首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The effect of a range of fatty acids upon concanavalin A-stimulated [3H]thymidine incorporation into rat lymphocytes was investigated. 2. All fatty acids tested inhibited the response to mitogen but the extent of the inhibition was dependent upon the fatty acid concentration used, the time of addition of fatty acid and the duration of exposure of the cells to fatty acid. 3. All fatty acids were inhibitory at concentrations of 50 microM or above; at lower concentrations some were inhibitory and some were stimulatory. Above 50 microM the inhibitory effect was concentration dependent; the greater the fatty acid concentration, the greater the inhibition. 4. The longer the lymphocytes were exposed to the fatty acid the greater was the inhibitory effect. This was true if the fatty acids were added at the same time as the mitogenic stimulus or if they were added before or after the stimulus. Some fatty acids maintained their inhibitory effect when added 24 or 48 hr after the mitogenic stimulus. 5. Generally unsaturated fatty acids were more inhibitory than saturated fatty acids; the greatest inhibition of proliferation was caused by eicosapentaenoate and arachidonate and the least inhibition by myristate and palmitate. 6. Inhibition was greater in the absence of serum. 7. Inhibition by unsaturated fatty acids could be partially or totally relieved by addition in combination with myristate or palmitate, suggesting that the inhibitory effect of fatty acids may be due to alteration of membrane fluidity caused by an imbalance of fatty acids presented to the cells. 8. PGE2 levels were similar in the medium of cells grown in the presence of fatty acids with varying inhibitory effects, indicating that PGE2 production is not the sole mechanism of suppression of the proliferative response. 9. Although the mechanism by which fatty acids exert their effect remains to be determined, these results indicate that lymphocyte proliferation and so an immune response could be influenced by dietary lipid manipulation.  相似文献   

2.
Abstract: We observed that retinoic acid, which differentiates the human neuroblastoma SK-N-BE into mature neurons, induced an elevation in levels of polyunsaturated fatty acids, especially arachidonic acid (20:4 n-6). This effect was not induced by phorbol myristate acetate, another differentiating agent. We then explored the effects of retinoic acid on the formation of arachidonic acid and of docosahexaenoic acid from precursors and on the de novo lipid synthesis from acetate at various stages of differentiation, which was assessed by morphological (cell number and neurite outgrowth) and biochemical (protein content and thymidine incorporation) criteria. At 3 days of incubation with retinoic acid, in the n-6 series, total conversion of linoleic acid, especially to 20:3 n-6, was elevated, in association with preferential incorporation of acetate into phospholipids; in contrast, at 8 days, synthesis of 20-carbon polyunsaturated fatty acids declined, in association with enhanced incorporation in triglycerides. In the n-3 series, eicosapentaenoic acid was converted to docosahexaenoic acid in SK-N-BE, but the conversion was not affected by retinoic acid. During the early stage of neuronal differentiation, therefore, enhanced production of 20-carbon polyunsaturated fatty acids from their precursors occurred, and newly formed fatty acids were preferentially incorporated in phospholipids, possibly in association with membrane deposition. When differentiation was completed, arachidonic acid formation and incorporation of acetate in phospholipids and cholesterol declined with enhanced labeling of storage lipids.  相似文献   

3.
When plasma proteins leak from circulation into the renal tubular lumen in the proteinuric renal diseases, nephrotoxicity of filtered albumin (and/or molecules bound to it) may be important in the subsequent development of tubulo-interstitial damage which contributes to the progression of the disease. When cultured opossum kidney (OK) proximal tubular cells were exposed to bovine serum albumin for 3 days in vitro, increased cell division ([3H]-thymidine incorporation) and cellular hypertrophy (increased protein/DNA ratio) were observed. Both effects were halved if defatted albumin was used. A trivial explanation for the growth responses is that free fatty acids carried on the albumin, and amino acids generated by intracellular degradation of the albumin, are exerting a non-specific growth effect as metabolic fuels which are oxidized to generate ATP. However, the water-soluble free fatty acid octanoate (1 mmol l(-1)) had no significant effect on protein/DNA ratio and a very variable stimulatory effect on [3H]-thymidine incorporation, whereas an essential amino acid mixture or 1 mmol/l(-1) l-Ala or l-Phe only increased the protein/DNA ratio. Furthermore no carnitine was added to the culture medium. This absence would have impaired mitochondrial transport (and hence oxidation) of long-chain free fatty acids derived from the albumin. l-Phe is also a poor substrate for mitochondrial oxidation in kidney. It is therefore concluded that the growth effects of albumin in OK proximal tubular cells are specific effects of the albumin protein and of the free fatty acids and amino acids derived from it, and not a non-specific effect on metabolic fuel supply.  相似文献   

4.
The development of a system for modifying the membrane fatty acid composition of cultured soybean cells (Glycine max [L.] Merr.) is described. Tween-fatty acid esters carrying specific fatty acids were synthesized and added to the medium of suspension cultures. Cells transferred large quantities of exogenous fatty acids from Tweens to all acylated membrane lipids; up to 50% of membrane fatty acids were exogenously derived. C15 to C20 saturated fatty acids and C16, C18, and C20 unsaturated fatty acids with either cis or trans double bonds were incorporated into lipids. Cells elongated saturated fatty acids of C16 or less, and unsaturated fatty acids with cis double bonds were further desaturated. No other types of modifications were observed. Growth ceased in cells treated with excessive concentrations of Tween-fatty acid esters, but frequently not for several days. Cessation of cell growth was correlated with changes in membrane fatty acid composition resulting from incorporation of large amounts of exogenous fatty acids into membrane lipids, although cells tolerated large variations in fatty acid composition. Maximum tolerable Tween concentrations varied widely according to the fatty acid supplied. Potential uses of this system and implications of the observed modifications on the pathway of incorporation are discussed.  相似文献   

5.
Bile acid-induced inhibition of DNA synthesis by the regenerating rat liver in the absence of other manifestation of impairment in liver cell viability has been reported. Because in experiments carried out on in vivo models bile acids are rapidly taken up and secreted into bile, it is difficult to establish steady concentrations to which the hepatocytes are exposed. Thus, in this work, a dose-response study was carried out to investigate the in vitro cytotoxic effect of major unconjugated and tauro- (T) or glyco- (G) conjugated bile acids and to compare this as regards their ability to inhibit DNA synthesis. Viability of hepatocytes in primary culture was measured by Neutral red uptake and formazan formation after 6 h exposure of cells to bile acids. The rate of DNA synthesis was determined by radiolabeled thymidine incorporation into DNA. Incubation of hepatocytes with different bile acid species - cholic acid (CA), deoxycholic acid (DCA), chenodeoxycholic acid (CDCA) and ursodeoxycholic acid (UDCA), in the range of 10-1000 microM - revealed that toxicity was stronger for the unconjugated forms of CDCA and DCA than for CA and UDCA. Conjugation markedly reduced the effects of bile acids on cell viability. By contrast, the ability to inhibit radiolabeled thymidine incorporation into DNA was only slightly lower for taurodeoxycholic acid (TDCA) and glycodeoxycholic acid (GDCA) than for DCA. When the effect of these bile acids on DNA synthesis and cell viability was compared, a clear dissociation was observed. Radiolabeled thymidine incorporation into DNA was significantly decreased (-50%) at TDCA concentrations at which cell viability was not affected. Lack of a cause-effect relationship between both processes was further supported by the fact that well-known hepatoprotective compounds, such as tauroursodeoxycholic acid (TUDCA) and S-adenosylmethionine (SAMe) failed to prevent the effect of bile acids on DNA synthesis. In summary, our results indicate that bile acid-induced reduction of DNA synthesis does not require previous decreases in hepatocyte viability. This suggests the existence of a high sensitivity to bile acids of cellular mechanisms that may affect the rate of DNA repair and/or proliferation, which is of particular interest regarding the role of bile acids in the etiology of certain types of cancer.  相似文献   

6.
The optimum cofactor requirements for triacylglycerol biosynthesis in rat adipose-tissue homogenates containing mitochondrial, microsomal and cytosolic fractions were investigated. In general the optimum concentrations of cofactors for triacylglycerol biosynthesis were found to differ from those for total fatty acid esterification. The results provided further evidence for the key role of phosphatidate phosphohydrolase in the regulation of triacylglycerol biosynthesis. Albumin was included in the incubation medium to permit the use of concentrations of added fatty acids that would swamp the effects of endogenous fatty acids. The addition of albumin had little effect on the incorporation of palmitic acid and stearic acid into lipids including triacylglycerols. By contrast, a critical concentration of albumin (about 60 muM) was required before incorporation of oleic acid or linoleic acid into triacylglycerols occurred. The system was used to study the incorporation of different 1-14C-labelled fatty acids from a mixture of unesterified fatty acids [palmitic acid 30%; stearic acid 10%; oleic acid 40%; linoleic acid 20% (molar percentages)] separately into the positions 1,2 and 3 of triacyl-sn-glycerols. In general the stereo-specific distribution of the labelled fatty acids incorporated into triacylglycerols paralleled the normal distribution of fatty acids within rat adipose-tissue triacylglycerols, suggesting that the specificities of the relevant acyltrasferases have the major role in determining the positional distribution of fatty acids within triacylglycerols.  相似文献   

7.
Abstract: Transient global cerebral ischemia affects phospholipid metabolism and features a considerable increase in unesterified fatty acids. Reincorporation of free fatty acids into membrane phospholipids during reperfusion following transient ischemia depends on conversion of fatty acids to acyl-CoAs via acyl-CoA synthetases and incorporation of the acyl group into lysophospholipids. To study the effect of ischemia-reperfusion on brain fatty acid and acyl-CoA pools, the common carotid arteries were tied for 5 min in awake gerbils, after which the ligatures were released for 5 min and the animals were killed by microwave irradiation. Twenty percent of these animals (two of 10) were excluded from the ischemia-reperfusion group when it was demonstrated statistically that brain unesterified arachidonic acid concentration was not elevated beyond the range of the control group. Brain unesterified fatty acid concentration was increased 4.4-fold in the ischemic-reperfused animals, with stearic acid and arachidonic acid increasing the most among the saturated and polyunsaturated fatty acids, respectively. The total acyl-CoA concentration remained unaffected, indicating that reacylation of membrane lysophospholipids is maintained during recovery. However, there was a substantial increase in the stearoyl- and arachidonoyl-CoA and a marked decrease in palmitoyl- and docosahexaenoyl-CoA. These results suggest that unesterified fatty acid reacylation into phospholipids is reprioritized according to the redistribution in concentration of acyl-CoA molecular species, with incorporation of stearic acid and especially arachidonic acid being favored.  相似文献   

8.
Rabbit lymph node and thymus lymphocytes were stimulated with concanavalin A (Con A). Cyclosporin A (CSA) inhibited in a dose-dependent way the induction of RNA and DNA synthesis; nearly complete inhibition was observed at a concentration of 200 ng/ml. Results of kinetic studies suggested that the immunosuppressive drug interfered with an early event occurring in activated lymphocytes. Among the earliest changes detectable in activated lymphocytes, the turnover of plasma membrane phospholipids is increased, predominantly of their fatty acid moieties, catalyzed by the membrane-bound lysophosphatide acyltransferase. CSA, at concentrations identical with those inhibiting macromolecular synthesis, also inhibited the Con A-stimulated specific increase in the incorporation of labeled fatty acids into plasma membrane phospholipids. When lymphocytes were stimulated with Con A for 1 hr, incorporation of labeled oleic acid and arachidonic acid approximately doubled in plasma membrane phospholipids. CSA at a concentration of 200 ng/ml prevented the elevated incorporation of labeled fatty acids into plasma membrane phospholipids of Con A-stimulated thymocytes. Concomitantly, the activation of lysolecithin acyltransferase, the key enzyme for the incorporation of long-chain fatty acids into phospholipids, was strongly inhibited. Up to high concentrations, CSA had no effect on the phospholipid metabolism of unstimulated lymphocytes. The results suggest that CSA inhibits the activation of T lymphocytes by interfering with the early activation of plasma membrane phospholipid metabolism.  相似文献   

9.
Upon infection with fowlpox virus, the amount of odd-numbered fatty acids in chick scalp epithelium shows a significant decrease compared with control values. This effect begins quite early and progresses throughout the period of infection. Individual members of the odd-numbered family (C15--C27 inclusive) were quantitatively related to the group as a whole during most of the infection. Experiments involving the administration of labeled acetate in vivo demonstrated an increase in the synthesis of even-numbered fatty acids and a decrease in the synthesis of odd-numbered fatty acids in infected epithelium. The reduced synthesis of odd-numbered fatty acids in infected epithelium could also be demonstrated with labeled propionate. The influence of the alpha-oxidation pathway was assayed in chick scalp epithelium in vivo by the administration of [1-14C,9,10-3H] stearic acid. The C17 acids formed had a 3H/14C ratio similar to that of the C16 acids, indicating that most label incorporation into C17 was due to beta-oxidation to acetate followed by resynthesis into fatty acids. C17 fatty acids from control and infected epithelium had similar 3H/14C ratios, indicating that the alpha-oxidation pathway probably does not contribute to the differences in odd-numbered fatty acid content observed. In assays for fatty acid synthetase activty, both [14C] acetyl-CoA and [14C]-propionyl-CoA were used as initial acceptors. The specific activities of preparations from infected scalp were similar to those of control preparations with both substrates. These results suggest that there is no decline in the ability to utilize propionate for fatty acid synthesis in infected epithelium.  相似文献   

10.
The effects of eicosapentaenoic acid and oleic acid on lipid synthesis and secretion by HepG2 cells were examined to identify fatty acid specific changes in lipid metabolism that might indicate a basis for the hypolipidemic effect attributed to eicosapentaenoic acid and related n-3 fatty acids. Cellular glycerolipid synthesis, as determined by [3H]glycerol incorporation, increased in a concentration-dependent manner in cells incubated 4 h with either eicosapentaenoic acid or oleic acid at concentrations between 10 and 300 microM. [3H]Glycerol-labeled triglyceride was the principal lipid formed and increased approximately fourfold with the addition of 300 microM oleic acid or eicosapentaenoic acid. Both fatty acids also produced a 20-40% increase in the total cellular triglyceride mass. Although both fatty acids increased triglyceride synthesis to similar extents, eicosapentaenoic acid-treated cells secreted 40% less [3H]glycerol-labeled triglyceride than cells fed oleic acid. Cellular synthesis of [3H]glycerol-labeled phosphatidylethanolamine and phosphatidylcholine was also reduced by 40% and 30%, respectively, in cells given eicosapentaenoic acid versus cells given oleic acid. Similar results were obtained in determinations of radiolabeled oleic acid and eicosapentaenoic acid incorporation. At a fatty acid concentration of 300 microM, incorporation of radiolabeled eicosapentaenoic acid into cellular triglycerides was greater than the incorporation obtained with radiolabeled oleic acid, while the reverse relationship was observed for the formation of phosphatidylcholine from the same fatty acids. Eicosapentaenoic acid is as potent as oleic acid in inducing triglyceride synthesis but eicosapentaenoic acid is a poorer substrate than oleic acid for phospholipid synthesis. The intracellular rise in de novo-synthesized triglyceride in eicosapentaenoic acid-treated cells without corresponding increases in triglyceride secretion suggests that eicosapentaenoic acid is less effective than oleic acid in promoting the transfer of de novo-synthesized triglyceride to nascent very low density lipoproteins.  相似文献   

11.
The effects of glucose (10 mm), glycerol (3 mm), and lactate/pyruvate (10 mm) on the incorporation of 3H from 3H2O into fatty acids were studied in isolated hepatocytes prepared from chow-fed female rats. Lactate/pyruvate markedly increased lipogenic rates, while glucose and glycerol did not significantly affect rates of lipogenesis. In cells incubated with lactate/pyruvate plus glycerol, the increase in 3H incorporation was greater than observed with lactate/pyruvate alone. In hepatocytes isolated from 24-h starved rats, lactate/pyruvate again increased de novo fatty acid synthesis to a greater extent than either glucose or glycerol. Glycerol significantly increased lipogenesis compared to the endogenous rates and when incubated with lactate/pyruvate produced an increase above lactate/pyruvate alone. (?)-Hydroxycitrate, a potent inhibitor of ATP-citrate lyase (EC 4.1.3.8), and agaric acid, an inhibitor of tricarboxylate anion translocation, were studied in hepatocytes to determine their effects on lipogenesis by measuring 3H2O, [1-14C]acetate, and [2-14C]lactate incorporation into fatty acids. 3H incorporation into fatty acids was markedly inhibited by both inhibitors with agaric acid (60 μm) producing the greater inhibition. (?)-Hydroxycitrate (2 mm) increased acetate incorporation into fatty acids from [1-14C]acetate and agaric acid produced a strong inhibitory effect. Combined effects of (?)-hydroxycitrate and agaric acid on lipogenesis from [1-14C]acetate showed an inhibitory response to a lesser extent than with agaric acid alone. With substrate concentrations of acetate present, there was no significant increase in rates of lipogenesis from [1-14C]acetate and the increase previously observed with (?)-hydroxycitrate alone was minimized. Agaric acid significantly inhibited fatty acid synthesis from acetate in the presence of exogenous substrate, but the effect was decreased in comparison to rates with only endogenous substrate present. With [2-14C]lactate as the lipogenic precursor, agaric acid and (?)-hydroxycitrate strongly inhibited fatty acid synthesis. However, agaric acid despite its lower concentration (60 μm vs 2 mm) was twice as effective as (?)-hydroxycitrate. A similar pattern was observed when substrate concentrations of lactate/pyruvate (10 mm) were added to the incubations. When (?)-hydroxycitrate and agaric acid were simultaneously incubated in the presence of endogenous substrate, there was an additive effect of the inhibitors on decreasing fatty acid synthesis. Results are discussed in relation to the origin of substrate for hepatic lipogenesis and whether specific metabolites increase lipogenic rates.  相似文献   

12.
The influence of retinoic acid on the incorporation of [1-14C]palmitic acid and [1-14C]arachidonic acid into phospholipids was examined in guinea pig peritoneal granulocytes. All-trans-retinoic acid inhibited the incorporation of both fatty acids into phosphatidic acid and phosphatidylinositol. However, it stimulated the incorporation of both fatty acids into phosphatidylcholine but not other phospholipids. All-trans-retinoic acid was more effective than 13-cis-retinoic acid. The influence of all-trans-retinoic acid on the acylation of phospholipids was concentration-dependent with significant effect occurring at 2.1 microM. The loss of labeled fatty acids from prelabeled phospholipids and the transport of labeled fatty acids into granulocytes were not responsive to the presence of retinoic acid in the incubation media. These results suggest that retinoic acid may affect the activities of acyltransferases involved in the synthesis of phosphatidic acid, phosphatidylinositol and phosphatidylcholine.  相似文献   

13.
Five Lactobacillus strains of intestinal and food origins were grown in MRS broth or milk containing various concentrations of linoleic acid or conjugated linoleic acid (CLA). The fatty acids had bacteriostatic, bacteriocidal, or no effect depending on bacterial strain, fatty acid concentration, fatty acid type, and growth medium. Both fatty acids displayed dose-dependent inhibition. All strains were inhibited to a greater extent by the fatty acids in broth than in milk. The CLA isomer mixture was less inhibitory than linoleic acid. Lactobacillus reuteri ATCC 55739, a strain capable of isomerizing linoleic acid to CLA, was the most inhibited strain by the presence of linoleic acid in broth or milk. In contrast, a member of the same species, L. reuteri ATCC 23272, was the least inhibited strain by linoleic acid and CLA. All strains increased membrane linoleic acid or CLA levels when grown with exogenous fatty acid. Lactobacillus reuteri ATCC 55739 had substantial CLA in the membrane when the growth medium was supplemented with linoleic acid. No association between level of fatty acid incorporation into the membrane and inhibition by that fatty acid was observed.  相似文献   

14.
Abstract: The rate of fatty acid uptake, oxidation, and deposition in skeletal muscles in relation to total and unbound to albumin fatty acids concentration in the medium were investigated in the incubated rat soleus muscle. An immunohistochemical technique was applied to demonstrate whether the albumin-bound fatty acid complex from the medium penetrates well within all areas of the muscle strips. It was found that the percentage of incorporation of palmitic acid into intramuscular lipids was fairly constant, independently of the fatty acid concentration in the medium, and amounted to 63-72% for triacylglycerols, 7-12% for diacylglycerols-monoacylglycerols, and 19-26% for phospholipids. Both palmitic acid incorporation into the muscle triacylglycerol stores and its oxidation to CO2 closely correlated with an increase in both total and unbound to albumin fatty acid concentrations in the incubation medium. Under conditions of increased total but constant unbound to albumin palmitic acid concentrations, the incorporation of palmitic acid into triacylglycerols and its oxidation to CO2 were also increased, but to a lower extent. This supports the hypothesis that the cellular fatty acid metabolism depends not only on the availability of fatty acids unbound to albumin, but also on the availability of fatty acids complexed to albumin.  相似文献   

15.
Fetuin belongs to a group of fetal glycoproteins whose specific function is not known. In this study we investigated the effect of bovine fetuin on exogenous fatty acid incorporation into lipid classes by fetal rabbit aortic smooth muscle cells (SMC) and human fetal skin fibroblasts. When compared with albumin, the addition of fetuin to the culture medium caused a dramatic increase in labeled fatty acid incorporation (nanomoles/mg of protein) by SMC into triglycerides (albumin (control) 2.8 +/- 0.3 + fetuin 178.3 +/- 13.7). This effect was noted at a wide range of fetuin concentrations (0.2-5%) at oleate:fetuin molar ratios of 3.3-0.13, respectively. Similar effects were noted using human fetal skin fibroblasts with both labeled oleic and arachidonic acids (0.1 mM) as substrates (arachidonic acid incorporation into triglycerides, albumin (control) 76.9 +/- 16.2 + fetuin 684.6 +/- 64.1). Stimulation of fatty acid incorporation into di- and monoglycerides was also noted. Although the amount of unbound fatty acid in the presence of fetuin was greater than with albumin, experiments done under conditions that create identical unbound oleate levels (by varying fatty acid concentration) still showed increased fatty acid incorporation into triglycerides by SMC when exposed to fetuin. This marked effect of fetuin on triglyceride accumulation in cells was confirmed by lipid analysis, strong positive staining with oil red O, and transmission of electron microscopy. Furthermore, the potential physiological role of fetuin in terms of fatty acid and transport was attested by (a) the presence of significant amounts of free fatty acids associated with fetuin; and (b) by the stimulatory effect of fetuin, even when added to culture media containing other fatty acid carriers. These results show that (a) fetuin is far more efficient than albumin in incorporating fatty acids into cells; and (b) this might represent a novel function for fetuin during development.  相似文献   

16.
Rodents are able to lower fatty acid utilization in liver and muscle during lactation in order to spare fatty acids for the production of milk triacylglycerols, an effect which is mediated by a down-regulation of peroxisome proliferator-activated receptor α (PPARα). The present study was performed to investigate whether similar fatty acid sparing effects are developing in lactating sows. We considered PPARα and its target genes involved in fatty acid utilization in biopsy samples from muscle and adipose tissue of lactating compared to non-lactating sows. In muscle, PPARα target genes involved in fatty acid utilization were up-regulated during lactation indicating that the fatty acid utilization in muscle was increased. Activation of PPARα was probably due to increased concentrations of non-esterified fatty acids in plasma observed in the lactating sows. In contrast to muscle, PPARα and its target genes involved in β-oxidation in white adipose tissue were down-regulated in early lactation. Overall, the present study shows that sows, unlike rats, are not able to reduce the fatty acid utilization in muscle in order to spare fatty acids for milk production. However, fatty acid oxidation in adipose tissue is lowered during early lactation, an effect that might be helpful to conserve fatty acids released from adipose tissue for the delivery into other tissues, including mammary gland, via the blood.  相似文献   

17.
Lymphosarcoma cells isolated from the spleens of tumor-bearing mice were used to study the effect of a low dose of X-rays (5 Gy) on the incorporation of [3H]palmitate and [14C]arachidonate into the lipids of the tumor cells. Palmitate and arachidonate were rapidly incorporated especially into the phospholipids of the cells. Between one and three hours after the start of the incubation with radiactive palmitate 80–90% of the label of the total lipids was found in the phospholipid fraction. Already after a few minutes of incubation with radioactive arachidonate, about 95% of the label was incorporated in the phospholipids. Irradiation caused a small but significant increase in the rate of fatty acid incorporation for both fatty acids. Concomitantly, a significantly increased amount of fatty acid was removed from the medium by the cells as a result of the irradiation, and the specific radioactivity of the free fatty acids in the cells was found to be enhanced. The radiation effect on the tumor cells could be mimicked by a hypotonic treatment. The magnitude of the radiation-induced stimulation of the fatty acid incorporation was similar to that of the hypotonically induced effect. Cells which had received a hypotonic treatment before the irradiation, did not show an additional radiation-induced enhancement of fatty acid incorporation into the cellular lipids. When the cells were incubated with serum albumin loaded with a relatively large (non-physiological) amount of complexed fatty acids (fatty acid: albumin molar ratio, ν = 3.7), no radiation effect on the fatty acid incorporation could be detected. It is concluded that hypotonic treatment, irradiation, and increased supply of exogenous fatty acids all lead to an enhanced flux of fatty acids into the cells. These results confirm our previous suggestion that the uptake of fatty acids through the plasma membrane is the rate-limiting step in the fatty acid incorporation into the phospholipids and that ionizing radiation is one of the means to enhance fatty acid uptake through the plasma membrane leading to an increased incorporation into the phospholipids.  相似文献   

18.
The rate of incorporation of oleic acid into isolated brush-border membranes was found to be considerably faster than methyl oleate incorporation under similar experimental conditions. The effects of fatty acids and methyl oleate incorporation on Ca2+ uptake and fluidity were monitored. Whereas treatment with 0.01-0.05 mM oleic acid corresponding to incorporations smaller than 90 nmol/mg protein enhanced Ca2+ transport, exposures to higher concentrations of this fatty acid corresponding to incorporations larger than 150 nmol/mg protein, decreased uptake of this cation. On the other hand, treatment with 0.01-0.2 mM methyl oleate corresponding to incorporations of up to 220 nmol/mg protein had only a stimulatory effect on the Ca2+ uptake. Oleic acid, linoleic acid and methyl oleate decreased the fluorescence anisotropy of membranes labelled with diphenylhexatriene in a dose-dependent manner. In contrast, palmitic acid had little or no effect on the diphenylhexatriene-reportable order of the membrane within the range of concentrations used. Monitored as a function of temperature, the anisotropy values showed a gradual melting for both the control and lipid-treated membranes. The results support the concept that saturated and cis-unsaturated fatty acids dissolve in different lipid domains and this in itself appears to be an important factor defining whether the biological function of the membrane is affected by the uptake. Incorporation of cis-unsaturated fatty acids in domains harboring the Ca2+ uptake process increases Ca2+ uptake in concert with increased diphenylhexatriene-monitored fluidity. However, when concentrations of such fatty acids in these domains become sufficiently great, the presence of a largely increased number of free carboxyl groups at the membrane surface causes inhibition of Ca2+ uptake.  相似文献   

19.
The effect of a single oral dose of dieldrin (30 mg/kg body weight) on lipid metabolism in rats was studied. Liver lipids content increased and this increase was mainly in the triglyceride fraction. The incorporation of acetate-14C into fatty acids was decreased indicating an inhibition of lipogenesis. Fatty acid oxidation was increased. Palmitate-14C incorporation into the triglyceride fraction was enhanced pointing to an overall increased utilization of fatty acids.  相似文献   

20.
1. 0.5mm-Palmitate stimulated incorporation of [U-14C]glucose into glyceride glycerol and fatty acids in normal fat cells in a manner dependent upon the glucose concentration. 2. In the presence of insulin the incorporation of 5mm-glucose into glyceride fatty acids was increased by concentrations of palmitate, adrenaline and 6-N-2′-O-dibutyryladenosine 3′:5′-cyclic monophosphate up to 0.5mm, 0.5μm and 0.5mm respectively. Higher concentrations of these agents produced progressive decreases in the rate of glucose incorporation into fatty acids. 3. The effects of palmitate and lipolytic agents upon the measured parameters of glucose utilization were similar, suggesting that the effects of lipolytic agents are mediated through increased concentrations of free fatty acids. 4. In fat cells from 24h-starved rats, maximal stimulation of glucose incorporation into fatty acids was achieved with 0.25mm-palmitate. Higher concentrations of palmitate were inhibitory. In fat cells from 72h-starved rats, palmitate only stimulated glucose incorporation into fatty acids at high concentrations of palmitate (1mm and above). 5. The ability of fat cells to incorporate glucose into glyceride glycerol in the presence of palmitate decreased with increasing periods of starvation. 6. It is suggested that low concentrations of free fatty acids stimulate fatty acid synthesis from glucose by increasing the utilization of ATP and cytoplasmic NADH for esterification of these free fatty acids. When esterification of free fatty acids does not keep pace with their provision, inhibition of fatty acid synthesis occurs. Provision of free fatty acids far in excess of the esterification capacity of the cells leads to uncoupling of oxidative phosphorylation and a secondary stimulation of fatty acid synthesis from glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号