首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetylcholine receptor (AChR) and sodium (Na(+)) channel distributions within the membrane of mature vertebrate skeletal muscle fibers maximize the probability of successful neuromuscular transmission and subsequent action potential propagation. AChRs have been studied intensively as a model for understanding the development and regulation of ion channel distribution within the postsynaptic membrane. Na(+) channel distributions have received less attention, although there is evidence that the temporal accumulation of Na(+) channels at developing neuromuscular junctions (NMJs) may differ between species. Even less is known about the development of extrajunctional Na(+) channel distributions. To further our understanding of Na(+) channel distributions within junctional and extrajunctional membranes, we used a novel voltage-clamp method and fluorescent probes to map Na(+) channels on embryonic chick muscle fibers as they developed in vitro and in vivo. Na(+) current densities on uninnervated myotubes were approximately one-tenth the density found within extrajunctional regions of mature fibers, and showed several-fold variations that could not be explained by a random scattering of single channels. Regions of high current density were not correlated with cellular landmarks such as AChR clusters or myonuclei. Under coculture conditions, AChRs rapidly concentrated at developing synapses, while Na(+) channels did not show a significant increase over the 7 day coculture period. In vivo investigations supported a significant temporal separation between Na(+) channel and AChR aggregation at the developing NMJ. These data suggest that extrajunctional Na(+) channels cluster together in a neuronally independent manner and concentrate at the developing avian NMJ much later than AChRs.  相似文献   

2.
A large patch electrode was used to measure local currents from the cell bodies of Aplysia neurons that were voltage-clamped by a two-microelectrode method. Patch currents recorded at the soma cap, antipodal to the origin of the axon, and whole-cell currents were recorded simultaneously and normalized to membrane capacitance. The patch electrode could be reused and moved to different locations which allowed currents from adjacent patches on a single cell to be compared. The results show that the current density at the soma cap is smaller than the average current density in the cell body for three components of membrane current: the inward Na current (INa), the delayed outward current (Iout), and the transient outward current (IA). Of these three classes of ionic currents, IA is found to reach the highest relative density at the soma cap. Current density varies between adjacent patches on the same cell, suggesting that ion channels occur in clusters. The kinetics of Iout, and on rare occasions IA, were also found to vary between patches. Possible sources of error inherent to this combination of voltage clamp techniques were identified and the maximum amplitudes of the errors estimated. Procedures necessary to reduce errors to acceptable levels are described in an appendix.  相似文献   

3.
Methyl- and ethylguanidine block the endplate current in frog muscle. Both derivatives blocked inward-going endplate currents without affecting outward endplate currents. Repetitive stimulation that evoked several inward endplate currents enhanced the block, which suggests that these agents interact with open endplate channels. The relative conductance vs. potential curve exhibited a transition from a low to a high value near the reversal potential for the endplate current, both in normal and in 50% Na solution. In the latter solution, the reversal potential for endplate current was shifted by a mean value of 16 mV in the direction of hyperpolarization. The results suggest that methyl- and ethylguanidine block open endplate channels in a manner dependent on the direction of current flow rather than on the membrane potential.  相似文献   

4.
We used the loose patch voltage clamp technique and rhodamine-conjugated alpha-bungarotoxin to study the regulation of Na channel (NaCh) and acetylcholine receptor (AChR) distribution on dissociated adult skeletal muscle fibers in culture. The aggregate of AChRs and NaChs normally found in the postsynaptic membrane of these cells gradually fragmented and dispersed from the synaptic region after several days in culture. This dispersal was the result of the collagenase treatment used to dissociate the cells, suggesting that a factor associated with the extracellular matrix was responsible for maintaining the high concentration of AchRs and NaChs at the neuromuscular junction. We tested whether the basal lamina protein agrin, which has been shown to induce the aggregation of AChRs on embryonic myotubes, could similarly influence the distribution of NaChs. By following identified fibers, we found that agrin accelerated both the fragmentation of the endplate AChR cluster into smaller patches as well as the appearance of new AChR clusters away from the endplate. AChR patches which were fragments of the original endplate retained a high density of NaChs, but no new NaCh hotspots were found elsewhere on the fiber, including sites of newly formed AChR clusters. The results are consistent with the hypothesis that extracellular signals regulate the distribution of AChRs and NaChs on skeletal muscle fibers. While agrin probably serves this function for the AChR, it does not appear to play a role in the regulation of the NaCh distribution.  相似文献   

5.
Bao L  Miao ZW  Zhou PA  Jiang Y  Sha YL  Zhang RJ  Tang YC 《FEBS letters》1999,446(2-3):351-354
A 22-mer peptide, identical to the primary sequence of domain I segment 3 (IS3) of rat brain sodium channel I, was synthesized. With the patch clamp cell-attached technique, single channel currents could be recorded from the patches of cultured rat myotube membranes when the patches were held at hyperpolarized potentials and the electrode solution contained NaCl and 1 microM IS3, indicating that IS3 incorporated into the membranes and formed ion channels. The single channel conductances of IS3 channels were distributed heterogeneously, but mainly in the range of 10-25 pS. There was a tendency that the mean open time and open probability of IS3 channels increased and the mean close time decreased with the increasing of hyperpolarized membrane potentials. IS3 channels are highly selective for Na+ and Li+ but not for Cl- and K+, similar to the authentic Na+ channels.  相似文献   

6.
Nuclear patch clamp is an emerging research field that aims to disclose the electrical phenomena underlying macromolecular transport across the nuclear envelope (NE), its properties as an ion barrier and its function as an intracellular calcium store. The authors combined the patch clamp technique with atomic force microscopy (AFM) to investigate the structure—function relationship of NE. In principle, patch clamp currents, recorded from the NE can indicate the activity of the nuclear pore complexes (NPCs) and/or of ion channels in the two biomembranes that compose the NE. However, the role of the NPCs is still unclear because the observed NE current in patch clamp experiments is lower than expected from the known density of the NPCs. Therefore, AFM was applied to link patch clamp currents to structure. The membrane patch was excised from the nuclear envelope and, after electrical evaluation, transferred from the patch pipette to a substrate. We could identify the native nuclear membrane patches with AFM at a lateral and a vertical resolution of 3nm and 0.1nm, respectively. It was shown that complete NE together with NPCs can be excised from the nucleus after their functional identification in patch clamp experiments. However, we also show that membranes of the endoplasmic reticulum can contaminate the tip of the patch pipette during nuclear patch clamp experiments. This possibility must be considered carefully in nuclear patch clamp experiments.  相似文献   

7.
In cardiac ventricular myocytes, Na current is generated mainly by the cardiac NaV1.5 isoform, but the presence of "neuronal" Na channel isoforms in the heart has been demonstrated recently. In this study, we quantified the density and sub-cellular distribution of cardiac and neuronal channel isoforms in rat ventricular myocytes. INa was recorded using the patch clamp technique in control and detubulated myocytes. Detubulation reduced cell capacitance (by approximately 29%) but maximum conductance was not altered (1.94+/-0.15, 14 control vs 1.98+/-0.19 nS/pF, 17 detubulated myocytes). The kinetic properties of INa were similar in both cell types suggesting good voltage control of surface and t-tubule membranes. We calculated Na channel densities assuming the sub-cellular current localization we recently provided (neuronal isoform: approximately 11% of total sarcolemmal current, approximately 3% of cell surface, and approximately 31% of t-tubule current). Single channel conductances were assumed to be 2.2 and 2.5 pS for the cardiac and neuronal isoforms, respectively, after accounting for the use of low Na concentration. We calculated that the density of the cardiac Na channel isoform is relatively constant (in channels/microm2: approximately 11 in total sarcolemma, approximately 13 at the cell surface, approximately 10 at the t-tubules). In contrast, neuronal Na channel isoforms are concentrated at the t-tubules (in channels/microm2: approximately 1 in total sarcolemma, approximately 0.3 at the cell surface, approximately 2.5 at the t-tubules). We conclude that, in contrast to skeletal muscle in which Na channel density is higher at the cell surface than the t-tubules, in ventricular cardiac myocytes the sub-cellular distribution of Na channel density is relatively homogeneous (approximately 13 channels/microm2).  相似文献   

8.
The patch-clamp technique was used to study the properties and the density of conducting K and Na channels in the apical membrane of rat cortical collecting tubule. The predominant K channel observed in cell- attached patches (SK channels) had an outward single-channel conductance (with LiCl in the pipette) of 10 pS. The inward conductance (with KCl in the pipette) was 42 pS. The channel had a high open probability that increased with depolarization. Kinetic analysis indicated the presence of a single open state and two closed states. Increasing K intake by maintaining animals on a high K diet for 12-16 d increased the number of SK channels per patch by threefold (0.7- 2.0/patch) over control levels. In addition, conducting Na-selective channels, which were not observed in control animals, were seen at low density (0.5/patch). These channels had properties similar to those observed when the animals were on a low Na diet, except that the mean open probability (0.84) was higher. In other experiments, the whole- cell patch clamp technique was used to measure Na channel activity (as amiloride-sensitive current, INa) and Na pump activity (as ouabain- sensitive current, Ipump). In animals on a high K diet, INa was greater than in controls but much less than in rats on a low Na diet. Ipump was greater after K loading than in controls or Na-depleted animals. These K diet-dependent effects were not accompanied by a significant increase in plasma aldosterone concentrations. To further investigate the relationship between K channel activity and mineralocorticoids, rats were maintained on a low Na diet to increase endogenous aldosterone secretion. Under these conditions, no increase in SK channel density was observed, although there was a large increase in the number of Na channels (to 2.7/patch). Aldosterone was also administered exogenously through osmotic minipumps. As with the low Na diet, there was no change in the density of conducting SK channels, although Na channel activity was induced. These results suggest that SK channels, Na channels and Na/K pumps are regulated during changes in K intake by factors other than aldosterone.  相似文献   

9.
The biophysical properties and cellular distribution of ion channels largely determine the input/output relationships of electrically excitable cells. A variety of patch pipette voltage clamp techniques are available to characterize ionic currents. However, when used by themselves, such techniques are not well suited to the task of mapping low-density channel distributions. We describe here a new voltage clamp method (the whole cell loose patch (WCLP) method) that combines whole-cell recording through a tight-seal pipette with focal extracellular stimulation through a loose-seal pipette. By moving the stimulation pipette across the cell surface and using a stationary whole-cell pipette to record the evoked patch currents, this method should be suitable for mapping channel distributions, even on large cells possessing low channel densities. When we applied this method to the study of currents in cultured chick myotubes, we found that the cell cable properties and the series resistance of the recording pipette caused significant filtering of the membrane currents, and that the filter characteristics depended in part upon the distance between the stimulating and recording pipettes. We describe here how we determined the filter impulse response for each loose-seal pipette placement and subsequently recovered accurate estimates of patch membrane current through deconvolution.  相似文献   

10.
Properties of an endogenous steady current in rat muscle   总被引:1,自引:1,他引:0       下载免费PDF全文
A vibrating probe was used to study a steady electric current generated by isolated, whole lumbrical muscles of the rat. Spatial mapping showed that current leaves the muscle in the synaptic region and re-enters in the flanking extrajunctional regions. The point of maximum outward current coincided precisely with the endplate region. As the probe was moved radially away from the endplate region, the current declined monotonically, and the results could be fit with a simple model. As the probe was moved axially away from the endplate region, the current declined and became inward over a distance of approximately 0.5 mm. The physiological mechanism by which the current is generated was also studied. alpha-Bungarotoxin and tetrodotoxin had no significant effect on the current, which suggests that acetylcholine channels and gated sodium channels are not involved in the generation of the current. Ouabain produced a slowly developing, partial inhibition of the current, reducing it by approximately 40% over a period of 30-40 min. Carbachol produced a large inward current at the endplate region. After the carbachol action was terminated with alpha-bungarotoxin, an outward current reappeared, and a transient "overshoot" developed. During the overshoot, which lasted approximately 30-40 min, the outward current was approximately doubled. This overshoot was completely abolished by ouabain. The overshoot is interpreted as reflecting the increased activity of electrogenic sodium pumping in the endplate region, caused by the influx of Na ions during carbachol application. Because of the very different actions of ouabain on the normal current and on the overshoot after carbachol application, we concluded that the normal outward current is not produced by electrogenic sodium pumping in the endplate region.  相似文献   

11.
Cell membranes in a tissue are in close contact to each other, embedded in the extracellular matrix. Standard electrophysiological methods are not able to characterize ion channels under these conditions. Here we consider the area of cell adhesion on a solid substrate as a model system. We used HEK 293 cells cultured on fibronectin and studied the activation of Na(V)1.4 sodium channels in the adherent membrane with field-effect transistors in a silicon substrate. Under voltage clamp, we compared the transistor response with the whole-cell current. We observed that the extracellular voltage in the cell-chip contact was proportional to the total membrane current. The relation was calibrated by alternating-current stimulation. We found that Na(+) channels are present in the area of cell adhesion on fibronectin with a functionality and a density that is indistinguishable from the free membrane. The experiment provides a basis for studying selective accumulation and depletion of ion channels in cell adhesion and also for a development of cell-based biosensoric devices and neuroelectronic systems.  相似文献   

12.
Elementary Na+ currents through single cardiac Na+ channels were recorded at 19 degrees C in patch clamp experiments with cultured neonatal rat cardiocytes. The metabolites of the glycolytic pathway, 2,3-diphosphoglycerate and glyceraldehyde phosphate, were identified as a novel class of modulators of Na+ channel activity. In micromolar concentrations (1-10 mumol/liter), their presence at the cytoplasmic membrane face increased the number of sequential openings during depolarization and prolonged the conductive channel state. As found after ensemble averaging, the decay kinetics of reconstructed macroscopic Na+ currents became retarded and slow Na+ inactivation may have been evoked. Both metabolites attenuated the rundown of channel activity that regularly develops after patch excision in the inside-out patch configuration. It is tempting to assume that interference with Na+ inactivation is the mode of action underlying the increase in single-channel activity.  相似文献   

13.
Lee KM  Ye GL  Yung WH  Leung KS  Leung PC 《Life sciences》2001,69(6):721-728
A new in situ model of partially digested growth plate cartilage suitable for patch clamp study of membrane currents of chondrocytes from various differentiation stages was developed. Thin sections of growth plate were enzyme digested to expose intact membranes of chondrocytes previously covered by extracellular matrix. This treatment dramatically increased the success rate of tight-seal formation from virtually 0% up to 40%. Whole-cell patch clamp recording revealed a delayed outward rectifying current as the major macroscopic current in chondrocytes of all differentiation stages. This current was sensitive to tetraethylammonium chloride and reversed polarity at a membrane potential close to the equilibrium potential of K+. Chondrocytes at resting stage expressed a much smaller K+ current than the proliferative and hypertrophic chondrocytes. When the current amplitudes were normalized for the cell membrane area, proliferative cells expressed a significantly higher outward current density.  相似文献   

14.
Optical measurement of conduction in single demyelinated axons   总被引:1,自引:0,他引:1       下载免费PDF全文
Demyelination was initiated in Xenopus sciatic nerves by an intraneural injection of lysolecithin over a 2-3-mm region. During the next week macrophages and Schwann cells removed all remaining damaged myelin by phagocytosis. Proliferating Schwann cells then began to remyelinate the axons, with the first few lamellae appearing 13 d after surgery. Action potentials were recorded optically through the use of a potential-sensitive dye. Signals could be detected both at normal nodes of Ranvier and within demyelinated segments. Before remyelination, conduction through the lesion occurred in only a small fraction of the fibers. However, in these particular cases we could demonstrate continuous (nonsaltatory) conduction at very low velocities over long (greater than one internode) lengths of demyelinated axons. We have previously found through loose patch clamp experiments that the internodal axolemma contains voltage-dependent Na+ channels at a density approximately 4% of that at the nodes. These channels alone, however, are insufficient for successful conduction past the transition point between myelinated and demyelinated regions. Small improvements in the passive cable properties of the axon, adequate for propagation at this site, can be realized through the close apposition of macrophages and Schwann cells. As the initial lamellae of myelin appear, the probability of success at the transition zone increases rapidly, though the conduction velocity through the demyelinated segment is not appreciably changed. A detailed computational model is used to test the relative roles of the internodal Na+ channels and the new extracellular layer. The results suggest a possible mechanism that may contribute to the spontaneous recovery of function often seen in demyelinating disease.  相似文献   

15.
A new voltage-clamp apparatus for the squid axon has been implemented to enable recording of currents through small areas of axon membrane. The performance of this clamp was tested by recording total sodium currents from perfused axons (I total) and sodium currents from small membrane patches (I patch), which were recorded from inside the axon with an L-shaped pipette. The I patch records, although four orders of magnitude smaller than I total, were stable and showed normal kinetics and voltage dependence, and appeared to reflect the activation of a small population of normal sodium channels. The size of the current recorded from the patch was mainly a function of the tip diameter of the L-shaped pipette and of the shunt resistance between inside the pipette and the axoplasm.  相似文献   

16.
We here describe a protocol for fusing vesicles into large structures suitable for patch clamp recording. The method may be used with native membrane vesicles or with liposomes containing reconstituted/purified ion channels. The resulting unilamellar membranes exhibit high channel surface abundance, yielding multiple channels in the average excised patch. The procedure has been used to record voltage-sensitive Na channels from three native membrane preparations (eel electroplax, rat skeletal muscle, squid optic nerve), and from reconstituted protein purified from eel electroplax. Channels treated with batrachotoxin (BTX) displayed characteristic activation voltage dependence, conductances, selectivity, and sensitivity to saxitoxin (STX).  相似文献   

17.
The patch clamp technique, developed in late 1970s, started a new period of experimental cardiac electrophysiology enabling measurement of ionic currents on isolated cardiomyocytes down to the level of single channels. Since that time, the technique has been substantially improved by development of several upgraded modifications providing so far unavailable data (e.g. action potential clamp, dynamic clamp, high-resolution scanning patch clamp), or facilitating the patch clamp technique by increasing its efficiency (planar patch clamp, automated patch clamp). The current review summarizes the leading new patch clamp based techniques used in cardiac cellular electrophysiology, their principles and prominent related papers.  相似文献   

18.
任俊  陈助华 《生理学报》1996,48(3):256-262
用膜片箝技术的细胞贴附式和内面向外式,在机械分离的新生SD大鼠的大脑皮层神经元上,记录到ATP激活的离子通道。此通道的电导为32pS,对Na~+,K~+和Cs~+无选择性通透,而对Cl~-不通透。通道开放时间分布直方图多数需用双指数拟合,少数可用单指数拟合;通道关闭时间分布直方图均需用双指数拟合。通道的平均开放时间和开放概率均不依赖于膜电位;但通道的开放概率随着激动剂ATP浓度的增加而增大。当电极内液无ATP时,无通道电流。六烃季胶和美加明不能阻断此通道。上述结果表明,新生大鼠的大脑皮层神经元胞体可能存在ATP激活的离子通道。  相似文献   

19.
To investigate the mechanism for the delayed activation by voltage of the predominant mechanosensitive (MS) channel in Xenopus oocytes, currents were recorded from on-cell and excised patches of membrane with the patch clamp technique and from intact oocytes with the two-electrode voltage clamp technique. MS channels could be activated by stretch in inside-out, on-cell, and outside-out patch configurations, using pipettes formed of either borosilicate or soft glass. In inside-out patches formed with borosilicate glass pipettes, depolarizing voltage steps activated MS channels in a cooperative manner after delays of seconds. This voltage-dependent activation was not observed for outside-out patches. Voltage-dependent activation was also not observed when the borosilicate pipettes were either replaced with soft glass pipettes or coated with soft glass. When depolarizing voltage steps were applied to the whole oocyte with a two-electrode voltage clamp, currents that could be attributed to MS channels were not observed. Yet the same depolarizing steps activated MS channels in on-cell patches formed with borosilicate pipettes on the same oocyte. These observations suggest that the delayed cooperative activation of MS channels by depolarization is not an intrinsic property of the channels, but requires interaction between the membrane and patch pipette.  相似文献   

20.
Although activation of a sea urchin egg by sperm leads to three phases of membrane conductance increase in the egg, the mechanism by which the sperm causes these conductance changes is not known. We used the loose patch clamp technique to localize the conductance changes in voltage clamped eggs. A patch of the egg's membrane was isolated from the bath by pressing the loose patch clamp pipette against the egg surface. Sperm added to the bath attached to the surface of the egg in a region other than at the isolated membrane patch. During phase 1 of the activation current, no changes of the membrane conductance were detected. At the time of, and subsequent to the onset of phase 2, large currents recorded between the interior of the patch pipette and the bath were attributed to changes of the seal resistance between the surface of the egg and the pipette. A local change of membrane conductance was observed during phase 2 despite the changes of seal resistance. During phase 2, the large amplitude and short duration of the local membrane conductance increase relative to the membrane, conductance increase for the whole egg during phase 2 indicated that the conductance increase occurred over the entire surface of the egg, but not simultaneously. The time when the peak conductance for the membrane patch occurred, relative to the time of onset for phase 2 in the whole egg, depended on the distance, measured in a straight line, between the site of sperm attachment and the tip of the pipette. These data indicate that the localized conductance increase progressed over the surface of the egg from the site of sperm attachment to the opposite pole of the egg. It is proposed that the local conductance increase, the cortical reaction, and the change of seal resistance are all evoked by a common cytoplasmic message that progresses throughout the cytoplasm of the egg from the site of sperm attachment to the opposite pole of the egg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号