首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Sodium efflux in Myxicola giant axons   总被引:1,自引:1,他引:0       下载免费PDF全文
Several properties of the Na pump in giant axons from the marine annelid Myxicola infundibulum have been determined in an attempt to characterize this preparation for membrane transport studies. Both NaO and KO activated the Na pump of normal microinjected Myxicola axons. In this preparation, the KO activation was less and the NaO activation much greater than that found in the squid giant axon. However, when the intracellular ATP:ADP ratio of the Myxicola axon was elevated by injection of an extraneous phosphagen system, the K sensitivity of Na efflux increased to the magnitude characteristic of squid axons and the activating effect of NaO disappeared. Several axons were injected with Na2SO4 in order to determine the effect of elevated Nai on the Na efflux. Increasing Nai enhanced a component of Na efflux which was insensitive to ouabain and dependent on [Ca] in Na-free (Li) seawater. After subtracting the CaO-dependent fraction, Na efflux was related linearly to [Na]i in all solutions except in K-free (Li) seawater, where it appeared to reach saturation at high [Na]i.  相似文献   

2.
The "late" Ca channel in squid axons   总被引:6,自引:3,他引:3       下载免费PDF全文
Squid giant axons were injected with aequorin and then treated with seawater containing 50 mM Ca and 100-465 mM K+. Measurements of light production suggested a phasic entry of Ca as well as an enhanced steady-state aequorin glow. After a test K+ depolarization, the aequorin-injected axon was stimulated for 30 min in Li seawater that was Ca-free, a procedure known to reduce [Na]i to about one-half the normal concentration. Reapplication of the elevated K+ test solution now showed that the Ca entry was virtually abolished by this stimulation in Li. A subsequent stimulation of the axon in Na seawater for 30 min resulted in recovery of the response to depolarization by high K+ noted in a normal fresh axon. In axons first tested for a high K+ response and then stimulated in Na seawater for 30 min (where [Na]i increases approximately 30%), there was approximately eight fold enhancement in this response to a test polarization. Axons depolarized with 465 mM K seawater in the absence of external Ca for several minutes were still capable of producing a large phasic entry of Ca when [Ca]0 was made 50 mM, which suggests that it is Ca entry itself rather than membrane depolarization that produced inactivation. Responses to stimulation at 60 pulses/s in Na seawater containing 50 mM Ca are at best only 5% of those measured with high K solutions. The response to repetitive stimulation is not measurable if [Ca]o is made 1 mM, whereas the response to steady depolarization is scarcely affected.  相似文献   

3.
Squid axons display a high activity of Na+/Ca2+ exchange which is largely increased by the presence of external K+, Li+, Rb+ and NH+4. In this work we have investigated whether this effect is associated with the cotransport of the monovalent cation along with Ca2+ ions. 86Rb+ influx and efflux have been measured in dialyzed squid axons during the activation (presence of Ca2+i) of Ca2+o/Na+i and Ca2+i/Ca2+o exchanges, while 86Rb+ uptake was determined in squid optic nerve membrane vesicles under equilibrium Ca2+/Ca2+ exchange conditions. Our results show that although K+o significantly increases Na+i-dependent Ca2+ influx (reverse Na+/Ca2+ exchange) and Rb+i stimulates Ca2+o-dependent Ca2+ efflux (Ca2+/Ca2+ exchange), no sizable transport of rubidium ions is coupled to calcium movement through the exchanger. Moreover, in the isolated membrane preparation no 86Rb+ uptake was associated with Ca2+/Ca2+ exchange. We conclude that in squid axons although monovalent cations activate the Na+/Ca2+ exchange they are not cotransported.  相似文献   

4.
Coupled Na+ exit/Ca2+ entry (Na/Ca exchange operating in the Ca2+ influx mode) was studied in giant barnacle muscle cells by measuring 22Na+ efflux and 45Ca2+ influx in internally perfused, ATP-fueled cells in which the Na+ pump was poisoned by 0.1 mM ouabain. Internal free Ca2+, [Ca2+]i, was controlled with a Ca-EGTA buffering system containing 8 mM EGTA and varying amounts of Ca2+. Ca2+ sequestration in internal stores was inhibited with caffeine and a mitochondrial uncoupler (FCCP). To maximize conditions for Ca2+ influx mode Na/Ca exchange, and to eliminate tracer Na/Na exchange, all of the external Na+ in the standard Na+ sea water (NaSW) was replaced by Tris or Li+ (Tris-SW or LiSW, respectively). In both Na-free solutions an external Ca2+ (Cao)-dependent Na+ efflux was observed when [Ca2+]i was increased above 10(-8) M; this efflux was half-maximally activated by [Ca2+]i = 0.3 microM (LiSW) to 0.7 microM (Tris-SW). The Cao-dependent Na+ efflux was half-maximally activated by [Ca2+]o = 2.0 mM in LiSW and 7.2 mM in Tris-SW; at saturating [Ca2+]o, [Ca2+]i, and [Na+]i the maximal (calculated) Cao-dependent Na+ efflux was approximately 75 pmol#cm2.s. This efflux was inhibited by external Na+ and La3+ with IC50's of approximately 125 and 0.4 mM, respectively. A Nai-dependent Ca2+ influx was also observed in Tris-SW. This Ca2+ influx also required [Ca2+]i greater than 10(-8) M. Internal Ca2+ activated a Nai-independent Ca2+ influx from LiSW (tracer Ca/Ca exchange), but in Tris-SW virtually all of the Cai-activated Ca2+ influx was Nai-dependent (Na/Ca exchange). Half-maximal activation was observed with [Na+]i = 30 mM. The fact that internal Ca2+ activates both a Cao-dependent Na+ efflux and a Nai-dependent Ca2+ influx in Tris-SW implies that these two fluxes are coupled; the activating (intracellular) Ca2+ does not appear to be transported by the exchanger. The maximal (calculated) Nai-dependent Ca2+ influx was -25 pmol/cm2.s. At various [Na+]i between 6 and 106 mM, the ratio of the Cao-dependent Na+ efflux to the Nai-dependent Ca2+ influx was 2.8-3.2:1 (mean = 3.1:1); this directly demonstrates that the stoichiometry (coupling ratio) of the Na/Ca exchange is 3:1. These observations on the coupling ratio and kinetics of the Na/Ca exchanger imply that in resting cells the exchanger turns over at a low rate because of the low [Ca2+]i; much of the Ca2+ extrusion at rest (approximately 1 pmol/cm2.s) is thus mediated by an ATP-driven Ca2+ pump.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
A combination of the voltage-clamp and the intracellular dialysis techniques has been used to study the membrane potential dependence of the Nao-dependent Ca efflux in squid giant axons. In order to improve axon survival, experiments were carried out using internal solutions prepared with large impermeant organic anions and cations, which did not affect the operation of the Na/Ca exchange mechanism. In axons dialyzed with solutions prepared without internal Na, the Nao-dependent Ca efflux had a small sensitivity to membrane potential changes. For a 25-mV membrane displacement in the hyperpolarizing direction, the basal Ca efflux increased by only 7.4% (n = 13). When the dialysis medium contained Na (from 20 to 55 mM), the efflux increased 32.3% (n = 25) for the same membrane potential change. The K1/2 for this effect is approximately 5 mM Na, and saturation appears to occur at a Na concentration above 20 mM. Adding ATP to the dialysis medium increased the magnitude of the Nao-dependent Ca efflux without changing its voltage sensitivity. Wide changes in the intracellular ionized Ca concentration (from 0.1 to 230 microM) did not modify the voltage sensitivity of the exchange system. Elimination of the reversal of Na/Ca exchange (Nai-dependent Ca influx) by removing Cao did not modify the voltage sensitivity of the Nao-dependent Ca efflux. When the axon membrane potential was submitted to prolonged changes, the corresponding changes in the Ca efflux were not sustained, but declined exponentially to intermediate values. This effect may indicate a slow inactivation process in the Na/Ca exchange mechanism. Voltage-clamp pulse experiments revealed: (a) the absence of a fast inactivation process in the Na/Ca exchange, and (b) that the activation of the carrier for hyperpolarizing pulses occurs as rapidly as 1 ms.  相似文献   

6.
Magnesium efflux in dialyzed squid axons   总被引:4,自引:2,他引:2       下载免费PDF全文
The efflux of Mg++ from squid axons subject to internal solute control by dialysis is a function of ionized [Mg], [Na], [ATP], and [Na]o. The efflux of Mg++ from an axon with physiological concentrations of ATP, Na, and Mg inside into seawater is of the order of 2-4 pmol/cm2s but this efflux is strongly inhibited by increases in [Na]i, by decreases in [ATP]i, or by decreases in [Na]o. The efflux of Mg++ is largely independent of [Mg]i when ATP is at physiological levels, but in the absence of ATP reaches half the value of Mg efflux in be presence of ATP when [Mg]i is about 4 mM and [Na] 40 mM. Half-maximum responses to ATP occur at about 350 micronM ATP into seawater with Na either present or absent. The Mg efflux mechanism has many similarities to the Ca efflux system in squid axons especially with respect to the effects of ATP, Nao, and Na on the flux. The concentrations of free Mg and Ca in axoplasm differ, however, by a factor of 10(5) while the observed fluxes differ by a factor of 10(2).  相似文献   

7.
Calcium entry in squid axons during voltage clamp pulses   总被引:1,自引:0,他引:1  
Squid giant axons were injected with aequorin and tetraethylammonium and were impaled with sodium ion sensitive, current and voltage electrodes. The axons were usually bathed in a solution of varying Ca2+ concentration ([Ca2+]o) containing 150mM each of Na+, K+ and an inert cation such as Li+, Tris or N-methylglucamine and had ionic currents pharmacologically blocked. Voltage clamp pulses were repeatedly delivered to the extent necessary to induce a change in the aequorin light emission, a measure of axoplasmic Ca2+ level, [Ca2+]i. The effect of membrane voltage on [Ca2+]i was found to depend on the concentration of internal Na+ ([Na+]i). Voltage clamp hyperpolarizing pulses were found to cause a reduction of [Ca2+]i. For depolarizing pulses a relationship between [Ca2+]i gain and [Na+]i indicates that Ca2+ entry is sigmoid with a half maximal response at 22 mM Na+. This Ca2+ entry is a steep function of [Na+]i suggesting that 4 Na+ ions are required to promote the influx of 1 Ca2+. There was little change in Ca2+ entry with depolarizing pulses when [Ca2+]o is varied from 1 to 10mM, while at 50mM [Ca2+]o calcium entry clearly increases suggesting an alternate pathway from that of Na+/Ca2+ exchange. This entry of Ca2+ at high [Ca2+]o, however, was not blocked by Cs+o. The results obtained lend further support to the notion that Na+/Ca2+ exchange in squid giant axon is sensitive to membrane voltage no matter whether this is applied as a constant change in membrane potential or as an intermittent one.  相似文献   

8.
Calcium and EDTA fluxes in dialyzed squid axons   总被引:9,自引:9,他引:0       下载免费PDF全文
Ca efflux in dialyzed squid axons was measured with 45Ca as a function of internal ionized Ca in the range 0.005-10 muM. Internal Ca stores were depleted by treatment with CN and dialysis with media free of high energy compounds. The [Ca]iota was stabilized with millimolar concentrations of EDTA, EGTA, or DTPA. Nonspecific leak of chelated Ca was measured with [14C]-EDTA and found to be 0.02 pmol/cm2s/mM EDTA. Correction of the measured Ca efflux for this leak of chelated calcium was made when appropriate. Ca efflux was roughly linear with internal free Ca in the range 0.005-0.1 muM. Above 0.1 muM, efflux was less than proportional to concentration but did not saturate at the highest concentration studied. Ca efflux was reduced about 50% by replacement of external Na with Li at Caiota approximately 1 muM, but was insensitive to such replacement for Ca less than 0.1 muM. Ca efflux was insensitive to internal Mg in the range 0-4 mM, indicating that the Ca pump favors Ca over Mg by a factor of about 10(6). Ca efflux was reduced about 60% by increasing internal Na from 1 to 80 mM. This effect could represent weak interference of a Ca carrier by Na or a loss of driving force because of a reduction in ENa - Em occasioned by an increase in Naiota. A few measurements were made of Ca influx in intact and in dialyzed fibers. In both cases, Ca influx increased when external Na was replaced by Li.  相似文献   

9.
The influx and efflux of calcium (as 45Ca) and influx of sodium (as 24Na) were studied in internally dialyzed squid giant axons. The axons were poisoned with cyanide and ATP was omitted from the dialysis fluid. The internal ionized Ca2+ concentration ([Ca2+]i) was controlled with Ca-EGTA buffers. With [Ca2+]i greater than 0.5 muM, 45Ca efflux was largely dependent upon external Na and Ca. The Nao-dependent Ca efflux into Ca-free media appeared to saturate as [Ca2+]i was increased to 160 muM; the half-saturation concentration was about 8 muM Ca2+. In two experiments 24Na influx was measured; when [Ca2+]i was decreased from 160 muM to less than 0.5 muM, Na influx declined by about 5 pmoles/cm2 sec. The Nao-dependent Ca efflux averaged 1.6 pmoles/cm2 sec in axons with a [Ca2+]i of 160 muM, and was negligible in axons with a [Ca2+]i of less than 0.5 muM. Taken together, the Na influx and Ca efflux data may indicate that the fluxes are coupled with a stoichiometry of about 3 Na+-to-1 Ca2+. Ca efflux into Na-free media required the presence of both Ca and an alkali metal ion (but not Cs) in the external medium. Ca influx from Li-containing media was greatly reduced when [Ca2+]i was decreased from 160 to 0.23 muM, or when external Li was replaced by choline. These data provide evidence for a Ca-Ca exchange mechanism which is activated by certain alkali metal ions. The observations are consistent with a mobile carrier mechanism which can exchange Ca2+ ions from the axoplasm for either 3 Na+ ions, or one Ca2+ and an alkali metal ion (but not Cs) from the external medium. This mechanism may utilize energy from the Na electrochemical gradient to help extrude Ca against an electrochemical gradient.  相似文献   

10.
We used microelectrodes to determine whether the K/HCO3 cotransporter tentatively identified in the accompanying paper (Hogan, E. M., M. A. Cohen, and W. F. Boron. 1995. Journal of General Physiology. 106:821- 844) can mediate an increase in the intracellular pH (pHi) of squid giant axons. An 80-min period of internal dialysis increased pHi to 7.7, 8.0, or 8.3; the dialysis fluid was free of K+, Na+, and Cl-. Our standard artificial seawater (ASW), which also lacked Na+, K+, and Cl-, had a pH of 8.0. Halting dialysis unmasked a slow pHi decrease. Subsequently introducing an ASW containing 437 mM K+ and 0.5% CO2/12 mM HCO3- had two effects: (a) it caused membrane potential (Vm) to become very positive, and (b) it caused a rapid pHi decrease, because of CO2 influx, followed by a slower plateau-phase pHi increase, presumably because of inward cotransport of K+ and HCO3- ("base influx"). Only extracellular Rb+ substituted for K+ in producing the plateau-phase pHi increase in the presence of CO2/HCO3-. Mean fluxes with Na+, Li+, and Cs+ were not significantly different from zero, even though Vm shifts were comparable for all monovalent cations tested. Thus, unless K+ or Rb+ (but not Na+, Li+, or Cs+) somehow activates a conductive pathway for H+, HCO3-, or both, it is unlikely that passive transport of H+, HCO3-, or both makes the major contribution to the pHi increase in the presence of K+ (or Rb+) and CO2/HCO3-. Because exposing axons to an ASW containing 437 mM K+, but no CO2/HCO3-, produced at most a slow pHi increase, K-H exchange could not make a major contribution to base influx. Introducing an ASW containing CO2/HCO3-, but no K+ also failed to elicit base influx. Because we observed base influx when the ASW and DF were free of Na+ and Cl-, and because the disulfonic stilbene derivatives SITS and DIDS failed to block base influx, Na(+)-dependent Cl-HCO3 exchange also cannot account for the results. Rather, we suggest that the most straightforward explanation for the pHi increase we observed in the simultaneous presence of K+ and CO2/HCO3- is the coupled uptake of K+ and HCO3-.  相似文献   

11.
In this work we have investigated whether the asymmetrical properties of the Na/Ca exchange process found in intact preparations are intrinsic to the exchange protein(s) or the result of the asymmetric ionic environment normally prevailing in living cells. The activation of the Na/Ca exchanger by Ca2+ ions, monovalent cations, ATP gamma S and the effect of membrane potential on the different operational modes of the exchanger (Nao/Cai, Cao/Nai, Cao/Cai, and Nao/Nai) was studied in voltage-clamped squid giant axons externally perfused and internally dialyzed with symmetrical ionic solutions. Under these conditions: (a) Ca ions activate with higher affinity from the inside (K1/2 = 22 microM) than from the outside (K1/2 = 300 microM); (b) experiments measuring the Cao-dependent Ca efflux in the conditions Lio-Trisi, Lio-Lii, Triso-Trisi, and Triso-Lii, show that the activating monovalent cation site on the exchanger faces the external surface; (c) ATP gamma S activates the Cao-dependent Ca efflux (Cao/Cai exchange) only at nonsaturating [Ca2+]i. Its effect appears to be on the Ca transport site since no alteration in the apparent affinity of the activating monovalent cation site was observed. The above results show that the Na/Ca exchange process is indeed a highly asymmetric transport mechanism. Finally, the voltage dependence of the components of the different exchange modes was measured over the range of +20 to -40 mV. The voltage dependence (approximately 26% change/25 mV) was found to be similar for all modes of operation of the exchanger except Nao/Nai exchange, which was found to be voltage insensitive. The sensitivity of the Cao/Cai exchange to voltage was found to be the same in the presence and in the complete absence of monovalent cations. This finding does not support the proposition that the voltage sensitivity of the Cao/Cao exchange is induced by the binding and transport of an external monovalent cation.  相似文献   

12.
Sodium and potassium ion contents and fluxes of isolated resting human peripheral polymorphonuclear leukocytes were measured. In cells kept at 37 degrees C, [Na]i was 25 mM and [K]i was 120 mM; both ions were completely exchangeable with extracellular isotopes. One-way Na and K fluxes, measured with 22Na and 42K, were all approximately 0.9 meq/liter cell water . min. Ouabain had no effect on Na influx or K efflux, but inhibited 95 +/- 7% of Na efflux and 63% of K influx. Cells kept at 0 degree C gained sodium in exchange for potassium ([Na]i nearly tripled in 3 h); upon rewarming, ouabain-sensitive K influx into such cells was strongly enhanced. External K stimulated Na efflux (Km approximately 1.5 mM in 140-mM Na medium). The PNa/PK permeability ratio, estimated from ouabain insensitive fluxes, was 0.10. Valinomycin (1 microM) approximately doubled PK. Membrane potential (Vm) was estimated using the potentiometric indicator diS-C3(5); calibration was based on the assumption of constant-field behavior. External K, but not Cl, affected Vm. Ouabain caused a depolarization whose magnitude dependent on [Na]i. Sodium-depleted cells became hyperpolarized when exposed to the neutral exchange carrier monensin; this hyperpolarization was abolished by ouabain. We conclude that the sodium pump of human peripheral neutrophils is electrogenic, and that the size of the pump-induced hyperpolarization is consistent with the membrane conductance (3.7-4.0 microseconds/cm2) computed from the individual K and Na conductances.  相似文献   

13.
We used microelectrodes to monitor the recovery (i.e., decrease) of intracellular pH (pHi) after using internal dialysis to load squid giant axons with alkali to pHi values of 7.7, 8.0, or 8.3. The dialysis fluid (DF) contained 400 mM K+ but was free of Na+ and Cl-. The artificial seawater (ASW) lacked Na+, K+, and Cl-, thereby eliminating effects of known acid-base transporters on pHi. Under these conditions, halting dialysis unmasked a slow pHi decrease caused at least in part by acid-base transport we refer to as "base efflux." Replacing K+ in the DF with either NMDG+ or TEA+ significantly reduced base efflux and made membrane voltage (Vm) more positive. Base efflux in K(+)-dialyzed axons was stimulated by decreasing the pH of the ASW (pHo) from 8 to 7, implicating transport of acid or base. Although postdialysis acidifications also occurred in axons in which we replaced the K+ in the DF with Li+, Na+, Rb+, or Cs+, only with Rb+ was base efflux stimulated by low pHo. Thus, the base effluxes supported by K+ and Rb+ appear to be unrelated mechanistically to those observed with Li+, Na+, or Cs+. The combination of 437 mM K+ and 12 mM HCO3- in the ASW, which eliminates the gradient favoring a hypothetical K+/HCO3- efflux, blocked pHi recovery in K(+)-dialyzed axons. However, the pHi recovery was not blocked by the combination of 437 mM Na+, veratridine, and CO2/HCO3- in the ASW, a treatment that inverts electrochemical gradients for H+ and HCO3- and would favor passive H+ and HCO3- fluxes that would have alkalinized the axon. Similarly, the recovery was not blocked by K+ alone or HCO3- alone in the ASW, nor was it inhibited by the K-H pump blocker Sch28080 nor by the Na-H exchange inhibitors amiloride and hexamethyleneamiloride. Our data suggest that a major component of base efflux in alkali-loaded axons cannot be explained by metabolism, a H+ or HCO3- conductance, or by a K-H exchanger. However, this component could be mediated by a novel K/HCO3- cotransporter.  相似文献   

14.
A mechanism for Na/Ca transport   总被引:12,自引:6,他引:6       下载免费PDF全文
  相似文献   

15.
Summary The influx of magnesium from seawater into squid giant axons has been measured under conditions where internal solute control in the axon was maintained by dialysis. Mg influx is smallest (1 pmol/cm2 sec) when both Na and ATP have been removed from the axoplasm by dialysis. The addition of 3mm ATP to the dialysis fluid gives a Mg influx of 2.5 pmol/cm2 sec while the addition of [Na] i and [ATP] i gives 3 pmol/cm2 sec as a value for Mg influx; this corresponds well with fluxes measured in intact squid giant axons.The Mg content of squid axons is 6 mmol/kg axoplasm; this is unaffected by soaking axons in Li or Na seawater for periods of up to 100 min.  相似文献   

16.
The control of ionized calcium in squid axons   总被引:9,自引:6,他引:3       下载免费PDF全文
Measurements of the Ca content, [Ca](T), of freshly isolated squid axons show a value of 60 μmol/kg axoplasm. Axons in 3 mM Ca(Na) seawater show little change in Ca content over 4 h, while axons in 3 mM Ca(Na) seawater show little change in Ca content over 4 h, while axons in 10 mM Ca(Na) seawater show gains of 18 μmol/Ca/kgxh. In 10 Ca (Choline) seawater the gain is 2,400 μmol/kgxh. Using aequorin confined to a dialysis capillary in the center of an axon, one finds that [Ca](i) is in a steady state with 3 Ca (Na) seawater, and that both 10 Ca (Na) and 3 Ca (choline) seawater cause increases in [Ca](i). In 3 Ca (Na) seawater-3 Ca (choline) seawater mixtures, 180 mM [Na](0) (40 perecent Na) is as effective as 450 mM [Na](0) (100 percent Na) in maintaining a normal [Ca](1); lower [Na] causes an increase in [Ca](i). If axons are injected with the ATP-splitting enzyme apyrase, the resulting [Ca](1) is not loading with high [Ca](0) or low [Na](0) solutions. Depolarization of an axon with 100 mM K (Na) seawater leads to an increase in the steady-state level of [Ca](1) that is reversed upon returning the axon to normal seawater. Freshly isolated axons treated with either CN or FCCP to inhibit mitochondrial Ca buffering can still maintain a normal [Ca](i) in 1 Ca (Na) seawater.  相似文献   

17.
Summary The removal of Na from the medium causes a cellular Ca uptake in the smooth muscle of the guinea pig taenia coli which is rapidly reversed if medium Na is readmitted. This net extrusion was characterized in tissues which were first Na-depleted in a zero-Na (sucrose) solution. Li was able to substitute for Na in mediating this effect. K was also able to mimic Na in this respect if the depolarization-mediated Ca influx caused by the isotonic K solution was blocked with 10–5 m D-600. The net Ca extrusion upon Na readmission was due to a small decrease in Ca influx, as well as a marked increase in the transmembrane Ca efflux rate, as revealed by45Ca washout experiments. The increased45Ca efflux upon Na readmission could be mimicked by Li, K, choline and tris. We conclude that the Na/Ca-exchange hypothesis is insufficient to explain these data, in that both Ca extrusion and45Ca efflux can be stimulated in the absence of a Na gradient, or in the absence of any monovalent cationic gradient. These observations are discussed in terms of a possible intracellular competition of Ca and monovalent cations for anionic binding sites, as well as with regard to a possible direct stimulation of a plasmalemmal CaATPase by monovalent cations.  相似文献   

18.
We examined the role of the monovalent cations Na+ and K+ in the events encompassing the release of O-2 by alveolar macrophages after stimulation with formyl methionyl phenylalanine (FMP). This was accomplished by determining the effect of changing the extracellular [Na+] and/or [K+] on FMP-stimulated O-2 production; and measuring 22Na+, 42K+ and 86Rb+ influx and efflux and intracellular [K+] for control and FMP-stimulated alveolar macrophages. Stimulated O-2 production was relatively insensitive to changes in extracellular K+ or Na+ concentrations until the [Na+] was decreased below 35 mM. At 4 mM [Na+], the rate of O-2 production remained at 75% of the maximal rate observed at physiological concentrations of [Na+]. Both influx and efflux of 22Na+ were stimulated above control rates by FMP. The increased rates of fluxes lasted for a few minutes suggesting a transient increase in membrane permeability to Na+. Ouabain partially inhibited 22Na+ efflux but had no effect on O-2 release. The influx of 86Rb+ and 42K+ was not altered by the addition of FMP but was virtually abolished in the presence of 10 microM ouabain or 1 mM quinine. In the presence of extracellular calcium, FMP-stimulated a prolonged (greater than 20 minutes) increase in 86Rb+ or 42K+ efflux which was inhibitable by 1 mM quinine. In the absence of extracellular calcium, FMP stimulation of K+ efflux was greatly diminished and was not affected by quinine, although quinine still inhibited O-2 production under these conditions. It was also observed that there was a loss of intracellular K+ when cells were stimulated by FMP in the presence of Ca+2, but not in the absence of Ca+2. Taken together, these results suggest a minimal direct role, if any, for K+ in the events that lead to FMP-stimulated O-2 release by alveolar macrophages.  相似文献   

19.
Bumetanide-sensitive (BS) unidirectional fluxes of (36)Cl- or (22)Na+ were measured in internally dialyzed squid giant axons while varying the intra- or extracellular concentrations of Na+ and/or Cl-. Raising either [Cl-]i or [Na+]i resulted in a concentration-dependent reduction of the BS influx of both (36)Cl- and (22)Na+. Raising [Cl-]i above 200 mM completely blocked BS influxes. However, raising [Na+]i to 290 mM resulted in saturable but incomplete inhibition of both BS Na+ influx and BS Cl- influx. The consequences of varying intracellular Cl- on cotransporter effluxes were complex. At lower [Cl-]i values (below 100 mM) intracellular Cl- activated cotransporter effluxes. Surprisingly, however, raising [Cl-]i levels > 125 mM resulted in a [Cl-]i-dependent inhibition of BS effluxes of both Na+ and Cl-. On the other hand, raising [Na+]i resulted only in the activation of the BS Na+ efflux; intracellular Na+ did not inhibit BS efflux even at 290 mM. The inhibitory effects of intracellular Na+ on cotransporter-mediated influxes, and lack of inhibitory effects on BS effluxes, are consistent with the trans-side inhibition expected for an ordered binding/release model of cotransporter operation. However, the inhibitory effects of intracellular Cl- on both influxes and effluxes are not explained by such a model. These data suggest that Cl may interact with an intracellular site (or sites), which does not mediate Cl transport, but does modulate the transport activity of the Na+, K+, Cl- cotransporter.  相似文献   

20.
Squid giant axons injected with either aequorin or arsenazo III and bathed in 3 mM Ca (Na) seawater were transferred to 3 mM Ca (K) seawater and the response of the aequorin light or the change in the absorbance of arsenazo III was followed. These experimental conditions were chosen because they measure the change in the rate of Na/Ca exchange in introducing Ca into the axon upon depolarization; [Ca]o is too low to effect a channel-based system of Ca entry. This procedure was applied to axons treated with a variety of compounds that have been implicated as inhibitors of Na/Ca exchange. The result obtained was that the substances tested could be placed in three groups. (a) Substances that were without effect on Ca entry effected by Na/Ca exchange were: D600 at 10-100 microM, nitrendipine at 1-5 microM, Ba2+ and Mg2+ at concentrations of 10-50 mM, lidocaine at 0.1-10 mM, cyanide at 2 mM, adriamycin at a concentration of 3 microM, chloradenosine at 35 microM, 2,4-diaminopyridine at 1 mM, Cs+ at 45-90 mM, and tetrodotoxin at 10(-7). (b) Substances that had a significant inhibitory effect on Na/Ca exchange were: Mn2+, Cd2+, and La3+ at 1-50 mM, and quinidine at 50 microM. (c) There were also blocking agents and biochemical inhibitors whose action appeared to be the inhibition of nonmitochondrial Ca buffering in axoplasm rather than an inhibition of Na/Ca exchange. These were the general anesthetic l-octanol at 0.1 mM and 1 mM orthovanadate plus apyrase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号