首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial conjugation is the process by which a single strand of a conjugative plasmid is transferred from donor to recipient. For F plasmid, TraI, a relaxase or nickase, binds a single plasmid DNA strand at its specific origin of transfer (oriT) binding site, sbi, and cleaves at a site called nic. In vitro studies suggest TraI is recruited to sbi by its accessory proteins, TraY and integration host factor (IHF). TraY and IHF bind conserved oriT sites sbyA and ihfA, respectively, and bend DNA. The resulting conformational changes may propagate to nic, generating the single-stranded region that TraI can bind. Previous deletion studies performed by others showed transfer efficiency of a plasmid containing F oriT decreased progressively as increasingly longer segments, ultimately containing both sbyA and ihfA, were deleted. Here we describe our efforts to more precisely define the role of sbyA and ihfA by examining the effects of multiple base substitutions at sbyA and ihfA on binding and plasmid mobilization. While we observed significant decreases in in vitro DNA-binding affinities, we saw little effect on plasmid mobilization even when sbyA and ihfA variants were combined. In contrast, when half or full helical turns were inserted between the relaxosome protein-binding sites, mobilization was dramatically reduced, in some cases below the detectable limit of the assay. These results are consistent with TraY and IHF recognizing sbyA and ihfA with limited sequence specificity and with relaxosome proteins requiring proper spacing and orientation with respect to each other.  相似文献   

2.
T Abo  E Ohtsubo 《Journal of bacteriology》1995,177(15):4350-4355
We have previously identified three sites, named sbi, ihfA, and sbyA, specifically recognized or bound by the TraI, IHF, and TraY proteins, respectively; these sites are involved in nicking at the origin of transfer, oriT, of plasmid R100. In the region next to these sites, there exists the sbm region, which consists of four sites, sbmA, sbmB, sbmC, and sbmD; this region is specifically bound by the TraM protein, which is required for DNA transfer. Between sbmB and sbmC in this region, there exists another IHF-binding site, ihfB. The region containing all of these sites is located in the proximity of the tra region and is referred to as the oriT region. To determine whether these sites are important for DNA transfer in vivo, we constructed plasmids with various mutations in the oriT region and tested their mobilization in the presence of R100-1, a transfer-proficient mutant of R100. Plasmids with either deletions in the sbi-ihfA-sbyA region or substitution mutations introduced into each specific site in this region were mobilized at a greatly reduced frequency, showing that all of these sites are essential for DNA transfer. By binding to ihfA, IHF, which is known to bend DNA, may be involved in the formation of a complex (which may be called oriT-some) consisting of TraI, IHF, and TraY that efficiently introduces a nick at oriT. Plasmids with either deletions in the sbm-ihfB region or substitution mutations introduced into each specific site in this region were mobilized at a reduced frequency, showing that this region is also important for DNA transfer. By binding to ihfB, IHF may also be involved in the formation of another complex (which may be called the TraM-IHF complex) consisting of TraM and IHF that ensures DNA transfer with a high level of efficiency. Several-base-pair insertions into the positions between sbyA and sbmA affected the frequency of transfer in a manner dependent upon the number of base pairs, indicating that the phasing between sbyA and sbmA is important. This in turn suggests that both oriT-some and the TraM-IHF complex should be in an appropriate position spatially to facilitate DNA transfer.  相似文献   

3.
4.
Conjugative DNA transfer is a highly conserved process for the direct transfer of DNA from a donor to a recipient. The conjugative initiator proteins are key players in the DNA processing reactions that initiate DNA transfer - they introduce a site- and strand-specific break in the DNA backbone via a transesterification that leaves the initiator protein covalently bound on the 5'-end of the cleaved DNA strand. The action of the initiator protein at the origin of transfer (oriT) is governed by auxiliary proteins that alter the architecture of the DNA molecule, allowing binding of the initiator protein. In the F plasmid system, two auxiliary proteins have roles in establishing the relaxosome: the host-encoded IHF and the plasmid-encoded TraY. Together, these proteins direct the loading of TraI which contains the catalytic centre for the transesterification. The F-oriT sequence includes a binding site for another plasmid-encoded protein, TraM, which is required for DNA transfer. Here the impact of TraM protein on the formation and activity of the F plasmid relaxosome has been examined. Purified TraM stimulates the formation of relaxed DNA in a reaction that requires the minimal components of the relaxosome, TraI, TraY and IHF. Unlike TraY and IHF, TraM is not essential for the formation of the relaxosome in vitro and TraM cannot substitute for either TraY or IHF in this process. The TraM binding site sbmC, along with both IHF binding sites, is essential for stimulation of the relaxase reaction. In addition, stimulation of transesterification appears to require the C-terminal domain of TraI suggesting that TraM and TraI may interact through this domain on TraI. Taken together, these results provide additional evidence of a role for TraM as a component of the relaxosome, suggest a previously unknown interaction between TraI and TraM, and allow us to propose a molecular role for the C-terminal domain of TraI.  相似文献   

5.
The traY gene product of plasmid R100 was purified as a hybrid protein, TraY-collagen-beta-galactosidase. The hybrid protein as well as the TraY' protein, which was obtained by collagenolysis of the hybrid protein, specifically binds to an AT-rich 36-base pair sequence (here called sbyA) within the region including the origin of transfer, oriT. The oriT region consists of highly conserved and nonconserved regions among R100-related plasmids, and sbyA was located within the nonconserved region immediately adjacent to the conserved region. This supports the idea that the TraY protein has a role as a component of endonuclease in recognizing its own oriT sequence. Unexpectedly, however, the hybrid protein and the TraY' protein were also found to bind to two different AT-rich sequences (each 24 base pairs in length) in the promoter region preceding the traY gene (here called sbyB and sbyC). This suggests that the TraY protein may have another role in regulating the expression of its own gene. The "TAA(A/T)T" sequence motif observed in these binding sites might constitute a core sequence recognized by the TraY protein. Mg2+ is not required for the specific binding of the TraY protein.  相似文献   

6.
7.
8.
9.
AFLR is a Zn2Cys6-type sequence-specific DNA-binding protein that is thought to be necessary for expression of most of the genes in the aflatoxin pathway gene cluster in Aspergillus parasiticus and A. flavus, and the sterigmatocystin gene cluster in A. nidulans. However, it was not known whether AFLR bound to the promoter regions of each of the genes in the cluster. Recently, A. nidulans AFLR was shown to bind to the motif 5′-TCGN5CGA-3′. In the present study, we examined the binding of AFLR to promoter regions of 11 genes in the A. parasiticus cluster. Based on electrophoretic mobility shift assays, the genes nor1, pksA, adhA, norA, ver1, omtA, ordA, and, vbs, had at least one 5′-TCGN5CGA-3′ binding site within 200 bp of the translation start site, and pksA and ver1 had an additional binding site further upstream. Although the promoter region of avnA lacked this motif, AFLR bound weakly to the sequence 5′-TCGCAGCCCGG-3′ at −110 bp. One region in the promoter of the divergently transcribed genes aflR/aflJ bound weakly to AFLR even though it contained a site with at most only 7 bp of the 5′-TCGN5CGA-3′ motif. This partial site may be recognized by a monomeric form of AFLR. Based on a comparison of 16 possible sites, the preferred binding sequence was 5′-TCGSWNNSCGR-3′.  相似文献   

10.
11.
M M Tsai  Y H Fu    R C Deonier 《Journal of bacteriology》1990,172(8):4603-4609
F plasmid oriT DNA extending from the F kilobase coordinate 66.7 (base pair [bp] 1 on the oriT sequence map) rightward to bp 527 was analyzed for intrinsic bends (by permutation assays) and for binding of integration host factor (IHF) (by gel retardation and DNase footprinting). Intrinsic bending of the 527-bp fragment (bend center approximately at bp 240) was represented as a composite of at least two components located near bp 170 and near bp 260. IHF bound primarily to a site extending from bp 165 to 195 and with lower affinity to a site extending from bp 287 to 319. The intrinsic curvature and sequences to which IHF binds (IHF is known to bend DNA) may play a structural role in oriT function.  相似文献   

12.
We developed an in vitro system to reproduce a site- and strand-specific nicking at the oriT region of plasmid R100. The nicking reaction was dependent on the purified TraY protein and on the lysate, which was prepared from cells overproducing the TraI protein. This supports the idea that the protein products of two genes, traY and traI, constitute an endonuclease that introduces a specific nick in vivo in the oriT region of the conjugative plasmids related to R100. The products were the "complex" DNA molecules with a protein covalently linked with the 5'-end of the nick. The nick was introduced in the strand, which is supposed to be transferred to recipient cells during conjugation, and was located at the site 59 base pairs upstream of the TraY protein binding site, sbyA.  相似文献   

13.
In Escherichia coli, the ATP-bound form of DnaA (ATP–DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP–DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP–DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP–DnaA was fully active in replication initiation and underwent DnaA–ATP hydrolysis. ADP–DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP–DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP–DnaA production, thereby promoting timely initiation. Moreover, we show that IHF–DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP–DnaA and replication initiation in coordination with the cell cycle and growth phase.  相似文献   

14.
15.
The effect of TraY protein on TraI-catalyzed strand scission at the R1 transfer origin (oriT) in vivo was investigated. As expected, the cleavage reaction was not detected in Escherichia coli cells expressing tral and the integration host factor (IHF) in the absence of other transfer proteins. The TraM dependence of strand scission was found to be inversely correlated with the presence of TraY. Thus, the TraY and TraM proteins could each enhance cleaving activity at oriT in the absence of the other. In contrast, no detectable intracellular cleaving activity was exhibited by TraI in an IHF mutant strain despite the additional presence of both TraM and TraY. An essential role for IHF in this reaction in vivo is, therefore, implied. Mobilization experiments employing recombinant R1 oriT constructions and a heterologous conjugative helper plasmid were used to investigate the independent contributions of TraY and TraM to the R1 relaxosome during bacterial conjugation. In accordance with earlier observations, traY was dispensable for mobilization in the presence of traM, but mobilization did not occur in the absence of both traM and traY. Interestingly, although the cleavage assays demonstrate that TraM and TraY independently promote strand scission in vivo, TraM remained essential for mobilization of the R1 origin even in the presence of TraY. These findings suggest that, whereas TraY and TraM function may overlap to a certain extent in the R1 relaxosome, TraM additionally performs a second function that is essential for successful conjugative transmission of plasmid DNA.  相似文献   

16.
Examination of the effect of the himA and himD mutants of E. coli on the maintenance of plasmid R6K has revealed that the gamma origin-containing replicons cannot be established in any of the mutants deficient in the production of E. coli Integration Host Factor (IHF). Contrary, the R6K derivatives containing other origins of the plasmid (alpha and/or beta) replicate in a host lacking functional IHF protein. We show that IHF protein binds specifically to a segment of the replication region which is essential for the activity of all three R6K origins. Mapping the IHF binding sequence with neocarzinostatin showed that the protein protects three segments of the origin: two strong binding sites reside within an AT-rich block, while the third, considerably weaker site is separated from the other two by a cluster of the seven 22 bp direct repeats. These seven repeats have been shown previously to bind the R6K-encoded initiator protein pi. We also demonstrate that the establishment of pi-origin complexes prior to IHF addition prevents the binding of the IHF protein to the gamma origin. The binding sequences of IHF and pi proteins do not overlap, therefore, we propose that the binding of pi protein alters the structure of the DNA and thereby prevents the subsequent binding of IHF protein.  相似文献   

17.
F factor TraY, a ribbon-helix-helix DNA-binding protein, performs two roles in bacterial conjugation. TraY binds the F origin of transfer (oriT) to promote nicking of plasmid DNA prior to conjugative transfer. TraY also binds the P(Y) promoter to up-regulate tra gene expression. The two plasmid regions bound by TraY share limited sequence identity, yet TraY binds them with similar affinities. TraY recognition of the two sites was first probed using in vitro footprinting methods. Hydroxyl radical footprinting at both oriT and P(Y) sites indicated that bound TraY protected the DNA backbone bordering three adjacent DNA subsites. Analytical ultracentrifugation results for TraY:oligonucleotide complexes were consistent with two of these subsites being bound cooperatively, and the third being occupied at higher TraY concentrations. Methylation protection and interference footprinting identified several guanine bases contacted by or proximal to bound TraY, most located within these subsites. TraY affinity for variant oriT sequences with base substitutions at or near these guanine bases suggested that two of the three subsites correspond to high-affinity, cooperatively bound imperfect inverted GA(G/T)A repeats. Altering the spacing or orientation of these sites reduced binding. TraY mutant R73A failed to protect two symmetry-related oriT guanine bases in these repeats from methylation, identifying possible direct TraY-DNA contacts. The third subsite appears to be oriented as an imperfect direct repeat with its adjacent subsite, although base substitutions at this subsite did not reduce binding. Although unusual for ribbon-helix-helix proteins, this binding site arrangement occurs at both F TraY sites, consistent with it being functionally relevant.  相似文献   

18.
We have determined the nucleotide sequence of IS427, an insertion sequence fromAgrobacterium tumefaciens T37. IS427 is 1271 bp long, contains 16-bp imperfect terminal inverted repeats, and generates a 2-bp target sequence duplication. It is present at three sites in the pTiT37 plasmid and is absent from the chromosome ofA. tumefaciens T37. Each of the IS427 elements sequenced was near a site with sequence homology to integration host factor (IHF)-binding sites which suggested that IHF may be involved in IS427 transposition.  相似文献   

19.
Integration Host Factor, IHF, is an E. coli DNA binding protein that imposes a substantial bend on DNA. Previous footprinting studies and bending assays have characterized several recognition sequences in the bacterial and lambda phage genome as unique in the way they are bound by IHF. We have chosen one of the lambda phage sites, H1, for study because it presents a small yet sequence-specific substrate for NMR analysis of the complex. A 19 base-pair duplex, H19, corresponding to the recognition sequence at the H1 site was constructed by isotopically labeling one of the strands with 15N. (1H, 15N) heteronuclear NMR experiments aided in assigning the imino proton resonances of the DNA alone and in complex with IHF. The NMR results are consistent with a mode of binding observed in the recent crystal structure of IHF bound to another of its sites from the lambda phage genome. Additionally, the dramatic change that IHF imposes on the imino proton chemical shifts is indicative of a severe deviation from canonical B-DNA structure. In order to understand the dynamic properties of the DNA in the complex with IHF, the exchange rates of the imino protons with the solvent have been measured for H19 with and without IHF bound. A drastic reduction in exchange is observed for the imino protons in the IHF bound DNA. In the DNA-protein complex, groups of adjacent base-pair exchange at the same rate, and appear to close more slowly than the rate of imino proton exchange with bulk water, since their exchange rate is independent of catalyst concentration. We infer that segments of the double helix as large as 6 bp open in a cooperative process, and remain open much longer than is typical for opening fluctuations in naked duplex DNA. We discuss these results in terms of the specific protein-DNA contacts observed in the crystal structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号