was 1.6 for the lower and 3.9 for the higher concentrations. The dependence of the enzyme activity on NADP+ followed a hyperbolic curve. Km values and Hill coefficients for NADP+ were similar with both Mn2+ and Mg2+. The enzyme activity was strictly dependent on divalent cations and followed a sigmoidal curve at least for Mg2+. The enzyme had 4-fold higher affinity towards Mn2+ than towards Mg2+, the Km values being 0.3 and 1.15 m M respectively. Of several tested organic acids, oxalate was the most effective inhibitor followed by oxaloacetate while succinate was the strongest activator.  相似文献   

16.
Because there is some controversy concerning the ligninolytic enzymes produced by Pleurotus species, ethylene release from alpha-keto-gamma-thiomethylbutyric acid (KTBA), as described previously for Phanerochaete chrysosporium lignin peroxidase (LiP), was used to assess the oxidative power of Pleurotus eryngii cultures and extracellular proteins. Lignin model dimers were used to confirm the ligninolytic capabilities of enzymes isolated from liquid and solid-state fermentation (SSF) cultures. Three proteins that oxidized KTBA in the presence of veratryl alcohol and H2O2 were identified (two proteins were found in liquid cultures, and one protein was found in SSF cultures). These proteins are versatile peroxidases that act on Mn2+, as well as on simple phenols and veratryl alcohol. The two peroxidases obtained from the liquid culture were able to degrade a nonphenolic beta-O-4 dimer, yielding veratraldehyde, as well as a phenolic dimer which is not efficiently oxidized by P. chrysosporium peroxidases. The former reaction is characteristic of LiP. The third KTBA-oxidizing peroxidase oxidized only the phenolic dimer (in the presence of Mn2+). Finally, a fourth Mn2+-oxidizing peroxidase was identified in the SSF cultures on the basis of its ability to oxidize KTBA in the presence of Mn2+. This enzyme is related to the Mn-dependent peroxidase of P. chrysosporium because it did not exhibit activity with veratryl alcohol and Mn-independent activity with dimers. These results show that P. eryngii produces three types of peroxidases that have the ability to oxidize lignin but lacks a typical LiP. Similar enzymes (in terms of N-terminal sequence and catalytic properties) are produced by other Pleurotus species. Some structural aspects of P. eryngii peroxidases related to the catalytic properties are discussed.  相似文献   

17.
The effect of several metal ions on NADP+-malic enzyme (EC 1.1.1.40) purified from Zea mays L. leaves was studied Mg2+, Mn2+, Co2+ and Cd2+ were all active metal cofactors. The malic enzyme from maize has a moderately high intrinsic preference for Mn2+ relative to Mg2+ at pH 7.0 and 8.0 Negative cooperativity detected in the binding of Mg2+ at pH 7.0 and 8.0 and in the binding of Mn2+ at pH 7.0 suggests the existence of at least two binding sites with different affinity. All of the activating metal ions have preference for octahedral coordination geometry and have ionic radii of 0.86–1.09 Å. The ions that act as inhibitors are outside this range and/or are incapable of octahedral coordination. Ba2+, Sr2+, Cd2+, Ca2+, Be2+, Ni2+, Cu2+, Zn2+, Co2+, Hg2+ showed mixed-type inhibition. The reciprocal of their K1 values follow the order of their apparence in the Irving-Williams series of stability that derives in part from size effects. It is suggested that the size of the ions may play a partial role in determining the strength of the metal interaction.  相似文献   

18.
Abstract: The role of Ca2+ and Mn2+ in Rhodospirillum rubrum grown under different conditions with respect to nitrogen source has been studied. The results show that this phototroph does not have an absolute requirement for these cations. In vitro studies of one of the enzymes operative in the metabolic regulation of nitrogenase in Rsp. rubrum have shown that Mn2+ or Fe2+ is required for activity. This investigation indicates that Mn2+ is not required in vivo for the function of this enzyme, suggesting that either Fe2+ is functional or that the enzyme has other properties when active in the cell.  相似文献   

19.
Abstract— The hypothesis that the ATPase and phosphatidyhnositol (PI) kinase activities of chromaffin vesicle membranes are catalysed by same enzyme was investigated. The two activities exhibited entirely different responses to variations in Mg2+ or Mn2+ concentrations. In the presence of 1 mM ATP, maximal ATPase activity occurred with 1 mM Mg2+ while maximal PI kinase activity required 100 mM Mg2+ Similar differences were observed with Mn2+ with the exception that maximal ATPase activity occurred with 0.5 mM Mn2+ and maximal PI kinase activity occurred with 5 mM Mn2+ Mn2+ was more effective than Mg2+ in stimulating PI kinase activity at low concentrations, but at optimal concentrations of each, the maximal activity obtained with Mg2+ was 5-fold greater than the maximal activity obtained with Mn2+ The heat stabilities of the two enzymes are vastly different. At 50°C the ATPase activity of the intact membranes was stable for up to 20 min while the t l/2 of PI kinase was less than 2 min. After solubilization in Lubrol PX or at higher temperatures both enzymes were less heat stable, but PI kinase was still inactivated at a much greater rate than the ATPase. The evidence suggests that the ATPase and the PI kinase are different proteins.
The major phosphorylated product was diphosphatidylinositol and once formed, it was stable. Phosphorylation of membrane protein accounted for less than 10% of the total 32P-incorporated into chromaffin vesicles. SDS gel electrophoresis of the solubilized membranes showed the presence of at least 2 major phosphorylated high molecular weight components.  相似文献   

20.
The bacterial Nramp family protein MntH is a divalent metal transporter, but mntH mutants have little or no phenotype in organisms where it has been studied. Here, we identify the mntH homologue of Bradyrhizobium japonicum , and demonstrate that it is essential for Mn2+ transport and for maintenance of cellular manganese homeostasis. Transport activity was induced under manganese deficiency, and Fe2+ did not compete with 54Mn2+ for uptake by cells. The steady-state level of mntH mRNA was negatively regulated by manganese, but was unaffected by iron. Control of mntH expression and Mn2+ transport by manganese was lost in a fur strain, resulting in constitutively high activity. Fur protected a 35 bp region of the mntH promoter in DNase I footprinting analysis that includes three imperfect direct repeat hexamers that are needed for full occupancy. Mn2+ increased the affinity of Fur for the mntH promoter by over 50-fold, with a K d value of 2.2 nM in the presence of metal. The findings identify MntH as the major Mn2+ transporter in B. japonicum , and show that Fur is a manganese-responsive regulator in that organism. Furthermore, Fe2+ is neither a substrate for MntH nor a regulator of mntH expression in vivo .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号