首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitochondria of the strictly aerobic yeast Yarrowia lipolytica contain respiratory complex I with close functional and structural similarity to the mammalian enzyme. Unlike mammalian mitochondria, however, Yarrowia mitochondria have been thought not to contain supercomplexes. Here, we identify respiratory supercomplexes composed of complexes I, III and IV also in Y. lipolytica. Evidence for dimeric complex I suggests further association of respiratory supercomplexes into respiratory strings or patches. Similar supercomplex organization in Yarrowia and mammalian mitochondria further makes this aerobic yeast a useful model for the human oxidative phosphorylation system. The analysis of supercomplexes and their constituent complexes was made possible by 2‐D native electrophoresis, i.e. by using native electrophoresis for both dimensions. Digitonin and blue‐native electrophoresis were generally applied for the initial separation of supercomplexes followed by less mild native electrophoresis variants in the second dimension to release the individual complexes from the supercomplexes. Such 2‐D native systems are useful means to identify the constituent proteins and their copy numbers in detergent‐labile physiological assemblies, since they can reduce the complexity of supramolecular systems to the level of individual complexes.  相似文献   

2.
Two‐dimensional blue native/SDS‐PAGE is widely applied to investigate native protein–protein interactions, particularly those within membrane multi‐protein complexes. MS has enabled the application of this approach at the proteome scale, typically by analysis of picked protein spots. Here, we investigated the potential of using LC‐MS/MS as an alternative for SDS‐PAGE in blue native (BN) analysis of protein complexes. By subjecting equal slices from BN gel lanes to label‐free semi‐quantitative LC‐MS/MS, we determined an abundance profile for each protein across the BN gel, and used these profiles to identify potentially interacting proteins by protein correlation profiling. We demonstrate the feasibility of this approach by considering the oxidative phosphorylation complexes I–V in the native human embryonic kidney 293 mitochondrial fraction, showing that the method is capable of detecting both the fully assembled complexes as well as assembly/turnover intermediates of complex I (NADH:ubiquinone oxidoreductase). Using protein correlation profiling with a profile for subunits NDUFS2, 3, 7 and 8 we identified multiple proteins possibly involved in the biogenesis of complex I, including the recently implicated chaperone C6ORF66 and a novel candidate, C3ORF60.  相似文献   

3.
Ilka Wittig 《BBA》2009,1787(6):672-680
Mitochondrial ATP synthase is mostly isolated in monomeric form, but in the inner mitochondrial membrane it seems to dimerize and to form higher oligomeric structures from dimeric building blocks. Following a period of electron microscopic single particle analyses that revealed an angular orientation of the membrane parts of monomeric ATP synthases in the dimeric structures, and after extensive studies of the monomer-monomer interface, the focus now shifts to the potentially dynamic state of the oligomeric structures, their potential involvement in metabolic regulation of mitochondria and cells, and to newly identified interactions like physical associations of complexes IV and V. Similarly, larger structures like respiratory strings that have been postulated to form from individual respiratory complexes and their supercomplexes, the respirasomes, come into the focus. Progress by structural investigations is paralleled by insights into the functional roles of respirasomes including substrate channelling and stabilization of individual complexes. Cardiolipin was found to be important for the structural stability of respirasomes which in turn is required to maintain cells and tissues in a healthy state. Defects in cardiolipin remodeling cause devastating diseases like Barth syndrome. Novel species-specific roles of respirasomes for the stability of respiratory complexes have been identified, and potential additional roles may be deduced from newly observed interactions of respirasomes with components of the protein import machinery and with the ADP/ATP translocator.  相似文献   

4.
Permanent protein–protein interactions are commonly identified by co‐purification of two or more protein components using techniques like co‐immunoprecipitation, tandem affinity purification and native electrophoresis. Here we focus on blue‐native electrophoresis, clear‐native electrophoresis, high‐resolution clear‐native electrophoresis and associated techniques to identify stable membrane protein complexes and detergent‐labile physiological supercomplexes. Hints for dynamic protein–protein interactions can be obtained using two‐hybrid techniques but not from native electrophoresis and other protein isolation techniques except after covalent cross‐linking of interacting proteins in vivo prior to protein separation.  相似文献   

5.
6.
7.
The structural organization of the mitochondrial oxidative phosphorylation (OXPHOS) system has received large attention in the past and most investigations led to the conclusion that the respiratory enzymatic complexes are randomly dispersed in the lipid bilayer of the inner membrane and functionally connected by fast diffusion of smaller redox components, Coenzyme Q and cytochrome c. More recent investigations by native gel electrophoresis, however, have shown the existence of supramolecular associations of the respiratory complexes, confirmed by electron microscopy analysis and single particle image processing. Flux control analysis has demonstrated that Complexes I and III in mammalian mitochondria and Complexes I, III, and IV in plant mitochondria kinetically behave as single units with control coefficients approaching unity for each single component, suggesting the existence of substrate channelling within the supercomplexes. The reasons why the presence of substrate channelling for Coenzyme Q and cytochrome c was overlooked in the past are analytically discussed. The review also discusses the forces and the conditions responsible for the formation of the supramolecular units. The function of the supercomplexes appears not to be restricted to kinetic advantages in electron transfer: we discuss evidence on their role in the stability and assembly of the individual complexes and in preventing excess oxygen radical formation. Finally, there is increasing evidence that disruption of the supercomplex organization leads to functional derangements responsible for pathological changes.  相似文献   

8.
Here, we expand the application of blue native electrophoresis to the separation of mega protein complexes larger than 10 MDa by introducing novel large pore acrylamide gels. We tailored the bis‐acrylamide cross‐linker amounts relative to the acrylamide monomer to enlarge the pore size of acrylamide gels and to obtain elastic and sufficiently stable gels. The novel gel types were then used to search for suprastructures of mitochondrial respiratory supercomplexes, the hypothetical respiratory strings, or patches. We identified 4–8 MDa assemblies that contain respiratory complexes I, III, and IV and most likely represent dimers, trimers, and tetramers of respiratory supercomplexes. We also isolated multimeric respiratory supercomplexes with apparent masses of 35–45 MDa, the presumed core pieces of respiratory strings or patches. Electron microscopic investigations will be required to clarify whether the isolated assemblies of complexes are ordered and specific, as predicted for respiratory strings and patches in the mitochondrial membrane.  相似文献   

9.
Respiratory supercomplexes are large protein structures formed by various enzyme complexes of the mitochondrial electron transport chain. Using native gel electrophoresis and activity staining, differential regulation of complex activity within the supercomplexes was investigated. During prolonged hypoxia, complex I activity within supercomplexes diminished, whereas the activity of the individual complex I-monomer increased. Concomitantly, an increased activity was observed during hypoxia for complex IV in the smaller supercomplexes that do not contain complex I. These changes in complex activity within supercomplexes reverted again during recovery from the hypoxic treatment. Acidification of the mitochondrial matrix induced similar changes in complex activity within the supercomplexes. It is suggested that the increased activity of the small supercomplex III(2)+IV can be explained by the dissociation of complex I from the large supercomplexes. This is discussed to be part of a mechanism regulating the involvement of the alternative NADH dehydrogenases, known to be activated by low pH, and complex I, which is inhibited by low pH. It is concluded that the activity of complexes within supercomplexes can be regulated depending on the oxygen status and the pH of the mitochondrial matrix.  相似文献   

10.
Supercomplexes are defined associations of protein complexes, which are important for several cellular functions. This "quintenary" organization level of protein structure recently was also described for the respiratory chain of plant mitochondria. Except succinate dehydrogenase (complex II), all complexes of the oxidative phosphorylation (OXPOS) system (complexes I, III, IV and V) were found to form part of supercomplexes. Compositions of these supramolecular structures were systematically investigated using digitonin solubilizations of mitochondrial fractions and two-dimensional Blue-native (BN) polyacrylamide gel electrophoresis. The most abundant supercomplex of plant mitochondria includes complexes I and III at a 1:2 ratio (I1 + III2 supercomplex). Furthermore, some supercomplexes of lower abundance could be described, which have I2 + III4, V2, III2 + IV(1-2), and I1 + III2 + IV(1-4) compositions. Supercomplexes consisting of complexes I plus III plus IV were proposed to be called "respirasome", because they autonomously can carry out respiration in the presence of ubiquinone and cytochrome c. Plant specific alternative oxidoreductases of the respiratory chain were not associated with supercomplexes under all experimental conditions tested. However, formation of supercomplexes possibly indirectly regulates alternative respiratory pathways in plant mitochondria on the basis of electron channeling. In this review, procedures to characterize the supermolecular organization of the plant respiratory chain and results concerning supercomplex structure and function are summarized and discussed.  相似文献   

11.
T. Mert 《Neurophysiology》2007,39(3):237-241
The sucrose-gap technique has been widely used as a convenient tool for recording of the membrane activities from myelinated or unmyelinated nerves and muscle preparations (such as smooth and cardiac muscles). The quantitative measurements of membrane and action potentials in preparations with electrical coupling between their compartments are made much easier by this technique; the recorded potentials are rather similar to those recorded with a microelectrode. Recording of the membrane activities is of great value to experimenters studying the nervous system due to the simplicity and ease of use of this technique and the broad spectrum of sensitivity to agents influencing the electrical activity. This paper is focused on the set-up procedure and operation of the sucrose-gap technique, which provides an inexpensive, practical, and effective method for the investigation of the effects of drugs on the membrane activities of nerves and muscles in vitro. Neirofiziologiya/Neurophysiology, Vol. 39, No. 3, pp. 270–274, May–June, 2007.  相似文献   

12.
Key to mitochondrial activities is the maintenance of mitochondrial morphology, specifically cristae structures formed by the invagination of the inner membrane that are enriched in proteins of the electron transport chain. In Saccharomyces cerevisiae , these cristae folds are a result of the membrane fusion activities of Mgm1p and the membrane‐bending properties of adenosine triphosphate (ATP) synthase oligomerization. An additional protein linked to mitochondrial morphology is Pcp1p, a serine protease responsible for the proteolytic processing of Mgm1p. Here, we have used hydroxylamine‐based random mutagenesis to identify amino acids important for Pcp1p peptidase activity. Using this approach we have isolated five single amino acid mutants that exhibit respiratory growth defects that correlate with loss of mitochondrial genome stability. Reduced Pcp1p protease activity was confirmed by immunoblotting with the accumulation of improperly processed Mgm1p. Ultra‐structural analysis of mitochondrial morphology in these mutants found a varying degree of defects in cristae organization. However, not all of the mutants presented with decreased ATP synthase complex assembly as determined by blue native polyacrylamide gel electrophoresis. Together, these data suggest that there is a threshold level of processed Mgm1p required to maintain ATP synthase super‐complex assembly and mitochondrial cristae organization.  相似文献   

13.
Whole‐genome resequencing (WGR) is a powerful method for addressing fundamental evolutionary biology questions that have not been fully resolved using traditional methods. WGR includes four approaches: the sequencing of individuals to a high depth of coverage with either unresolved or resolved haplotypes, the sequencing of population genomes to a high depth by mixing equimolar amounts of unlabelled‐individual DNA (Pool‐seq) and the sequencing of multiple individuals from a population to a low depth (lcWGR). These techniques require the availability of a reference genome. This, along with the still high cost of shotgun sequencing and the large demand for computing resources and storage, has limited their implementation in nonmodel species with scarce genomic resources and in fields such as conservation biology. Our goal here is to describe the various WGR methods, their pros and cons and potential applications in conservation biology. WGR offers an unprecedented marker density and surveys a wide diversity of genetic variations not limited to single nucleotide polymorphisms (e.g., structural variants and mutations in regulatory elements), increasing their power for the detection of signatures of selection and local adaptation as well as for the identification of the genetic basis of phenotypic traits and diseases. Currently, though, no single WGR approach fulfils all requirements of conservation genetics, and each method has its own limitations and sources of potential bias. We discuss proposed ways to minimize such biases. We envision a not distant future where the analysis of whole genomes becomes a routine task in many nonmodel species and fields including conservation biology.  相似文献   

14.
Mitochondria play a central role in cellular energetic metabolism. The essential parts of this metabolism are the tricarboxylic acid (TCA) cycle, the respiratory chain and the adenosine triphosphate (ATP) synthesis machinery. Here a simplified model of these three metabolic components with a limited set of differential equations is presented. The existence of a steady state is demonstrated and results of numerical simulations are presented. The relevance of a simple model to represent actual in vivo behavior is discussed.  相似文献   

15.
由严重急性呼吸系统综合症冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)感染引起的2019年冠状病毒肺炎(COVID-19),其持续大流行已对世界公共卫生安全造成严重的危害。发展病毒检测技术并运用于卫生管理包括人员排查、患者鉴别与治疗、减缓病毒传播等方面已发挥了重要作用。本文简要概述了SARS-CoV-2生物学特征,对全球发展使用的SARS-CoV-2病毒主要检测技术和新兴发展检测技术进行了比较详尽的介绍,并对病毒检测技术进行了展望,以期为临床医疗诊断、公共卫生防护、疾病预防和控制等提供理论和技术帮助。  相似文献   

16.
17.
F0F1 ATP synthases utilize a transmembrane electrochemical potential difference to synthesize ATP from ADP and phosphate. In this work, the binding modes of ADP, ATP and ATP analogues to the catalytic sites of the F1 part of the mitochondrial ATP synthase were investigated with ligand docking calculations. Binding geometries of ATP and ADP at the three catalytic sites agree with X-ray crystal data; their binding free energies suggest an assignment to the ‘tight’, ‘open’ and ‘loose’ states. The rates of multi-site hydrolysis for two fluorescent ATP derivatives were measured using a fluorescence assay. Reduced hydrolysis rates compared to ATP can be explained by the ligand docking calculations.  相似文献   

18.
While protein interaction studies and protein network modeling come to the forefront, the isolation and identification of protein complexes in a cellular context remains a major challenge for plant science. To this end, a nondenaturing extraction procedure was optimized for plant whole cell matrices and the combined use of gel filtration and BN‐PAGE for the separation of protein complexes was studied. Hyphenation to denaturing electrophoresis and mass spectrometric analysis allows for the simultaneous identification of multiple (previously unidentified) protein interactions in single samples. The reliability and efficacy of the technique was confirmed (i) by the identification of well‐studied plant protein complexes, (ii) by the presence of nonplant interologs for several of the novel complexes (iii) by presenting physical evidence of previously hypothetical plant protein interactions and (iv) by the confirmation of found interactions using co‐IP. Furthermore practical issues concerning the use of this 2‐D BN/SDS‐PAGE display method for the analysis of protein–protein interactions are discussed.  相似文献   

19.
《Free radical research》2013,47(5):633-649
Abstract

Owing to the importance of antioxidants in the protection of both natural and man-made materials, a large variety of testing methods have been proposed and applied. These include methods based on inhibited autoxidation studies, which are better followed by monitoring the kinetics of oxygen consumption or of the formation of hydroperoxides, the primary oxidation products. Analytical determination of secondary oxidation products (e.g. carbonyl compounds) has also been used. The majority of testing methods, however, do not involve substrate autoxidation. They are based on the competitive bleaching of a probe (e.g. ORAC assay, β-carotene, crocin bleaching assays, and luminol assay), on reaction with a different probe (e.g. spin-trapping and TOSC assay), or they are indirect methods based on the reduction of persistent radicals (e.g. galvinoxyl, DPPH and TEAC assays), or of inorganic oxidizing species (e.g. FRAP, CUPRAC and Folin-Ciocalteu assays). Yet other methods are specific for preventive antioxidants. The relevance, advantages, and limitations of these methods are critically discussed, with respect to their chemistry and the mechanisms of antioxidant activity. A variety of cell-based assays have also been proposed, to investigate the biological activity of antioxidants. Their importance and critical aspects are discussed, along with arguments for the selection of the appropriate testing methods according to the different needs.  相似文献   

20.
Sulfate‐reducing bacteria (SRB) obtain energy from cytoplasmic reduction of sulfate to sulfide involving APS‐reductase (AprAB) and dissimilatory sulfite reductase (DsrAB). These enzymes are predicted to obtain electrons from membrane redox complexes, i.e. the quinone‐interacting membrane‐bound oxidoreductase (QmoABC) and DsrMKJOP complexes. In addition to these conserved complexes, the genomes of SRB encode a large number of other (predicted) membrane redox complexes, the function and actual formation of which is unknown. This study reports the establishment of 1D Blue Native‐PAGE complexome profiling and 2D BN‐/SDS‐PAGE for analysis of the membrane protein complexome of the marine sulfate reducer Desulfobacula toluolica Tol2. Analysis of normalized score profiles of >800 proteins in combination with hierarchical clustering and identification of 2D BN‐/SDS‐PAGE separated spots demonstrated separation of membrane complexes in their native form, e.g. ATP synthase. In addition to the QmoABC and DsrMKJOP complexes, other complexes were detected that constitute the basic membrane complexome of D. toluolica Tol2, e.g. transport proteins (e.g. sodium/sulfate symporters) or redox complexes involved in Na+‐based bioenergetics (RnfABCDEG). Notably, size estimation indicates dimer and quadruple formation of the DsrMKJOP complex in vivo. Furthermore, cluster analysis suggests interaction of this complex with a rhodanese‐like protein (Tol2_C05230) possibly representing a periplasmic electron transfer partner for DsrMKJOP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号