首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The further evolution of molecularly imprinted polymer science and technology necessitates the development of robust predictive tools capable of handling the complexity of molecular imprinting systems. A combination of the rapid growth in computer power over the past decade and significant software developments have opened new possibilities for simulating aspects of the complex molecular imprinting process. We present here a survey of the current status of the use of in silico-based approaches to aspects of molecular imprinting. Finally, we highlight areas where ongoing and future efforts should yield information critical to our understanding of the underlying mechanisms sufficient to permit the rational design of molecularly imprinted polymers.  相似文献   

2.
In this work, molecularly imprinted microspheres (MIMs) were synthesized by aqueous microsuspension polymerization using astaxanthin (3,3'-dihydroxy-beta,beta'-carotene-4,4'-dione) as imprinting molecule. The MIMs obtained were subsequently packed into the stainless steel column and the chromatographic characterization of the column was investigated. The effects of pH and composition of the mobile phase on the retention factor (k') were investigated in detail. The mixture of methanol and dichloromethane (DCM) (8:2, v/v) was used as mobile phase A while the mixture of methanol and water (5:5, v/v) as mobile phase B. The separation of astaxanthin and zeaxanthin (3,3'-dihydroxyl-beta-carotene) was obtained when the concentration of mobile phase B was higher than 30% (v/v) due to their strong lipophilicity. The method developed was successfully applied to separate astaxanthin in the saponified samples of the microalga Haematococcus pluvialis and the yeast Phaffia rhodozyma. The recovery of adding 40 mg astaxanthin to 1.0 g microalgal sample was 95.5% with an R.S.D. (n =5) of 5.3%. The results of determination of astaxanthin in the microalga and the yeast were 3.7% (R.S.D (n = 1.5%, n = 9) and 0.041% (R.S.D n= 7.3%, n = 9), respectively.  相似文献   

3.
A computational approach was proposed to study monomer–template interactions in a molecularly imprinted polymer (MIP) in order to gain insight at the molecular level into imprinting polymer selectivity, regarding complex formation between template and monomer at the pre-polymerisation step. This is the most important step in MIP preparation. In the present work, chlorphenamine (CPA), diphenhydramine (DHA) and methacrylic acid (MAA), were chosen as the template, non-template, and monomer, respectively. The attained complexes were optimised, and changes in the interaction energies, atomic charges, IR spectroscopy results, dipole moment, and polarisability were studied. The effects of solvent on template–monomer interactions were also investigated. According to a survey of the literature, this is the first work in which dipole moment and polarisability were used to predict the types of interactions existing in pre-polymerisation complexes. In addition, the density functional tight-binding (DFTB) method, an approximate version of the density functional theory (DFT) method that was extended to cover the London dispersion energy, was used to calculate the interaction energy.  相似文献   

4.
A useful approach was proposed to easily synthesize molecularly imprinted adsorbent for the purification of tylosin from broth. Firstly, by molecular simulation based on density functional theory, methacrylic acid was chosen as a functional monomer by comparing the binding energy. Second, a novel method of polymerization based on precipitation polymerization with added seeds was used in water-mixed solvent for the preparation of water-compatible micron-sized MIP. Its static adsorption capacity for tylosin in aqueous solution was estimated to be 106.5 mg/g with the highest imprinting factor (IF) of 3.6. The selectivity coefficient (α) of tylosin to desmycosin was 3.3. The antibiotic in fermentation broth could be purified by means of molecularly imprinted solid phase extraction (MISPE), which allows MIP to be used for the purification of tylosin from a complex sample.  相似文献   

5.
In this study, a novel method is described for the determination of tramadol in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as the sample clean-up technique combined with high-performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and tramadol as template molecule. The novel imprinted polymer was used as a solid-phase extraction (SPE) sorbent for the extraction of tramadol from human plasma and urine. Various parameters affecting the extraction efficiency of the polymer have been evaluated. The optimal conditions for the MIP cartridges were studied. The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of tramadol. The limit of detection (LOD) and limit of quantification (LOQ) for tramadol in urine samples were 1.2 and 3.5 μg L−1, respectively. These limits for tramadol in plasma samples were 3.0 and 8.5 μg L−1, respectively. The recoveries for plasma and urine samples were higher than 91%.  相似文献   

6.
7.
Macroporous cryogels were prepared and used to deplete abundant proteins. It was accomplished based on the sample heterogeneity rather than any exogenous assistance. Human serum was added in monomer solutions to synthesize molecularly imprinted polymers; therein some abundant proteins were imprinted in the polyacrylamide cryogels. Meanwhile the rare components remained aqueous. Chromatography and electrophoresis showed that albumin, serotransferrin, and most globulins were depleted by columns packed with the molecularly imprinted polymers. After the depletion, lower abundance proteins were revealed by SDS‐PAGE, peptide fingerprint analysis, and identified by MALDI‐TOF‐MS. This is an example that a “per se imprint” protocol enables to gradually dimidiate proteomes, simplify sample complexities, and facilitate further proteome profiling or biomarker discovery.  相似文献   

8.
Work to date shows that structurally distinct chitosans have reacted inefficiently and unpredictably with fluorescein isothiocyanate (FITC) in an acid–methanol solvent that maintains both chitosan and fluorophore solubility. Since isothiocyanate preferentially reacts with neutral amine groups, and chitosan solubility typically depends upon a minimal degree of protonation, we tested the hypothesis that precise derivatization of chitosan with rhodamine isothiocyanate (RITC) can be achieved by controlling the reaction time and the degree of protonation. Addition of 50% v/v methanol reduced the chitosan degree of protonation in acetic acid but not HCl solutions. At various degrees of protonation, chitosan reacted inefficiently with RITC as previously observed with FITC. Nevertheless, precise derivatization was achieved by allowing the reaction to proceed overnight at a given degree of protonation (p < 0.0001, n = 18) and fixed initial fluorophore concentration. A reproducible 2% to 4% fraction of neutral amines reacted with RITC in proportion to the initial fluorophore concentration (p < 0.005). Using our optimized protocol, chitosans with different degree of deacetylation and molecular weight were derivatized to either 1% or 0.5% mol/mol RITC/chitosan-monomer with a precision of 0.1% mol/mol. The average molecular weight of fluorescent RITC-chitosan was similar to the unlabeled parent chitosan. Precise molar derivatization of structurally distinct chitosans with RITC can be achieved by controlling chitosan degree of protonation, initial fluorophore concentration, and reaction time.  相似文献   

9.
This paper describes design of a new cartridge for selective solid phase extraction (SPE) using molecularly imprinted polymers (MIPs). The apparatus which is termed solvent extraction-MISPE (SE-MISPE) cartridge, consisted of a modified conventional micro test tube and has been developed to perform simultaneous forward-extraction of analyte from aqueous sample solution to an organic phase and back-extraction to MIP solid phase. In order to evaluate the performance of the proposed method, extraction of theophylline (THP) from human serum sample was investigated. An appropriate amount of THP-imprinted polymer was placed in the bottom of the micro tube and an organic solvent pipetted onto it and left to swell the polymer completely. A polyethylene frit to secure MIP particles was positioned by two Teflon rings such that it was fixed below the level of the organic layer. Then, aqueous sample solution containing THP was layered over the organic phase and the lid was closed. After completion of extraction, the organic and aqueous phases were removed and the adsorbed analyte was desorbed using a polar organic solvent. In order to reach the highest recovery, the experimental parameters such as the type of organic solvent, pH and ionic strength of aqueous phase, organic to aqueous volume ratio, time of extraction, type and amount of desorbent solvent were optimized. Under the experimental conditions, a plot of HPLC peak areas vs. initial concentrations of THP in the concentration interval of 0.5–30 μg ml−1 showed a good linearity (r = 0.9974). The limit of detection (LOD) and limit of quantification (LOQ) based on three and ten times of the noise of HPLC profile were 0.09 and 0.3 μg ml−1, respectively. The relative standard deviation (RSD) of the proposed method for the extraction and determination of 5 μg THP from 200 μl standard sample solution for 3 replicate measurements was 3.5%. The results showed that by means of the proposed cartridge, THP could significantly separate from the other structurally related compounds such as theobromine (THB) and caffeine (CAF). The added THP could be quantitatively recovered (79–83%) from the serum samples by the proposed procedure, being thus a guarantee of the accuracy of the SE-MISPE procedure. In addition, the loss of capability of the SE-MISPE cartridge was not considerably observed after 10 times loading and elution cycles.  相似文献   

10.
Thin-film myoglobin molecularly imprinted polymers have been fabricated using a micro-contact approach. By initially selecting the cross-linker on the basis of it having a minimal recognition for the template and using this as a starting point for functional monomer selection, we have produced myoglobin imprinted polymers with exceptionally high selectivities.

The affinity of the polymers, for myoglobin, when prepared with a variety of different cross-linkers and no functional monomer was evaluated. Of these, tetraethylene glycol dimethacrylate (TEGDMA) exhibited the lowest affinity for the template species. Methyl methacrylate (MMA) was chosen as the functional monomer as when it was used in conjunction with TEGDMA, it exhibited maximum selectivity for the template compared to polymers made with other functional monomers.

With a MMA to TEGDMA ratio of 1 to 3, the myoglobin molecularly imprinted polymer adsorbed 15.03 ± 0.89 × 10−11 mole/cm2 of template from a 5.68 × 10−7 M myoglobin solution, compared to 2.58 ± 0.02 × 10−11 mole/cm2 for a polymer of similar composition, but formed in the absence of a template. Various washing conditions, using alkaline media to remove the template, were investigated. An extraction solvent comprising 2 wt.% SDS and 0.6 wt.% NaOH used at 80 °C for 30 min was shown to give the highest imprinting factor i.e. 5.83 with 72.82% myoglobin removal.

The saturation kinetics of template binding to the thin-film MIP were examined and found to display a simple two-phase profile typical of non-cooperative binding. A Scatchard binding plot showed the dissociation constant (Kd) for the specific binding phase to be 3.4 × 10−7 M and the binding site capacity to be 7.24 × 10−11 mole/cm2. For the non-specific binding phase, Kd was found to be 1.355 × 10−5 M and the binding site capacity was determined as 9.62 × 10−10 mole/cm2.

Selectivity experiments were carried out in both single protein and binary protein systems all using a total protein concentration of 5.68 × 10−7 M. The molar ratio of adsorbed myoglobin to IgG, HSA and hemoglobin was found to 115.5, 230.9 and 2.5, respectively. While, in binary competition systems, myoglobin selectivity to IgG, HSA and hemoglobin was, respectively, 94.18, 98.21 and 61.09%. Rebinding in natural biological matrices, i.e. human serum or urine, showed the imprinted films to have significantly greater uptake than non-imprinted films. Re-binding in undiluted urine was found to be a facile process, with the imprinting factor, i.e. the ratio of MIP to NIP binding, being determined as 37.4.  相似文献   


11.
A review is presented of recent developments in the use of molecularly imprinted polymers (MIPs) as selective materials for solid-phase extraction. Compared with traditional sorbents, MIPs can not only concentrate but also selectively separate the target analytes from real samples, which is crucial for the quantitatively determination of analytes in complex samples. Consequently, as one of the most effective sorbents, MIPs have been successfully applied to the pretreatment of analytes in foods, drugs, and biological and environmental samples in the past five years.  相似文献   

12.
Calcium oxalate (CaOx) is the most common component of human kidney stones. Heterogeneous nucleation is regarded as the key mechanism in this process. In this study, we have used an imprinted 6-methacrylamidohexanoic acid/divinylbenzene co-polymer as a biomimetic surface to nucleate CaOx crystal formation. The polymer was imprinted with either calcium oxalate monohydrate (COM) or dihydrate (COD) template crystals. These were washed out of the polymer, which was then immersed in various test solutions. The test solutions were an aqueous solution of calcium chloride and sodium oxalate, artificial urine and a sample of real urine. Crystals that formed on the polymer surface were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, atomic absorption spectroscopy and scanning electron microscopy. Results showed that in the aqueous solution the COM-imprinted polymer induced the nucleation of COM. The COD-imprinted polymer induced only trace amounts of COD crystallization, together with larger quantities of COM. In artificial and real urines, COM also specifically precipitated on the COM-imprinted surface. The results show that, at least to some extent, the imprinted polymers direct formation of their morphologically matched crystals. In the case of COD, however, it appears that either rapid hydrate transformation of COD to COM occurs, or the more stable COM polymorph is directly co-precipitated by the polymer. Our results support the hypothesis that heterogeneous nucleation plays a key role in CaOx stone formation and that the imprinted polymer model could provide an additional and superior diagnostic tool for stone researchers to assess stone-risk in urine.Abbreviations COD calcium oxalate dihydrate - COM calcium oxalate monohydrate - COT calcium oxalate trihydrate - dvb divinylbenzene - 6-maaha 6-methylacrylamidohexanoic acid  相似文献   

13.
A phenylalanine (Phe) imprinted polymer was prepared by the wet-phase inversion and sol–gel transition method to endow a copolymer matrix with a large uptake capacity of template molecules and prominent adsorption selectivity at the high concentration of the racemate solution. A copolymer bead prepared by wet-phase inversion was shrunken in a hydrochloric acid solution containing a large amount of template molecules after swelling in a sodium hydroxide solution. Template molecules were effectively implanted in the polymer matrix during shrinking after swelling. The adsorption selectivities of Phe-imprinted copolymer bead were 2.1 and 1.33 at 1 g and 10 g Phe/l racemate solution, respectively, and the Phe uptake capacity reached about 1 g Phe/g dry weight of the copolymer. The adsorption selectivity of the copolymer was retained after five batches of adsorption/desorption in 1 g Phe/l solution composed of 5% D-Phe and 95% L-Phe.  相似文献   

14.
The influence of sampling variables on the concentration of the dopamine metabolites 3-methoxytyramine (3MT), dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) was examined in equine urine. A logarithmic transformation of the data for all horses gave distribution which approximated the normal distributions for each metabolite. The mean urinary concentration of 3 MT in horses was 214 ng/mL and the application of a threshold with a probability of 1 in 10,000 gave an actionable level of 4 microg/mL. Environmental variables were not forensically significant in determining the population distribution. HVA was not found to be a reliable indicator of dopamine or levodopa administration.  相似文献   

15.
A fluorescence-based assay for the determination of lipase activity using rhodamine B as an indicator, and natural substrates such as olive oil, is described. It is based on the use of a rhodamine B–natural substrate emulsion in liquid state, which is advantageous over agar plate assays. This high-throughput method is simple and rapid and can be automated, making it suitable for screening and metagenomics application. Reaction conditions such as pH and temperature can be varied and controlled. Using triolein or olive oil as a natural substrate allows monitoring of lipase activity in reaction conditions that are closer to those used in industrial settings. The described method is sensitive over a wide range of product concentrations and offers good reproducibility.  相似文献   

16.
Malondialdehyde (MDA) is a biomarker for lipid peroxidation, and studies of sensitive and selective analytical methods for it are very important for pathological research. The aim of this work was to develop and validate a novel HPLC method for the quantification of MDA in biological fluids using rhodamine B hydrazide (RBH) as the derivatization reagent. After pretreatment and derivatization in acid medium at 50 °C for 40 min, the RBH-derivatized MDA was separated on a Kromasil C18 column at 25 °C and detected by a fluorescence detector at excitation wavelength of 560 nm and emission wavelength of 580 nm. The results showed linearity in the range of 0.8–1500.0 nM with a detection limit of 0.25 nM (S/N = 3). The recovery of MDA from plasma and urine was 91.50 to 99.20%, with a relative standard deviation range of 1.45 to 3.26%. In comparison to other methods reported for the determination of MDA, the proposed method showed superiority in simplicity, more sensitivity, shorter derivatization time, and less interference. The developed method was applied to quantification of MDA in human biological fluids collected from five volunteers with a concentration range of 24.62–245.00 nM.  相似文献   

17.
A method for the selective detection of creatinine is reported, which is based on the reaction between polymerised hemithioacetal, formed by allyl mercaptan, o-phthalic aldehyde, and primary amine leading to the formation of fluorescent isoindole complex. This method has been demonstrated previously for the detection of creatine using creatine-imprinted molecularly imprinted polymers (MIPs) Since MIPs created using traditional methods were unable to differentiate between creatine and creatinine, a new approach to the rational design of a molecularly imprinted polymer (MIP) selective for creatinine was developed using computer simulation. A virtual library of functional monomers was assigned and screened against the target molecule, creatinine, using molecular modelling software. The monomers giving the highest binding score were further tested using simulated annealing in order to mimic the complexation of the functional monomers with template in the monomer mixture. The result of this simulation gave an optimised MIP composition. The computationally designed polymer demonstrated superior selectivity in comparison to the polymer prepared using traditional approach, a detection limit of 25 μM and good stability. The ‘Bite-and-Switch’ approach combined with molecular imprinting can be used for the design of assays and sensors, selective for amino containing substances.  相似文献   

18.
Investigations of the effect of sample load on peak asymmetry during chromatography on molecularly imprinted polymer prepared by the epitope approach showed that the shape of the peaks for the template Tyr-Pro-Leu-Gly-NH2 and for acetyl-L-tyrosine ethyl ester changed considerably until a split was observed. In contrast, the asymmetry of the peaks corresponding to oxytocin, which possesses the same C-terminus tripeptide as the template and interacts with the imprinted polymer, remained essentially unaltered. The circular dichroism (CD) spectra of these peptides showed significant dependence on peptide concentration, and the dependence was nearly the same for all the tested peptides. The addition of acetic acid influenced the CD spectra of YPLG and oxytocin but had no influence on the spectrum of acetyl-L-tyrosine ethyl ester. The shape differences in the chromatographic peaks seem to be associated with a solvation mechanism rather than with solute-solute complexation in solution. However, the observed differences in peak asymmetry cannot be completely explained by the mechanisms that have been postulated previously. Our results suggest the formation of triple complexes between a solute molecule (or molecules), an already adsorbed solute molecule, and an adjacent region of the polymeric stationary phase. These triple complexes may influence the retention of analytes and contribute to peak asymmetry.  相似文献   

19.
The possibility to assess several functional polymeric materials in parallel in a microchip format could find a wide range of applications in sensing, combinatorial and high-throughput screening. However several factors, inherent to the nature of material polymerisation have limited such development. We here report an innovative fabrication approach for the elaboration of polymer microarrays bearing polymer dots typically 300 microm in diameter fabricated in situ on a glass cover slip via CO(2) laser pulse initiated polymerisation, as well as initial results on the identification of a suitable monomer composition for the molecular imprinting of dansyl-L-phenylalanine as a proof-of-concept example. A combination of methacrylic acid and 2-vinylpyridine showed the largest affinity to dansyl-L-phenylalanine which agreed with the existing literature and the results were further confirmed by HPLC. Finally, a sensor chip bearing both non-imprinted as well as imprinted polymers was also prepared in order to prove the suitability of this fabrication approach for the elaboration of MIP based sensors. The assay consisted in a simple dip-and-read step and the sensing system was able to discriminate between the l and d enantiomers of dansylphenylalanine with an imprinting factor of 1.6.  相似文献   

20.
The influence of the physical properties of incubation medium on the rebinding of template to bupivacaine molecularly imprinted and non-imprinted methacrylic acid–ethylene dimethacrylate co-polymers has been studied. Principal component analysis (PCA) was employed to identify the factors with the greatest influence on binding. While the dielectric constant (D) made a significant contribution to describing the observed binding, the influence of polarity as reflected in the Snyder polarity index (SPI) was also demonstrated to make a significant contribution. The use of solvents containing hydroxyl functionality in particular was observed to exert unique effects on recognition. The variation in solvent influence on binding at constant D motivates more complex analyses when studying MIP–ligand recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号