首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Investigation of creatine kinase isoenzyme activity in several cloned myogenic cell lines showed differences in B-type subunit expression. In cultures of myoblasts isolated from rat skeletal muscle by selective cell plating and in the cell lines M58 and M41, the activity of the mononucleated cells was of the BB isoenzyme. After cell fusion, MM, MB, and BB isoenzymes were present; the main activity was of the MM isoenzyme. In the myogenic lines L8 and L84, in cultures of mononucleated cells, creatine kinase activity was absent or barely detectable. The high creatine kinase activity after cell fusion was of the MM type. No BB and MB activity was detected in these lines at any stage of differentiation. The difference in expression of creatine kinase isoenzymes seems not to affect the expression of other parameters of differentiation.  相似文献   

2.
Creatine kinase (CK; EC 2.7.3.2) isoenzymes play prominent roles in energy metabolism. Nuclear genes encode three known CK subunits: cytoplasmic muscle (MCK), cytoplasmic brain (BCK), and mitochondrial (MtCK). We have isolated the gene and cDNA encoding human placental MtCK. By using a dog heart MCK cDNA-derived probe, the 7.0-kb EcoRI fragment from one cross-hybridizing genomic clone was isolated and its complete nucleotide sequence determined. A region of this clone encoded predicted amino acid sequence identical to residues 15-26 of the human heart MtCK NH2-terminal protein sequence. The human placental MtCK cDNA was isolated by hybridization to a genomic fragment encoding this region. The human placental MtCK gene contains 9 exons encoding 416 amino acids, including a 38-amino acid transit peptide, presumably essential for mitochondrial import. Residues 1-14 of human placental MtCK cDNA-derived NH2-terminal sequence differ from the human heart MtCK protein sequence, suggesting that tissue-specific MtCK mRNAs are derived from multiple MtCK genes. RNA blot analysis demonstrated abundant MtCK mRNA in adult human ventricle and skeletal muscle, low amounts in placenta and small intestine, and a dramatic increase during in vitro differentiation induced by serum-deprivation in the non-fusing mouse smooth muscle cell line, BC3H1. These findings demonstrate coordinate regulation of MtCK and cytosolic CK gene expression and support the phosphocreatine shuttle hypothesis.  相似文献   

3.
Cytosolic creatine kinase isoenzymes MM, MB, and BB are assembled from M or B subunits which occur in different relative amounts in specific tissues. The accumulation of mRNAs encoding the M and B subunits was measured during myogenesis in culture. The relative concentration of the two mRNAs was determined by hybridization with a M-CK cDNA probe isolated previously and a B-CK cDNA probe, the cloning and characterization of which is reported here. The B-CK cDNA hybridizes specifically to a 1.6-kb mRNA found in brain and gizzard but not in adult skeletal muscle tissue. The M-CK cDNA hybridizes to a smaller mRNA 1.4-kb long which is specific to skeletal muscle. In culture, the B-CK mRNA is transiently induced and then declines to a low but detectable level.  相似文献   

4.
A full-length cDNA clone that codes for glucose transporter protein was isolated from a rabbit brain cDNA library by using synthetic oligonucleotide probe derived from the sequence of human glucose transporter cDNA. The coding region shared 93.2% nucleotide and 97.0% amino-acid similarities with those of human glucose transporter and 89.4% nucleotide and 97.4% amino-acid similarities with those of rat transporter. Northern blot analysis revealed that glucose transporter mRNA is most abundant in the placenta and that it is also abundant in the brain. The fat tissue, heart, liver, and skeletal muscle of adult rats contained a very small amount of mRNA, while heart, liver, skeletal muscle and kidney of fetal rats contained a very high amount of glucose transporter mRNA. These results suggest that this type of glucose transporter might be closely related with cell proliferation and tissue development.  相似文献   

5.
A bound form of creatine kinase associated with brain particulate was characterized by isoelectric focusing, antigenicity and chromatography and compared to muscle (MM), brain (BB), and heart mitochondrial isoenzymes. On partial purification and isoelectric focusing, the solubilized enzyme has a pl of 7.3, similar to the pl of muscle creatine kinase MM, pl 6.8, but different from brain creatine kinase BB, which precipitates on isoelectric focusing in sucrose or glycerol stabilized media at its calculated pl of 5.6. Gel filtration chromatography of deoxycholate solubilized particulate creatine kinase on Sephadex Gl50 reveals an estimated molecular weight of approximately 80,000 daltons. The brain particulate enzyme is antigenically distinct from both muscle and rat heart mitochondrial creatine kinase isoenzymes but has antigenic similarity with soluble cytoplasmic brain BB. The situation may be analogous to that found with rat heart mitochondria and rat heart cytoplasmic isoenzymes which we have shown to exhibit antigenic similarity even though differences in electrophoretic and amino acid composition have been demonstrated; however, the confident determination that the particulate enzyme is a separate isoenzyme will have to await amino acid analysis.  相似文献   

6.
Creatine kinase isoenzymes from Torpedo californica electric organ, skeletal muscle, and brain were purified and characterized. Torpedo electric organ and skeletal muscle creatine kinase have identical apparent Mr, electrophoretic mobility, and cyanogen bromide fragments. The electrophoretic mobility of the Torpedo creatine kinase was anodal as compared to mammalian MM creatine kinase. No creatine kinase isoenzyme with an electrophoretic mobility similar to mammalian BB creatine kinase was seen in any of the Torpedo tissues examined. Hybridization studies demonstrate the Torpedo electric organ creatine kinase to be composed of identical subunits and capable of producing an enzymatically active heterodimer when combined with canine BB creatine kinase. Creatine kinase from sucrose gradient-purified Torpedo electric organ acetylcholine receptor-rich membranes has an electrophoretic mobility identical with the cytoplasmic isoenzyme and an apparent Mr identical with mammalian MM creatine kinase. Western blot analysis showed Torpedo electric organ skeletal muscle creatine kinase and acetylcholine receptor-enriched membrane creatine kinase reacted with antiserum specific for canine MM creatine kinase. NH2-terminal amino acid sequence determinations show considerable sequence homology between human MM, Torpedo electric organ, chicken MM, and porcine MM creatine kinase. The acetylcholine receptor-associated creatine kinase is, therefore, identical with the cytoplasmic form from the electric organ and is composed of M-subunits.  相似文献   

7.
The regulation of creatine kinase (CK) induction during muscle differentiation was analyzed with MM14 mouse myoblasts. These cells withdraw from the cell cycle and commit to terminal differentiation when fed with mitogen-depleted medium. Myoblasts contained trace amounts of an isozyme of brain CK (designated BB-CK), but differentiation was accompanied by the induction of two other isozymes of muscle and brain CKs (designated MM-CK and MB-CK). Increased CK activity was detectable within 6 h of mitogen removal, 3 h after the first cells committed to differentiation and 6 h before fusion began. By 48 h, MM-CK activity increased more than 400-fold, MB-CK activity increased more than 150-fold, and BB-CK activity increased more than 10-fold. Antibodies prepared against purified mouse MM-CK cross-reacted with muscle and brain CKs (designated M-CK and B-CK, respectively) from a variety of species and were used to demonstrate that the increase in enzymatic activity was paralleled by an increase in the protein itself. CK antibodies were also used to aid in identifying cDNA clones to M-CK. cDNA sequences which corresponded to protein-coding regions cross-hybridized with B-CK mRNA; however, a subclone containing the 3'-nontranslated region was unique and was used to quantitate M-CK mRNA levels during myoblast differentiation. M-CK mRNA was not detectable in myoblasts, but within 5 to 6 h of mitogen withdrawal (6 to 7 h before fusion begins) it accumulated to about 30 molecules per cell. By 24 h, myotubes contained approximately 1,100 molecules per nucleus of M-CK mRNA.  相似文献   

8.
The dimeric rabbit muscle isozyme of creatine kinase (MM) is modified by iodoacetamide to produce the inactive dimer (M'M') and then hybridized with native dimeric brain isozyme (BB). The hybrid enzyme (M'B), as isolated by PAGE, has the same Km for both ATP and creatine but half the specific activity of the brain isozyme (BB). Likewise, the hybrid of the modified brain with the native muscle isozyme (MB') has half the activity of the native muscle enzyme. The M'B, MB' and MB hybrid dimers all have essentially the same electrophoretic properties, and their intrinsic fluorescence and CD spectra in the far-ultraviolet region are very similar to those of the homodimers MM and BB. Similar results were obtained for the hybrid (M"B) containing the muscle enzyme subunit modified at both the thiol group with iodoacetamide and the Trp residue with dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium bromide and the native brain enzyme submit. The above results suggest strongly the independent catalytic function of the subunit of creatine kinase.  相似文献   

9.
cDNA clones for human B creatine kinase were isolated from human brain and placenta libraries. The entire coding and 3' untranslated regions, as well as 23 bp of the 5' untranslated region were sequenced. Complete sequence identity was found among the clones, with the exception of an area of heterogeneity among the 3' untranslated region of the brain and placenta clones. A 77.7% nucleotide sequence identity was found between the coding region of human B creatine kinase and our previously reported human M creatine kinase. In contrast, no homology was found in the 3' untranslated regions. Probes were constructed from the nonconserved 3' untranslated regions of human M and B creatine kinase and were shown to be highly specific. Southern transfers of total genomic DNA derived from human placenta and digested to completion with several restriction enzymes were probed with the MCK and BCK specific probes producing single hybridization bands. These results suggest that creatine kinase M and B are single copy genes in the human genome.  相似文献   

10.
J A Bittl  J DeLayre  J S Ingwall 《Biochemistry》1987,26(19):6083-6090
Brain, heart, and skeletal muscle contain four different creatine kinase isozymes and various concentrations of substrates for the creatine kinase reaction. To identify if the velocity of the creatine kinase reaction under cellular conditions is regulated by enzyme activity and substrate concentrations as predicted by the rate equation, we used 31P NMR and spectrophotometric techniques to measure reaction velocity, enzyme content, isozyme distribution, and concentrations of substrates in brain, heart, and skeletal muscle of living rat under basal or resting conditions. The total tissue activity of creatine kinase in the direction of MgATP synthesis provided an estimate for Vmax (23.4 +/- 2.8, 62.4 +/- 4.5, and 224 +/- 16 mM/s) and exceeded the NMR-determined in vivo reaction velocities by an order of magnitude (4.1 +/- 1.2, 5.1 +/- 1.6, and 18.4 +/- 2.4 mM/s for brain, heart, and skeletal muscle, respectively). The isozyme composition varied among the three tissues: greater than 99% BB for brain; 14% MB, 61% MM, and 25% mitochondrial for heart; and 98% MM and 2% mitochondrial for skeletal muscle. The NMR-determined reaction velocities agreed with predicted values from the creatine kinase rate equation (r2 = 0.98; p less than 0.001). The concentrations of free creatine and cytosolic MgADP, being less than or equal to the dissociation constants for each isozyme, were dominant terms in the creatine kinase rate equation for predicting the in vivo reaction velocity. Thus, we observed that the velocity of the creatine kinase reaction is regulated by total tissue enzyme activity and by the concentrations of creatine and MgADP in a manner that is independent of isozyme distribution.  相似文献   

11.
Creatine kinase (EC 2.7.3.2) isoenzymes play a central role in energy transduction. Nuclear genes encode creatine kinase subunits from muscle, brain, and mitochondria (MtCK). We have recently isolated a cDNA clone encoding MtCK from a human placental library which is expressed in many human tissues (Haas, R. C., Korenfeld, C., Zhang, Z., Perryman, B., Roman, D., and Strauss, A. W. (1989) J. Biol. Chem. 264, 2890-2897). With nontranslated and coding region probes, we demonstrated by RNA blot analysis that the MtCK mRNA in sarcomeric muscle is distinct from this placenta-derived, ubiquitous MtCK cDNA. To compare these different mRNAs, a MtCK cDNA clone was isolated from a human heart library and characterized by complete nucleotide sequence analysis. The chemically determined NH2-terminal 26 residues of purified human heart MtCK protein are identical to those predicted from this sarcomeric MtCK cDNA. The human sarcomeric and ubiquitous cDNAs share 73% nucleotide and 80% predicted amino acid sequence identities, but have less than 66% identity with the cytosolic creatine kinases. The sarcomeric MtCK cDNA encodes a 419-amino acid protein which contains a 39-residue transit peptide essential for mitochondrial import. Primer extension analysis predicts a 348-base pair 5'-nontranslated region. RNA blot analysis demonstrates that heart-derived MtCK is sarcomere-specific, but the ubiquitous MtCK mRNA is expressed in most tissues. Thus, separate nuclear genes encode two closely related, tissue-specific isoenzymes of MtCK. Our finding that multiple genes encode different mitochondrial protein isoenzymes is rare.  相似文献   

12.
13.
cDNA clones for rat muscle-type creatine kinase and glycogen phosphorylase and aldolase A were isolated from a rat muscle cDNA library. An additional clone recognizing an unidentified 2.7-kilobase pair mRNA species was also isolated. These cDNA clones were used as probes to investigate the expression of the corresponding mRNAs during muscle development. Two aldolase A mRNA species were detected, one of 1650 bases expressed in non-muscle tissues, fetal muscle, and adult slow-twitch muscle, the other of 1550 bases was highly specific of adult fast-twitch skeletal muscle differentiation. These aldolase A mRNAs were shown by primer extension to differ by their 5' ends. The accumulation of muscle-type phosphorylase and creatine kinase and muscle-specific aldolase A mRNA accumulation during muscle development seems to be a coordinate process occurring progressively from the 17th day of intrauterine life up to the 30th day after birth. In contrast, the 2.7-kilobase pair RNA species is maximally expressed at the 1st week after birth as is the neonatal form of myosin heavy chain mRNA.  相似文献   

14.
Eddé B  Jakob H  Darmon M 《The EMBO journal》1983,2(9):1473-1478
Two multipotential embryonal carcinoma (EC) cell lines, 1003 and 1009, can be induced to form preferentially neural derivatives in vitro. Synthesis of specific proteins during neural differentiation was followed by two-dimensional gel electrophoresis. The comparison of protein patterns obtained with neural and non-neural derivatives of these EC cell lines indicates that two changes are specific for the neural pathway: (i) the appearance of a new beta-tubulin isoform and (ii) the accumulation of the brain isozyme of creatine phosphokinase already present in small amounts in EC stem cells. These changes were found to take place early in the course of differentiation and to occur even when neurite outgrowth was prevented.  相似文献   

15.
Sarcomeric mitochondrial creatine kinase catalyzes the reversible transfer of a high energy phosphate between ATP and creatine. To study cellular distribution of the kinase, we performed immunocytochemical studies using a peptide antiserum specific for the kinase protein. Our results demonstrated that the sarcomeric mitochondrial creatine kinase gene is abundantly expressed in heart and skeletal muscle, with no protein detected in other tissues examined, including brain, lung, liver, spleen, kidney, bladder, testis, stomach, intestine, and colon. RNA blot study showed that there is no detectable expression of the kinase mRNA in the thymus gland. In heart and skeletal muscle, the kinase protein is expressed in atrial and ventricular cardiomyocytes and a subpopulation of skeletal myofibres. In skeletal muscle, fast myosin heavy chain co-localization studies demonstrated that the sarcomeric mitochondrial creatine kinase is highly expressed in type 1, slow-oxidative and type 2A, fast-oxidative-glycolytic myofibres. We conclude that the kinase gene is abundantly expressed in oxidative myocytes of heart and skeletal muscle and may contribute to oxidative capacity of these cells.  相似文献   

16.
After prolonged ischemia followed by reperfusion of the isolated rat heart, irreversible heart failure is associated with creatine kinase leakage from the cells. The possible implications of MM creatine kinase leakage from myofibrillar compartments on the contractile properties of ventricular muscle have been studied in control versus ischemic hearts. Total creatine kinase activity decreased in ischemic cells while creatine kinase and ATPase activities were not modified in isolated myofibrils. The efficiency of creatine kinase and phosphocreatine in the relaxation of rigor tension in skinned ventricular preparations was not changed after ischemia. Furthermore, neither the pCa/tension relationship nor the rate of tension development following length changes were modified by ischemia. These results show that the contractile properties of myofilaments as well as the functional coupling between myosin ATPase and creatine kinase are preserved in ischemic hearts suffering irreversible contractile failure.  相似文献   

17.
Translational activity of mRNA coding for cytoskeletal brain proteins was used to determine the relative abundance of the mRNA in the brains of newborn and adult mice. mRNA was translated in a cell-free system containing rabbit reticulocyte factors. The products of translation were analyzed by two-dimensional gel electrophoresis and characterized by peptide map analysis. Comparison of the products of translation from newborn and from adult brain mRNA shows a 50% decrease in actin and tubulin from newborn to the adult stage. In contrast, the 70 kd neurofilament protein and glial fibrillary acidic protein show a twofold increase in the adult stage. The heat-shock protein HSP70 increases slightly (30%) whereas the brain isozyme of creatine kinase and the heat-shock protein HSP90 are three times as high in adult subjects as in newborns.  相似文献   

18.
19.
The rat contains at least three homologous cytosolic proteins that bind long chain fatty acids, termed liver (L-), intestinal (I-), and heart (H-) fatty acid binding protein (FABP). I-FABP mRNA is confined to the gastrointestinal tract while L-FABP mRNA is abundantly represented in hepatocytes as well as enterocytes. We have isolated a rat heart FABP cDNA clone and determined the pattern of H-FABP mRNA accumulation in a wide variety of tissues harvested from late fetal, suckling, weaning, and adult rats. RNA blot hybridizations and primer extension analysis disclosed that the distribution of H-FABP mRNA in adult rat tissues is different from that of I- or L-FABP mRNA. H-FABP mRNA is most abundant in adult heart. This mRNA was also present in an adult slow twitch (type I) skeletal muscle (soleus, 63% of the concentration in heart), testes (28%), a fast twitch skeletal muscle (psoas, 17%), brain (10%), kidney (5%), and adrenal gland (5%). H-FABP mRNA was not detected in adult small intestine, colon, spleen, lung, or liver RNA. Distinct patterns of developmental change in H-FABP mRNA accumulation were documented in heart, placenta, brain, kidney, and testes. Myocardial H-FABP mRNA levels rise rapidly during the 48 h prior to and after birth, reaching peak levels by the early weaning period. The postnatal increase in myocardial H-FABP mRNA concentration and its relative distribution in adult fast and slow twitch skeletal muscle are consistent with its previously proposed function in facilitating mitochondrial beta-oxidation of fatty acids. However, the presence of H-FABP mRNA in brain, a tissue which does not normally significantly oxidize fatty acids in late postnatal life, suggests that H-FABP may play a wider role in fatty acid metabolism than previously realized. Mouse-hamster somatic cell hybrids were utilized to map H-FABP. Using stringencies which did not produce cross-hybridization between L-, I-, and H-FABP DNA sequences, we found at least three loci in the mouse genome, each located on different chromosomes, which reacted with our cloned H-FABP cDNA. None of these H-FABP-related loci were linked to the gene which specifies a highly homologous adipocyte-specific protein termed aP2 or to genes encoding two other members of this protein family, cellular retinol binding protein and cellular retinol binding protein II.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Creatine kinase from nurse shark brain and muscle has been purified to apparent homogeneity. In contrast to creatine kinases from most other vertebrate species, the muscle isozyme and the brain isozyme from nurse shark migrate closely in electrophoresis and, unusually, the muscle isozyme is anodal to the brain isozyme. The isoelectric points are 5.3 and 6.2 for the muscle and brain isozymes, respectively. The purified brain preparation also contains a second active protein with pI 6.0. The amino acid content of the muscle isozyme is compared with other isozymes of creatine kinase using the Metzger Difference Index as an estimation of compositional relatedness. All comparisons show a high degree of compositional similarity including arginine kinase from lobster muscle. The muscle isozyme is marginally more resistant to temperature inactivation than the brain isozyme; the muscle protein does not exhibit unusual stability towards high concentrations of urea. Kinetic analysis of the muscle isozyme reveals Michaelis constants of 1.6 mM MgATP, 12 mM creatine, 1.2 mM MgADP and 50 mM creatine phosphate. Dissociation constants for the same substrate from the binary and ternary enzyme-substrate complex do not differ significantly, indicating limited cooperatively in substrate binding. Enzyme activity is inhibited by small planar anions, most severely by nitrate. Shark muscle creatine kinase hybridizes in vitro with rabbit muscle or monkey brain creatine kinase; shark brain isozyme hybridizes with monkey brain or rabbit brain creatine kinase. Shark muscle and shark brain isozymes, under a wide range of conditions, failed to produce a detectable hybrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号