首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vascular smooth muscle cells, Jak2 tyrosine kinase becomes activated in response to oxidative stress in the form of hydrogen peroxide. Although it has been postulated that hydrogen peroxide-induced Jak2 activation promotes cell survival, this has never been tested. We therefore examined the role that Jak2 plays in vascular smooth muscle cell apoptosis following hydrogen peroxide treatment. Here, we report that Jak2 tyrosine kinase activation by hydrogen peroxide is required for apoptosis of vascular smooth muscle cells. Upon treatment of primary rat aortic smooth muscle cells with hydrogen peroxide, we observed laddering of genomic DNA and nuclear condensation, both hallmarks of apoptotic cells. However, apoptosis was prevented by either the expression of a dominant negative Jak2 protein or by the Jak2 pharmacological inhibitor AG490. Moreover, expression of the proapoptotic Bax protein was induced following hydrogen peroxide treatment. Again, expression of a dominant negative Jak2 protein or treatment of cells with AG490 prevented this Bax induction. Following Bax induction by hydrogen peroxide, mitochondrial membrane integrity was compromised, and caspase-9 became activated. In contrast, in cells expressing a Jak2 dominant negative we observed that mitochondrial membrane integrity was preserved, and no caspase-9 activation occurred. These data demonstrate that the activation of Jak2 tyrosine kinase by hydrogen peroxide is essential for apoptosis of vascular smooth muscle cells. Furthermore, this report identifies Jak2 as a potential therapeutic target in vascular diseases in which vascular smooth muscle cell apoptosis contributes to pathological progression.  相似文献   

2.
Transforming growth factor beta1 (TGF-beta1) stimulates cartilage extracellular matrix synthesis but, in excess, evokes synovial inflammation, hyperplasia, and osteophyte formation in arthritic joints. TGF-beta1 induces tissue inhibitor of metalloproteinases 3 (TIMP-3), an inhibitor of cartilage-damaging matrix metalloproteianases and aggrecanases. We investigated the role of reactive oxygen species (ROS) in TIMP-3 induction by TGF-beta1. In primary human and bovine chondrocytes, ROS scavenger and antioxidant N-acetylcysteine (NAC) inhibited TGF-beta1-induced TIMP-3 mRNA and protein increases. Ebselen and ascorbate also reduced this induction. TGF-beta1 time-dependently induced ROS production that was suppressed by NAC. Hydrogen peroxide, a ROS, induced TIMP-3 RNA. The TIMP-3 increase induced by TGF-beta1 was partly Smad2-dependent. TGF-beta1-stimulated Smad2 phosphorylation was inhibited by NAC. Reduced glutathione and L-cysteine also blocked Smad2 and TIMP-3 induction by TGF-beta1, whereas a nonthiol, N-acetylalanine, did not. Smad2 was not activated by H2O2. Smad2 phosphorylation was independent, and TIMP-3 expression was dependent, on new protein synthesis. TGF-beta-stimulated ERK and JNK phosphorylation was also inhibited by NAC. However, inhibitory actions of NAC were not mediated by ERK activation. Thus, ROS mediate TGF-beta1-induced TIMP-3 gene expression. Blocking TGF-beta1-induced gene expression by modulating cellular redox status with thiols can be potentially beneficial for treating arthritic and other disorders caused by excessive TGF-beta1.  相似文献   

3.
4.
Connective tissue growth factor (CTGF/CCN2) is a cysteine-rich, extracellular matrix (ECM) protein that acts as an anabolic growth factor to regulate osteoblast differentiation and function. Recent studies have identified CTGF as a downstream effector of transforming growth factor-beta1 (TGF-beta1) for certain functions in specific cell types. In this study, we examined the role of CTGF as a downstream mediator of TGF-beta1-induced ECM production and cell growth in osteoblasts. Using primary cultures, we demonstrated that TGF-beta1 is a potent inducer of CTGF expression in osteoblasts, and that this induction occurred at all stages of osteoblast differentiation from the proliferative through mineralization stages. TGF-beta1 treatment of osteoblasts increased the expression and synthesis of the ECM components, collagen and fibronectin. When CTGF-specific siRNA was used to prevent TGF-beta1 induction of CTGF expression, it also inhibited collagen and fibronectin production, thereby demonstrating the requirement of CTGF for their up-regulation. To examine the effects of TGF-beta1 on osteoblast cell growth, cultures were treated with TGF-beta1 during the proliferative stage. Cell number was significantly reduced and the cells exhibited a decrease in G1 cyclin expression, consistent with TGF-beta1-induced cell-cycle arrest. Cultures transfected with CTGF siRNA prior to TGF-beta1 treatment showed an even greater reduction in cell number, suggesting that TGF-beta1-induced growth arrest is independent of CTGF in osteoblasts. Collectively, these data demonstrate for the first time that CTGF is an essential downstream mediator for TGF-beta1-induced ECM production in osteoblasts, but these two growth factors function independently regarding their opposing effects on osteoblast proliferation.  相似文献   

5.
Skin fibrotic disorders such as systemic sclerosis (SSc) are characterized by an excessive accumulation of extracellular matrix (ECM) and are understood to develop under the influence of fibrogenic growth factors. To better understand the detailed mechanisms of persistent fibrosis in SSc, we have previously established an animal model of skin fibrosis induced by exogenous application of growth factors. In this model, transforming growth factor-beta (TGF-beta) transiently induced subcutaneous fibrosis and serial injections of connective tissue growth factor (CTGF) after TGF-beta caused persistent fibrosis. These results suggest that CTGF plays an important role in the development of persistent skin fibrosis and that CTGF may be a potential and specific therapeutic target in skin fibrosis. Therefore, the aim of the current study is to develop a neutralizing monoclonal antibody against human CTGF. We also investigated the neutralizing effect of the antibodies in our animal model. Firstly, by using the DNA immunization method, we developed a panel of anti-CTGF antibodies recognizing the native conformation of human CTGF. Next, to examine the anti-fibrosing effects of these antibodies, newborn B6 mice received subcutaneous injections of TGF-beta for 3 days with either anti-CTGF neutralizing antibodies or control purified immunoglobulin. Anti-CTGF antibodies significantly reduced skin fibrosis and collagen contents compared with the control group. These results suggest that our anti-CTGF antibodies are capable of blocking the development of skin fibrosis at least partially and these anti-CTGF neutralizing antibodies may be useful as the feasible strategy to treat skin fibrotic diseases as SSc.  相似文献   

6.
7.
Fibrotic disorders are typified by excessive connective tissue and extracellular matrix (ECM) deposition that precludes normal healing processes in different tissues. Angiotensin-II (Ang-II) is involved in the fibrotic response. Several muscular dystrophies are characterized by extensive fibrosis. However, the exact role of Ang-II in skeletal muscle fibrosis is unknown. Here we show that myoblasts responded to Ang-II by increasing protein levels of connective tissue growth factor (CTGF/CCN2), collagen-III and fibronectin. These Ang-II-induced pro-fibrotic effects were mediated by AT-1 receptors. Remarkably, Ang-II induced reactive oxygen species (ROS) via a NAD(P)H oxidase-dependent mechanism, as shown by inhibition of ROS production via the NAD(P)H oxidase inhibitors diphenylene iodonium (DPI) and apocynin. This increase in ROS is critical for Ang-II-induced fibrotic effects, as indicated by the decrease in Ang-II-induced CTGF and fibronectin levels by DPI and apocynin. We also show that Ang-II-induced ROS production and fibrosis require PKC activity as indicated by the generic PKC inhibitor chelerythrine.These results strongly suggest that the fibrotic response induced by Ang-II is mediated by AT-1 receptor and requires NAD(P)H-induced ROS in skeletal muscle cells.  相似文献   

8.
Hyperlipidemia is a recognized risk factor for atherosclerotic vascular disease. The underlying mechanisms that link lipoproteins and vascular disease are undefined. Connective tissue growth factor (CTGF) is emerging as a key determinant of progressive fibrotic diseases, and its expression is upregulated by diabetes. To define the mechanisms through which low-density lipoproteins (LDL) promote vascular injury, we evaluated whether LDL can modulate the expression of CTGF and collagen IV in human aortic endothelial cells (HAECs). Treatment of HAECs with LDL (50 microg/ml) for 24 h produced a significant increase in the mRNA and the protein levels of CTGF and collagen IV compared with unstimulated controls. To explore the mechanisms by which LDL regulates CTGF and collagen IV expression in HAECs, we determined first if CTGF and collagen IV are downstream targets for regulation by transforming growth factor-beta (TGF-beta). The results demonstrated that TGF-beta produced a concentration-dependent increase in the protein levels of CTGF. To assess whether the induction of CTGF in response to LDL is mediated via autocrine activation of TGF-beta, HAECs were treated with LDL for 24 h in the presence and absence of anti-TGF-beta neutralizing antibodies (anti-TGF-beta NA). The results demonstrated that the increase in CTGF induced by LDL was significantly inhibited by the anti-TGF-beta NA. To investigate the upstream mediators of TGF-beta on activity of CTGF in response to LDL, HAECs were treated with LDL for 24 h in the presence and absence of cell-permeable MAPK inhibitors. Inhibition of p38(mapk) activities did not affect LDL-induced TGF-beta1, CTGF, and collagen IV expression. On the other hand, SP-600125, a specific inhibitor of c-Jun NH(2)-terminal kinase, suppressed LDL-induced TGF-beta, CTGF, and collagen IV expression, and PD-98059, a selective inhibitor of p44/42(mapk), suppressed LDL-induced TGF-beta and CTGF expression. These findings are the first to implicate the MAPK pathway and TGF-beta as key players in LDL signaling, leading to CTGF and collagen IV expression in HAECs. The data also point to a potential mechanistic pathway through which lipoproteins may promote vascular injury.  相似文献   

9.
10.
Connective tissue growth factor (CTGF) is a profibrotic factor shown to induce extracellular matrix production and angiogenesis, two processes involved in the development of diabetic retinopathy (DR). In this study we tested the effect of a recombinant adenovirus encoding for a CTGF antisense oligonucleotide (rAdASO) on the levels of transforming growth factor-beta (TGF-beta) induced expression of CTGF in Rat-2 fibroblasts. Using semi-quantitative RT-PCR, there was a 2-fold increase in CTGF message induced by TGF-beta. Western blot and immunocytochemical analyses revealed a significant increase in CTGF protein level. This upregulation of CTGF by TGF-beta was inhibited by infection with rAdASO. These findings indicate that infection of the Rat-2 cells with rAdASO was effective in decreasing TGF-beta-induced CTGF expression. These results indicate that this viral vector might have therapeutic potential to control elevated CTGF levels that occur in DR.  相似文献   

11.
BACKGROUND/AIMS: TGF-beta1 plays a major role in extracellular matrix (ECM) accumulation in tissue fibrosis. Connective tissue growth factor appears to play a critical role in this effect. Endoglin is a component of the transforming growth factor b (TGF-beta) receptor complex. Endoglin is upregulated by TGF-beta1, but its functional role in ECM regulation is unknown. Using rat myoblasts as a model system, we have assessed the role of endoglin on regulating CTGF expression and ECM synthesis and accumulation in the presence or absence of TGF-beta1. METHODS: L6E9 myoblast cell line was transfected with human endoglin, and collagen, fibronectin and CTGF production was assessed by Western blot and by proline incorporation to collagen proteins. RESULTS: Northern blot analysis revealed that parental rat myoblasts L6E9 do not express endogenous endoglin. Upon endoglin transfection, endoglin-expressing cells displayed a decreased CTGF expression and decreased collagen and fibronectin accumulation respect to mock transfectants. Northern blot analysis also revealed a decreased alpha2 (I) procollagen mRNA expression in endoglin transfectants. TGF-beta1 treatment induced an increase in CTGF expression and collagen synthesis and accumulation in L6E9 myoblasts. This effect was significantly lower in endoglin-transfected than in mock-transfected cells. CONCLUSION: These results demonstrate that endoglin expression negatively regulates basal and TGF-beta1-induced CTGF and collagen expression and synthesis.  相似文献   

12.
Calcineurin is a calcium-dependent, serine/threonine phosphatase that functions as a signaling intermediate. In this study, we investigated the role of calcineurin in transforming growth factor-beta (TGF-beta)-mediated cellular effects and examined the signaling pathway involved in activation of calcineurin. Calcineurin is activated by TGF-beta in a time- and dose-dependent manner. Consistent with increased phosphatase activity, the calcineurin substrate, NFATc1, is dephosphorylated and transported to the nucleus. Inhibition of calcineurin prior to the addition of TGF-beta revealed that calcineurin is required for TGF-beta-mediated accumulation of extracellular matrix (ECM) proteins but not cell hypertrophy. Conversely, overexpression of constitutively active calcineurin was sufficient to induce ECM protein expression. The mechanism of calcineurin activation by TGF-beta was found to be induction of a low, sustained increase of intracellular calcium. Chelation of extracellular calcium blocked both TGF-beta-mediated calcium influx and calcineurin activity. Finally, calcium entry was found to be dependent upon generation of reactive oxygen species (ROS) including superoxide anion and hydrogen peroxide. Accordingly, inhibition of ROS generation also blocked TGF-beta-mediated calcineurin phosphatase activity and decreased ECM accumulation. In conclusion, this study describes a new pathway for TGF-beta-mediated regulation of ECM via generation of ROS, calcium influx, and activation of calcineurin.  相似文献   

13.
Fibrotic disorders are typified by excessive connective tissue and extracellular matrix (ECM) deposition that precludes normal healing processes of different tissues. Connective tissue growth factor (CTGF) seems to be involved in the fibrotic response. Several muscular dystrophies are characterized by a progressive weakness and wasting of the musculature, and by extensive fibrosis. However, the exact role of CTGF in skeletal muscle is unknown. Here we show that myoblasts and myotubes are able to synthesize CTGF in response to transforming growth factor type-beta (TGF-beta) and lysophosphatidic acid (LPA). CTGF induced several ECM constituents such as fibronectin, collagen type I and alpha4, 5, 6, and beta1 integrin subunits in myoblasts and myotubes. CTGF had an important inhibitory effect on muscle differentiation evaluated by the decrease in the nuclear translocation of the early muscle regulatory factor myogenin and myosin. Remarkable, CTGF treatment of myoblasts induced their dedifferentiation, characterized by down regulating MyoD and desmin, two markers of committed myoblasts, together with a strong reorganization of cytoskeletal filaments. These results provide novel evidence for the underlying mechanisms and participation of skeletal muscle cells in the synthesis and role of CTGF inducing fibrosis, inhibiting myogenesis and dedifferentiating myoblasts.  相似文献   

14.
Molecular changes associated with cellular senescence in human diploid fibroblasts (HDF), IMR-90, were analyzed by two-dimensional differential proteome analysis. A high percentage of replicative senescent cells were positive for senescence-associated beta-galactosidase activity, and displayed elevated levels of p21 and p53 proteins. Comparison of early population doubling level (PDL) versus replicative senescent cells among the 1000 spots resolved on gels revealed that the signal intensities of six spots were increased fivefold, whereas those of four spots were decreased. Proteome analysis data demonstrated that connective tissue growth factor (CTGF) is an age-associated protein. Up-regulation of CTGF expression in senescent cells was further confirmed by Western blotting and RT-PCR. We postulate that CTGF expression is controlled, in part, by transforming growth factor-beta (TGF-beta), in view of the high levels of TGF-beta isoforms as well as type I and II receptors detected only in late PDL of HDF cells. To verify this hypothesis, we stimulated early PDL cells with TGF-beta1 as well as stress inducing agents such as hydrogen peroxide. As expected, CTGF expression and Smad protein phosphorylation were dramatically increased up to observed levels in normal replicative senescent cells. In vivo experiments disclosed that CTGF, pSmad, and p53 were constitutively expressed at basal levels in up to 18-month-old rat liver, and expression was significantly up-regulated in 24-month-old rat tissue. However, expression patterns were not altered at all periods examined in livers of caloric-restricted rats. In view of both in vitro and in vivo data, we propose that the TGF-beta/Smad pathway functions in the induction of CTGF, a novel biomarker protein of cellular senescence in human fibroblasts.  相似文献   

15.
Transforming growth factor (TGF)-beta and des-Arg(10)-kallidin stimulate the expression of connective tissue growth factor (CTGF), a matrix signaling molecule that is frequently overexpressed in fibrotic disorders. Because the early signal transduction events regulating CTGF expression are unclear, we investigated the role of Ca(2+) homeostasis in CTGF mRNA expression in TGF-beta1- and des-Arg(10)-kallidin-stimulated human lung myofibroblasts. Activation of the kinin B1 receptor with des-Arg(10)-kallidin stimulated a rise in cytosolic Ca(2+) that was extracellular Na(+)-dependent and extracellular Ca(2+)-dependent. The des-Arg(10)-kallidin-stimulated increase of cytosolic Ca(2+) was blocked by KB-R7943, a specific inhibitor of Ca(2+) entry mode operation of the plasma membrane Na(+)/Ca(2+) exchanger. TGF-beta1 similarly stimulated a KB-R7943-sensitive increase of cytosolic Ca(2+) with kinetics distinct from the des-Arg(10)-kallidin-stimulated Ca(2+) response. We also found that KB-R7943 or 2',4'-dichlorobenzamil, an amiloride analog that inhibits the Na(+)/Ca(2+) exchanger activity, blocked the TGF-beta1- and des-Arg(10)-kallidin-stimulated increases of CTGF mRNA. Pretreatment with KB-R7943 also reduced the basal and TGF-beta1-stimulated levels of alpha1(I) collagen and alpha smooth muscle actin mRNAs. These data suggest that, in addition to regulating ion homeostasis, Na(+)/Ca(2+) exchanger acts as a signal transducer regulating CTGF, alpha1(I) collagen, and alpha smooth muscle actin expression. Consistent with a more widespread role for Na(+)/Ca(2+) exchanger in fibrogenesis, we also observed that KB-R7943 likewise blocked TGF-beta1-stimulated levels of CTGF mRNA in human microvascular endothelial and human osteoblast-like cells. We conclude that Ca(2+) entry mode operation of the Na(+)/Ca(2+) exchanger is required for des-Arg(10)-kallidin- and TGF-beta1-stimulated fibrogenesis and participates in the maintenance of the myofibroblast phenotype.  相似文献   

16.
While transforming growth factor-β (TGF-β1)-induced SMAD2/3 signaling is a critical event in the progression of chronic kidney disease, the role of non-SMAD mechanisms in the orchestration of fibrotic gene changes remains largely unexplored. TGF-β1/SMAD3 pathway activation in renal fibrosis (induced by ureteral ligation) correlated with epidermal growth factor receptorY845 (EGFRY845) and p53Ser15 phosphorylation and induction of disease causative target genes plasminogen activator inhibitor-1 (PAI-1) and connective tissue growth factor (CTGF) prompting an investigation of the mechanistic involvement of EGFR and tumor suppressor p53 in profibrotic signaling. TGF-β1, PAI-1, CTGF, p53 and EGFR were co-expressed in the obstructed kidney localizing predominantly to the tubular and interstitial compartments. Indeed, TGF-β1 activated EGFR and p53 as well as SMAD2/3. Genetic deficiency of either EGFR or p53 or functional blockade with AG1478 or Pifithrin-α, respectively, effectively inhibited PAI-1and CTGF induction and morphological transformation of renal fibroblasts as did SMAD3 knockdown or pretreatment with the SMAD3 inhibitor SIS3. Reactive oxygen species (ROS)-dependent mechanisms initiated by TGF-β1 were critical for EGFRY845 and p53Ser15 phosphorylation and target gene expression. The p22Phox subunit of NADPH oxidase was also elevated in the fibrotic kidney with an expression pattern similar to p53 and EGFR. EGF stimulation alone initiated, albeit delayed, c-terminal SMAD3 phosphorylation (that required the TGF-β1 receptor) and rapid ERK2 activation both of which are necessary for PAI-1 and CTGF induction in renal fibroblasts. These data highlight the extensive cross-talk among SMAD2/3, EGFR and p53 pathways essential for expression of TGF-β1-induced fibrotic target genes.  相似文献   

17.
Endothelin-1 (ET-1) plays an important role in tissue remodelling and fibrogenesis by inducing synthesis of collagen I via protein kinase C (PKC). ET-1 signals are transduced by two receptor subtypes, the ETA- and ETB-receptors which activate different Galpha proteins. Here, we investigated the expression of both ET-receptor subtypes in human primary dermal fibroblasts and demonstrated that the ETA-receptor is the major ET-receptor subtype expressed. To determine further signalling intermediates, we inhibited Galphai and three phospholipases. Pharmacologic inhibition of Galphai, phosphatidylcholine-phospholipase C (PC-PLC) and phospholipase D (PLD), but not of phospholipase Cbeta, abolished the increase in collagen I by ET-1. Inhibition of all phospholipases revealed similar effects on TGF-beta1 induced collagen I synthesis, demonstrating involvement of PC-PLC and PLD in the signalling pathways elicited by ET-1 and TGF-beta1. ET-1 and TGF-beta1 each stimulated collagen I production and in an additive manner. ET-1 further induced connective tissue growth factor (CTGF), as did TGF-beta1, however, to lower levels. While rapid and sustained CTGF induction was seen following TGF-beta1 treatment, ET-1 increased CTGF in a biphasic manner with lower induction at 3 h and a delayed and higher induction after 5 days of permanent ET-1 treatment. Coincidentally at 5 days of permanent ET-1 stimulation, a switch in ET-receptor subtype expression to the ETB-receptor was observed. We conclude that the signalling pathways induced by ET-1 and TGF-beta1 leading to augmented collagen I production by fibroblasts converge on a similar signalling pathway. Thereby, long-time stimulation by ET-1 resulted in a changed ET-receptor subtype ratio and in a biphasic CTGF induction.  相似文献   

18.
The coagulation protease thrombin plays a critical role in hemostasis and exerts pro-inflammatory and pro-fibrotic effects via proteolytic activation of the major thrombin receptor, protease-activated receptor-1 (PAR-1). Connective tissue growth factor (CTGF) is a novel fibroblast mitogen and also promotes extracellular matrix protein production. It is selectively induced by transforming growth factor beta (TGF-beta) and is thought to be the autocrine agent responsible for mediating its pro-fibrotic effects. CTGF is up-regulated during tissue repair and in fibrotic conditions associated with activation of the coagulation cascade. We therefore hypothesized that coagulation proteases promote the production of CTGF by cells at sites of tissue injury. To begin to address this hypothesis, we assessed the effect of coagulation proteases on fibroblast CTGF expression in vitro, and we show that thrombin, at physiological concentrations, up-regulated CTGF mRNA levels 5-fold relative to base line (p < 0.01) in fetal fibroblasts and 7-fold in primary adult fibroblasts (p < 0.01). These effects were cycloheximide-insensitive and were not blocked with a pan-specific TGF-beta-neutralizing antibody. They were further paralleled by a concomitant increase in CTGF protein production and could be mimicked with selective PAR-1 agonists. In addition, fibroblasts derived from PAR-1 knockout mice were unresponsive to thrombin but responded normally to TGF-beta(1). Finally, factor Xa, which is responsible for activating prothrombin during blood coagulation, exerted similar stimulatory effects. We propose that coagulation proteases and PAR-1 may play a role in promoting connective tissue formation during normal tissue repair and the development of fibrosis by up-regulating fibroblast CTGF expression.  相似文献   

19.
Expression of connective tissue growth factor (CTGF) was induced in renal mesangial cells by activation of heptahelical receptors by serotonin (5-HT) and lysophosphatidic acid (LPA). Induction of CTGF mRNA was transient with maximal expression after 1 to 2 h, whereas induction of CTGF by transforming growth factor beta (TGF-beta) increased over time. In contrast to the induction of other early response genes (Egr-1 and cyclooxygenase-2), LPA-mediated induction of CTGF was pertussis toxin-insensitive and independent of p42/44 MAP kinase activation. 5-HT-mediated CTGF induction was due to activation of 5-HT(2A) receptors and likewise independent of p42/44 MAP kinase activation. Upon stimulation, enhanced levels of CTGF protein were detected in cellular homogenates, whereas no protein was detectable in cell culture supernatants. Inhibition of proteins of the Rho family by toxin B abrogated basal as well as CTGF expression stimulated by LPA, 5-HT, and TGF-beta. Inhibition of the downstream mediator of RhoA, the Rho kinase by Y-27632 partially reduced induction of CTGF by LPA and TGF-beta. Toxin B not only affected gene expression, but disrupted the actin cytoskeleton similarly as observed after treatment with cytochalasin D. Disassembly of actin stress fibers by cytochalasin D partially reduced basal and stimulated CTGF expression. These data indicate that an intact actin cytoskeleton is critical for the expression of CTGF. Elimination of the input of Rho proteins by toxin B, however, was significantly more effective and their effect on CTGF expression thus goes beyond disruption of the cytoskeleton. These findings thus establish activation of heptahelical receptors coupled to pertussis toxin-insensitive G proteins as a novel signaling pathway to induce CTGF. Proteins of the Rho family and an intact cytoskeleton were identified as critical determinants of CTGF expression induced by LPA and 5-HT, and also by TGF-beta.  相似文献   

20.
Transforming growth factor beta(2) (TGF-beta(2)), a growth regulator of human lens epithelial cells (HLECs), also regulates the death of these cells. Dose-response analysis showed that the TGF-beta(2) concentration needed to induce HLECs death (100 pg/ml) was 10 times that needed to inhibit growth in these cells (10 pg/ml). TGF-beta(2)-induced apoptosis in HLECs was preceded by an induction of reactive oxygen species (ROS) and a decrease in glutathione in the intracellular content, indicating that this factor induces oxidative stress in HLECs. Studies performed to analyze the levels of c-fos mRNA, a gene whose expression is modulated by the redox state, demonstrated that only high, apoptotic concentrations of TGF-beta(2) (100 pg/ml) produced an increase in the mRNA levels of this gene, the level of induction being similar to that found when cells were incubated in the presence of hydrogen peroxide. Finally, the cell death induced by TGF-beta(2) in HLECs was partially blocked by radical scavengers, which decreased the percentage of apoptotic cells, whereas these agents did not modify the growth-inhibitory effect elicited by TGF-beta(2) in these cells. The results presented in this paper provide evidence for the involvement of an oxidative process in the apoptosis elicited by TGF-beta(2) in HLECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号