首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Like most extracellular bacterial proteases, Streptomyces griseus protease B (SGPB) and alpha-lytic protease (alphaLP) are synthesized with covalently attached pro regions necessary for their folding. In this article, we characterize the folding free energy landscape of SGPB and compare it to the folding landscapes of alphaLP and trypsin, a mammalian homolog that folds independently of its zymogen peptide. In contrast to the thermodynamically stable native state of trypsin, SGPB and alphaLP fold to native states that are thermodynamically marginally stable or unstable, respectively. Instead, their apparent stability arises kinetically, from unfolding free energy barriers that are both large and highly cooperative. The unique unfolding transitions of SGPB and alphaLP extend their functional lifetimes under highly degradatory conditions beyond that seen for trypsin; however, the penalty for evolving kinetic stability is remarkably large in that each factor of 2.4-8 in protease resistance is accompanied by a cost of ~10(5) in the spontaneous folding rate and ~5-9 kcal/mole in thermodynamic stability. These penalties have been overcome by the coevolution of increasingly effective pro regions to facilitate folding. Despite these costs, kinetic stability appears to be a potent mechanism for developing native-state properties that maximize protease longevity.  相似文献   

2.
Truhlar SM  Agard DA 《Proteins》2005,61(1):105-114
Most secreted bacterial proteases, including alpha-lytic protease (alphaLP), are synthesized with covalently attached pro regions necessary for their folding. The alphaLP folding landscape revealed that its pro region, a potent folding catalyst, is required to circumvent an extremely large folding free energy of activation that appears to be a consequence of its unique unfolding transition. Remarkably, the alphaLP native state is thermodynamically unstable; a large unfolding free energy barrier is solely responsible for the persistence of its native state. Although alphaLP folding is well characterized, the structural origins of its remarkable folding mechanism remain unclear. A conserved beta-hairpin in the C-terminal domain was identified as a structural element whose formation and positioning may contribute to the large folding free energy barrier. In this article, we characterize the folding of an alphaLP variant with a more favorable beta-hairpin turn conformation (alphaLP(beta-turn)). Indeed, alphaLP(beta-turn) pro region-catalyzed folding is faster than that for alphaLP. However, instead of accelerating spontaneous folding, alphaLP(beta-turn) actually unfolds more slowly than alphaLP. Our data support a model where the beta-hairpin is formed early, but its packing with a loop in the N-terminal domain happens late in the folding reaction. This tight packing at the domain interface enhances the kinetic stability of alphaLP(beta-turn), to nearly the same degree as the change between alphaLP and a faster folding homolog. However, alphaLP(beta-turn) has impaired proteolytic activity that negates the beneficial folding properties of this variant. This study demonstrates the evolutionary limitations imposed by the simultaneous optimization of folding and functional properties.  相似文献   

3.
Protein folding is an essential prerequisite for proteins to execute nearly all cellular functions. There is a growing demand for a simple and robust method to investigate protein folding on a large‐scale under the same conditions. We previously developed a global folding assay system, in which proteins translated using an Escherichia coli‐based cell‐free translation system are centrifuged to quantitate the supernatant fractions. Although the assay is based on the assumption that the supernatants contain the folded native states, the supernatants also include nonnative unstructured proteins. In general, proteases recognize and degrade unstructured proteins, and thus we used a protease to digest the unstructured regions to monitor the folding status. The addition of Lon protease during the translation of proteins unmasked subfractions, not only in the soluble fractions but also in the aggregation‐prone fractions. We translated ~90 E. coli proteins in the protease‐inclusion assay, in the absence and presence of chaperones. The folding assay, which sheds light on the molecular mechanisms underlying the aggregate formation and the chaperone effects, can be applied to a large‐scale analysis.  相似文献   

4.
Alpha-lytic protease (alpha LP) and Streptomyces griseus protease B (SGPB) are two extracellular serine proteases whose folding is absolutely dependent on the existence of their companion pro regions. Moreover, the native states of these proteins are, at best, marginally stable, with the apparent stability resulting from being kinetically trapped in the native state by large barriers to unfolding. Here, in an effort to understand the physical properties that distinguish kinetically and thermodynamically stable proteins, we study the temperature-dependences of the folding and unfolding kinetics of alpha LP and SGPB without their pro regions, and compare their behavior to a comprehensive set of other proteins. For the folding activation thermodynamics, we find some remarkable universal behaviors in the thermodynamically stable proteins that are violated dramatically by alpha LP. Despite significant variations in deltaC(P,F)++, the maximal folding speed occurs within the narrow biological temperature range for all proteins, except for alpha LP, with its maximal folding speed shifted lower by 200 K. This implies evolutionary pressures on folding speed for typical proteins, but not for alpha LP. In addition, the folding free energy barrier in the biological temperature range for most proteins is predominantly enthalpic, but purely entropic for alpha LP. The unfolding of alpha LP and SGPB is distinguished by three properties: a remarkably large deltaC(P,U)++, a very high deltaG(U)++, and a maximum deltaG(u)++ at the optimal growth temperature for the organism. While other proteins display each of these traits to some approximation, the simultaneous optimization of all three occurs only in the kinetically stable proteins, and appears to be required to maximize their unfolding cooperativity, by suppressing local unfolding events, and slowing the rate of global unfolding. Together, these properties extend the lifetime of these enzymes in the highly proteolytic extracellular environment. Attaining such functional properties seems possible only through the gross perturbation of the folding thermodynamics, which in turn has required the co-evolution of pro regions as folding catalysts.  相似文献   

5.
D Baker  J L Silen  D A Agard 《Proteins》1992,12(4):339-344
alpha-Lytic protease, an extracellular bacterial serine protease, is synthesized with a large pro region that is required in vivo for the proper folding of the protease domain. To allow detailed mechanistic study, we have reconstituted pro region-dependent folding in vitro. The pro region promotes folding of the protease domain in the absence of other protein factors or exogenous energy sources. Surprisingly, we find that the pro region is a high affinity inhibitor of the mature protease. The pro region also inhibits the closely related Streptomyces griseus protease B, but not the more distantly related, yet structurally similar protease, elastase. Based on these data, we suggest a mechanism in which pro region binding reduces the free energy of a late folding transition state having native-like structure.  相似文献   

6.
Cunningham EL  Agard DA 《Biochemistry》2003,42(45):13212-13219
Alpha-lytic protease (alphaLP) serves as an important model in achieving a quantitative and physical understanding of protein folding reactions. Synthesized as a pro-protease, alphaLP belongs to an interesting class of proteins that require pro regions to facilitate their proper folding. alphaLP's pro region (Pro) acts as a potent folding catalyst for the protease, accelerating alphaLP folding to its native conformation nearly 10(10)-fold. Structural and mutational studies suggested that Pro's considerable foldase activity is directed toward structuring the alphaLP C-terminal domain (CalphaLP), a seemingly folding-impaired domain, which is believed to contribute significantly to the high-energy folding and unfolding transition states of alphaLP. Pro-mediated nucleation of alphaLP folding within CalphaLP was hypothesized to subsequently enable the alphaLP N-terminal domain (NalphaLP) to dock and fold, completing the formation of native protease. In this paper, we find that ternary folding reactions of Pro and noncovalent NalphaLP and CalphaLP domains are unaffected by the order in which the components are added or by the relative concentrations of the alphaLP domains, indicating that neither discrete CalphaLP structuring nor docking of the two alphaLP domains is involved in the folding transition state. Instead, the rate-limiting step of these folding reactions appears to be a slow and concerted rearrangement of the NalphaLP and CalphaLP domains to form active protease. This cooperative and interdependent folding of both protease domains defines the large alphaLP folding barrier and is an apparent extension of the highly cooperative alphaLP unfolding transition that imparts the protease with remarkable kinetic stability and functional longevity.  相似文献   

7.
Programmed cell death (PCD) in plants plays a key role in defense response and is promoted by the release of compartmentalized proteases to the cytoplasm. Yet the exact identity and control of these proteases is poorly understood. Serpins are an important group of proteins that uniquely curb the activity of proteases by irreversible inhibition; however, their role in plants remains obscure. Here we show that during cell death the Arabidopsis serpin protease inhibitor, AtSerpin1, exhibits a pro‐survival function by inhibiting its target pro‐death protease, RD21. AtSerpin1 accumulates in the cytoplasm and RD21 accumulates in the vacuole and in endoplasmic reticulum bodies. Elicitors of cell death, including the salicylic acid agonist benzothiadiazole and the fungal toxin oxalic acid, stimulated changes in vacuole permeability as measured by the changes in the distribution of marker dye. Concomitantly, a covalent AtSerpin1–RD21 complex was detected indicative of a change in protease compartmentalization. Furthermore, mutant plants lacking RD21 or plants with AtSerpin1 over‐expression exhibited significantly less elicitor‐stimulated PCD than plants lacking AtSerpin1. The necrotrophic fungi Botrytis cinerea and Sclerotina sclerotiorum secrete oxalic acid as a toxin that stimulates cell death. Consistent with a pro‐death function for RD21 protease, the growth of these necrotrophs was compromised in plants lacking RD21 but accelerated in plants lacking AtSerpin1. The results indicate that AtSerpin1 controls the pro‐death function of compartmentalized protease RD21 by determining a set‐point for its activity and limiting the damage induced during cell death.  相似文献   

8.
Several proteases, including the bacterial serine protease subtilisins, require the assistance of the N-terminal pro-sequence of precursors to produce active, mature enzymes. Upon completion of folding, the pro-sequence is autocatalytically degraded because it is not necessary for the activity or stability of folded, mature cognates of the original enzymes. Therefore, the pro-sequence functions as an intramolecular chaperone that guides correct folding of the protease domain. Interestingly, Shinde et al. proposed a new theory of "protein memory" in which an identical polypeptide can fold into an altered conformation with different secondary structure, stability and specificities through a mutated pro-sequence [Shinde et al. (1997) Nature 389:520–522]. We also showed that the autoprocessing efficiency was improved by modifications in the pro-sequence of mutant subtilisins with altered substrate specificity. Further, the pro-sequence from a subtilisin homologue was found to chaperone the intramolecular folding of denatured subtilisin. These results indicate that engineering of the pro-sequence, i.e., site-directed and/or random mutagenesis, chimeras and gene shuffling between members of the family, would be a useful method for improving the functions of autoprocessing proteases. Conventional protein engineering techniques have thus far employed mutagenesis in the protease domain to modify the enzymatic properties. This new approach, which we term "pro-sequence engineering", is not only an important tool for studying the mechanism of protein folding, but also a promising technology for creating unique proteases with various beneficial properties.  相似文献   

9.
分子内分子伴侣--Pro肽在蛋白质折叠中的作用   总被引:7,自引:0,他引:7  
在体内,许多蛋白质,如很多胞外蛋白酶、某些多肽激素等都以含前导肽的前体形式合成,前导肽在蛋白质折叠中具有分子伴侣的功能。为了与一般意义上的分子伴侣相区别,人们将对蛋白质折叠有帮助的前导肽称为分子内分子伴侣,分子内分子伴侣帮助蛋白质在折叠过程中克服高的能量障碍,某些蛋白质的分子内分子伴侣甚至促进其在氧化性折叠中二硫键的正确配对。  相似文献   

10.
Propeptides of several proteases directly catalyze the protein folding reaction. Uncatalyzed folding traps these proteases into inactive molten-globule-like conformers that switch into active enzymes only when their cognate propeptides are added in trans. Although tight binding and proteolytic susceptibility forces propeptides to function as single turnover catalysts, the significance of their inhibitory function and the mechanism of activation remain unclear. Using pro-subtilisin as a model, we establish that precursor activation is a highly coordinated process that involves synchronized folding, autoprocessing, propeptide release, and protease activation. Our results demonstrate that activation is controlled by release of the first free active protease molecule. This triggers an exponential cascade that selectively targets the inhibitory propeptide in the autoprocessed complex as its substrate. However, a mutant precursor that enhances propeptide release can drastically reduce the folding efficiency by altering the synergy between individual stages. Our results represent the first demonstration that propeptide release, not precursor folding, is the rate-determining step and provides the basis for the proposed model for precise spatial and temporal activation that allows proteases to function as regulators of biological function.  相似文献   

11.
The data on the precursors of bacterial proteases were generalized. The structure and special features of processing of the precursors of bacillary subtilisins, the -lytic protease from Lysobacter enzymogenesand the related chymotrypsin-like proteases from Streptomyces griseus, and the metalloproteases from bacilli and Pseudomonas aeruginosawere discussed. The approaches to producing the precursors and the protease propeptides and to in vitrocharacterizing them were particularly analyzed. The following physiological functions of the propeptides within the protease precursors were considered probable: (a) inhibition of the proteases to protect the host cells from the proteolytic damage; (b) participation in the folding of the mature enzyme; and (c) providing for the protease interaction with the bacterial cell surveillance mechanisms, including protease translocation through the cell wall.  相似文献   

12.
Anderson DE  Peters RJ  Wilk B  Agard DA 《Biochemistry》1999,38(15):4728-4735
The bacterial alpha-lytic protease (alphaLP) is synthesized as a precursor containing a large N-terminal pro region (Pro) transiently required for correct folding of the protease [Silen, J. L., and Agard, D. A. (1989) Nature 341, 462-464]. Upon folding, the precursor is autocatalyticly cleaved to yield a tight-binding inhibitory complex of the pro region and the fully folded protease (Pro/alphaLP). An in vitro purification and refolding protocol has been developed for production of the disulfide-bonded precursor. A combination of spectroscopic approaches have been used to compare the structure and stability of the precursor with either the Pro/alphaLP complex or isolated Pro. The precursor and complex have significant similarities in secondary structure but some differences in tertiary structure, as well as a dramatic difference in stability. Correlations with isolated Pro suggest that the pro region part of the precursor is fully folded and acts to stabilize and structure the alphaLP region. Precursor folding is shown to be biphasic with the fast phase matching the rate of pro region folding. Further, the rate-limiting step in oxidative folding is formation of the disulfide bonds and autocatalytic processing occurs rapidly thereafter. These studies suggests a model in which the pro region folds first and catalyzes folding of the protease domain, forming the active site and finally causing autocatalytic cleavage of the bond separating pro region and protease. This last processing step is critical as it allows the protease N-terminus to rearrange, providing the majority of net stabilization of the product Pro/alphaLP complex.  相似文献   

13.
Pro-aminopeptidase processing protease (PA protease) is a thermolysin-like metalloprotease produced by Aeromonas caviae T-64. The N-terminal propeptide acts as an intramolecular chaperone to assist the folding of PA protease and shows inhibitory activity toward its cognate mature enzyme. Moreover, the N-terminal propeptide strongly inhibits the autoprocessing of the C-terminal propeptide by forming a complex with the folded intermediate pro-PA protease containing the C-terminal propeptide (MC). In order to investigate the structural determinants within the N-terminal propeptide that play a role in the folding, processing, and enzyme inhibition of PA protease, we constructed a chimeric pro-PA protease by replacing the N-terminal propeptide with that of vibriolysin, a homologue of PA protease. Our results indicated that, although the N-terminal propeptide of vibriolysin shares only 36% identity with that of PA protease, it assists the refolding of MC, inhibits the folded MC to process its C-terminal propeptide, and shows a stronger inhibitory activity toward the mature PA protease than that of PA protease. These results suggest that the N-terminal propeptide domains in these thermolysin-like proteases may have similar functions, in spite of their primary sequence diversity. In addition, the conserved regions in the N-terminal propeptides of PA protease and vibriolysin may be essential for the functions of the N-terminal propeptide.  相似文献   

14.
Several serine proteases and protease inhibitors have been identified in the crustacean olfactory organ, which is comprised of the lateral flagellum of the antennule and its aesthetascs sensilla that house olfactory receptor neurons and their supporting cells. The function of these proteases in the olfactory organ is unknown, but may include a role in perireception (e.g., odor activation or inactivation) or in the development or survival of olfactory receptor neurons. To examine directly the function of proteases in the olfactory organ of the Caribbean spiny lobster Panulirus argus, we used different tissue fractions from the lateral flagellum in an enzyme activity assay with a variety of protease substrates and inhibitors. Trypsin‐like serine protease activity occurs throughout the lateral flagellum but is enriched in the cell membranes from aesthetascs. Cysteine‐ and metalloprotease activities also occur in olfactory tissue, but are more abundant in tissue fractions other than aesthetascs. To assess the contribution of one of the olfactory serine proteases—CUB‐serine protease (Csp)—Csp was immunoprecipitated using an antibody; results with the remaining fraction suggest that Csp accounts for at least 40% of the total serine protease activity in the olfactory organ. The amount of total serine protease activity follows a developmental axis in the lateral flagellum. Total protease activity is lowest in the proximal zone, which lacks aesthetascs, and the proliferation zone, where olfactory receptor neurons and associated cells are born, and highest in aesthetascs of the distally‐located senescence zone, which has the oldest olfactory tissue. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

15.
Abstract. Larvae of Helicoverpa armigera (Hübner), a polyphagous lepidopteran crop pest, adapt to the presence of protease inhibitors in their diet by differential regulation of multiple genes encoding digestive proteases. The time‐course of their response to dietary soybean Kunitz trypsin inhibitor (SKTI) involves several stages; an initial up‐regulation of all protease genes assayed (up to 12 h after exposure to inhibitor) is succeeded by a longer‐term down‐regulation of expression of specific genes that encode proteases most sensitive to the inhibitor, whereas genes encoding putative inhibitor‐insensitive proteases continue to be up‐regulated (after 24 h of exposure). Consequently, insect protease activity changes from being sensitive to the inhibitor, to being largely insensitive. The insect response is comparable in its timescale with that of the synthesis of protease inhibitors in the plant wounding response. SKTl causes similar effects on protease gene expression and gut protease activity when fed in diets containing casein or hydrolysed casein as sources of amino acid, suggesting that the insect response is not mediated through inhibition of digestive proteolysis. Soybean Bowman–Birk inhibitor, which has a broader range of inhibitory activity against gut proteases in H. armigera, but is a less effective inhibitor on an I50 basis, proves to be a more effective antimetabolite than SKTI, but does not induce inhibitor‐insensitive protease activity because it causes a general up‐regulation of protease‐encoding genes. A possible mechanism to account for these different responses is discussed.  相似文献   

16.
Abstract

Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.  相似文献   

17.
Calicivirus proteases cleave the viral precursor polyprotein encoded by open reading frame 1 (ORF1) into multiple intermediate and mature proteins. These proteases have conserved histidine (His), glutamic acid (Glu) or aspartic acid (Asp), and cysteine (Cys) residues that are thought to act as a catalytic triad (i.e. general base, acid and nucleophile, respectively). However, is the triad critical for processing the polyprotein? In the present study, we examined these amino acids in viruses representing the four major genera of Caliciviridae: Norwalk virus (NoV), Rabbit hemorrhagic disease virus (RHDV), Sapporo virus (SaV) and Feline calicivirus (FCV). Using single amino‐acid substitutions, we found that an acidic amino acid (Glu or Asp), as well as the His and Cys in the putative catalytic triad, cannot be replaced by Ala for normal processing activity of the ORF1 polyprotein in vitro. Similarly, normal activity is not retained if the nucleophile Cys is replaced with Ser. These results showed the calicivirus protease is a Cys protease and the catalytic triad formation is important for protease activity. Our study is the first to directly compare the proteases of the four representative calicivirus genera. Interestingly, we found that RHDV and SaV proteases critically need the acidic residues during catalysis, whereas proteolytic cleavage occurs normally at several cleavage sites in the ORF1 polyprotein without a functional acid residue in the NoV and FCV proteases. Thus, the substrate recognition mechanism may be different between the SaV and RHDV proteases and the NoV and FCV proteases.  相似文献   

18.
Several secreted proteases are synthesized with N-terminal propeptides that function as intramolecular chaperones (IMCs) and direct the folding of proteases to their native functional states. Using subtilisin E as our model system, we had earlier established that (i) release and degradation of the IMC from its complex with the protease upon completion of folding is the rate-determining step to protease maturation and, (ii) IMC of SbtE is an extremely charged, intrinsically unstructured polypeptide that adopts an alpha-beta structure only in the presence of the protease. Here, we explore the mechanism of IMC release and the intricate relationship between IMC structure and protease activation. We establish that the release of the first IMC from its protease domain is a non-deterministic event that subsequently triggers an activation cascade through trans-proteolysis. By in silico simulation of the protease maturation pathway through application of stochastic algorithms, we further analyze the sub-stages of the release step. Our work shows that modulating the structure of the IMC domain through external solvent conditions can vary both the time and randomness of protease activation. This behavior of the protease can be correlated to varying the release-rebinding equilibrium of IMC, through simulation. Thus, a delicate balance underlies IMC structure, release, and protease activation. Proteases are ubiquitous enzymes crucial for fundamental cellular processes and require deterministic activation mechanisms. Our work on SbtE establishes that through selection of an intrinsically unstructured IMC domain, nature appears to have selected for a viable deterministic handle that controls a fundamentally random event. While this outlines an important mechanism for regulation of protease activation, it also provides a unique approach to maintain industrially viable subtilisins in extremely stable states that can be activated at will.  相似文献   

19.
T Klauser  J Pohlner    T F Meyer 《The EMBO journal》1990,9(6):1991-1999
The beta-domain of the Neisseria IgA protease precursor (Iga) provides the essential transport function for the protease across the outer membrane. To investigate the secretion function of the beta-domain (Iga beta), we engineered hybrid proteins between Iga beta and the non-toxic 12 kd cholera toxin B subunit (CtxB) and examined their targeting behaviour in Salmonella typhimurium. We show that CtxB-Iga beta hybrid proteins integrate into the outer membrane, leading to the exposition of the CtxB moiety on the cell surface. Exposed CtxB can be degraded by externally added proteases like trypsin, but can also be specifically cleaved off from membrane-associated Iga beta by purified IgA protease. We further demonstrate that folding of the CtxB moiety at the periplasmic side of the outer membrane interferes with its translocation. Prevention of disulphide-induced folding in periplasmic CtxB renders the protein moiety competent for outer membrane transport. Iga beta may be of general interest as an export vehicle for even larger proteins from Gram-negative bacteria.  相似文献   

20.
In order to elucidate the protease constitution of Aspergillus oryzae, systematic separation of proteases was elaborated by sequential chromatography on Amberlite CG–50, DEAE-Sephadex A–50 and CM-cellulose. As the results, three kinds of proteases, that is, acid-, neutral- and alkaline proteases were isolated and purified in crystalline form except neutral one. Purified neutral protease could not be crystallized, but was confirmed to be homogeneous by ultracentrifugal analysis. Besides these proteases, a new protease which was unknown up to the present in the constitution of Asp. oryzae proteases, was first isolated and designated as “semi-alkaline protease” according to its optimal pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号