首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glutaminyl-tRNA synthetase (GlnRS) enzyme, which pairs glutamine with tRNAGln for protein synthesis, evolved by gene duplication in early eukaryotes from a nondiscriminating glutamyl-tRNA synthetase (GluRS) that aminoacylates both tRNAGln and tRNAGlu with glutamate. This ancient GluRS also separately differentiated to exclude tRNAGln as a substrate, and the resulting discriminating GluRS and GlnRS further acquired additional protein domains assisting function in cis (the GlnRS N-terminal Yqey domain) or in trans (the Arc1p protein associating with GluRS). These added domains are absent in contemporary bacterial GlnRS and GluRS. Here, using Saccharomyces cerevisiae enzymes as models, we find that the eukaryote-specific protein domains substantially influence amino acid binding, tRNA binding and aminoacylation efficiency, but they play no role in either specific nucleotide readout or discrimination against noncognate tRNA. Eukaryotic tRNAGln and tRNAGlu recognition determinants are found in equivalent positions and are mutually exclusive to a significant degree, with key nucleotides located adjacent to portions of the protein structure that differentiated during the evolution of archaeal nondiscriminating GluRS to GlnRS. These findings provide important corroboration for the evolutionary model and suggest that the added eukaryotic domains arose in response to distinctive selective pressures associated with the greater complexity of the eukaryotic translational apparatus. We also find that the affinity of GluRS for glutamate is significantly increased when Arc1p is not associated with the enzyme. This is consistent with the lower concentration of intracellular glutamate and the dissociation of the Arc1p:GluRS complex upon the diauxic shift to respiratory conditions.  相似文献   

2.
Discrimination of tRNAGln is an integral function of several bacterial glutamyl-tRNA synthetases (GluRS). The origin of the discrimination is thought to arise from unfavorable interactions between tRNAGln and the anticodon-binding domain of GluRS. From experiments on an anticodon-binding domain truncated Escherichia coli (E. coli) GluRS (catalytic domain) and a chimeric protein, constructed from the catalytic domain of E. coli GluRS and the anticodon-binding domain of E. coli glutaminyl-tRNA synthetase (GlnRS), we show that both proteins discriminate against E. coli tRNAGln. Our results demonstrate that in addition to the anticodon-binding domain, tRNAGln discriminatory elements may be present in the catalytic domain in E. coli GluRS as well.  相似文献   

3.
Glutamyl-queuosine-tRNAAsp synthetase (Glu-Q-RS) is a paralog of glutamyl-tRNA synthetase (GluRS) and is found in more than forty species of proteobacteria, cyanobacteria, and actinobacteria. Glu-Q-RS shows striking structural similarity with N-terminal catalytic domain of GluRS (NGluRS) but it lacks the C-terminal anticodon binding domain (CGluRS). In spite of structural similarities, Glu-Q-RS and NGluRS differ in their functional properties. Glu-Q-RS glutamylates the Q34 nucleotide of the anticodon of tRNAAsp whereas NGluRS constitutes the catalytic domain of GluRS catalyzing the transfer of Glu on the acceptor end of tRNAGlu. Since NGluRS is able to catalyze aminoacylation of only tRNAGlu the glutamylation capacity of tRNAAsp by Glu-Q-RS is surprising. To understand the substrate specificity of Glu-Q-RS we undertook a systemic approach by investigating the biophysical and biochemical properties of the NGluRS (1–301), CGluRS (314–471) and Glu-Q-RS-CGluRS, (1–298 of Glu-Q-RS fused to 314–471 from GluRS). Circular dichroism, fluorescence spectroscopy and differential scanning calorimetry analyses revealed absence of N-terminal domain (1–298 of Glu-Q-RS) and C-terminal domain (314–471 from GluRS) communication in chimera, in contrast to the native full length GluRS. The chimeric Glu-Q-RS is still able to aminoacylate tRNAAsp but has also the capacity to bind tRNAGlu. However the chimeric protein is unable to aminoacylate tRNAGlu probably as a consequence of the lack of domain–domain communication.  相似文献   

4.
Glutamyl-queuosine tRNAAsp synthetase (Glu-Q-RS) from Escherichia coli is a paralog of the catalytic core of glutamyl-tRNA synthetase (GluRS) that catalyzes glutamylation of queuosine in the wobble position of tRNAAsp. Despite important structural similarities, Glu-Q-RS and GluRS diverge strongly by their functional properties. The only feature common to both enzymes consists in the activation of Glu to form Glu-AMP, the intermediate of transfer RNA (tRNA) aminoacylation. However, both enzymes differ by the mechanism of selection of the cognate amino acid and by the mechanism of its activation. Whereas GluRS selects l-Glu and activates it only in the presence of the cognate tRNAGlu, Glu-Q-RS forms Glu-AMP in the absence of tRNA. Moreover, while GluRS transfers the activated Glu to the 3′ accepting end of the cognate tRNAGlu, Glu-Q-RS transfers the activated Glu to Q34 located in the anticodon loop of the noncognate tRNAAsp. In order to gain insight into the structural elements leading to distinct mechanisms of amino acid activation, we solved the three-dimensional structure of Glu-Q-RS complexed to Glu and compared it to the structure of the GluRS·Glu complex. Comparison of the catalytic site of Glu-Q-RS with that of GluRS, combined with binding experiments of amino acids, shows that a restricted number of residues determine distinct catalytic properties of amino acid recognition and activation by the two enzymes. Furthermore, to explore the structural basis of the distinct aminoacylation properties of the two enzymes and to understand why Glu-Q-RS glutamylates only tRNAAsp among the tRNAs possessing queuosine in position 34, we performed a tRNA mutational analysis to search for the elements of tRNAAsp that determine recognition by Glu-Q-RS. The analyses made on tRNAAsp and tRNAAsn show that the presence of a C in position 38 is crucial for glutamylation of Q34. The results are discussed in the context of the evolution and adaptation of the tRNA glutamylation system.  相似文献   

5.
For tRNA-dependent protein biosynthesis, amino acids are first activated by aminoacyl-tRNA synthetases (aaRSs) yielding the reaction intermediates aminoacyl-AMP (aa-AMP). Stable analogues of aa-AMP, such as aminoacyl-sulfamoyl-adenosines, inhibit their cognate aaRSs. Glutamyl-sulfamoyl-adenosine (Glu-AMS) is the best known inhibitor of Escherichia coli glutamyl-tRNA synthetase (GluRS). Thermodynamic parameters of the interactions between Glu-AMS and E. coli GluRS were measured in the presence and in the absence of tRNA by isothermal titration microcalorimetry. A significant entropic contribution for the interactions between Glu-AMS and GluRS in the absence of tRNA or in the presence of the cognate tRNAGlu or of the non-cognate tRNAPhe is indicated by the negative values of –TΔSb, and by the negative value of ΔCp. On the other hand, the large negative enthalpy is the dominant contribution to ΔGb in the absence of tRNA. The affinity of GluRS for Glu-AMS is not altered in the presence of the non-cognate tRNAPhe, but the dissociation constant K d is decreased 50-fold in the presence of tRNAGlu; this result is consistent with molecular dynamics results indicating the presence of an H-bond between Glu-AMS and the 3’-OH oxygen of the 3’-terminal ribose of tRNAGlu in the Glu-AMS•GluRS•tRNAGlu complex. Glu-AMS being a very close structural analogue of Glu-AMP, its weak binding to free GluRS suggests that the unstable Glu-AMP reaction intermediate binds weakly to GluRS; these results could explain why all the known GluRSs evolved to activate glutamate only in the presence of tRNAGlu, the coupling of glutamate activation to its transfer to tRNA preventing unproductive cleavage of ATP.  相似文献   

6.
7.
8.
Accurate aminoacylation of tRNAs by the aminoacyl-tRNA synthetases (aaRSs) plays a critical role in protein translation. However, some of the aaRSs are missing in many microorganisms. Helicobacter pylori does not have a glutaminyl-tRNA synthetase (GlnRS) but has two divergent glutamyl-tRNA synthetases: GluRS1 and GluRS2. Like a canonical GluRS, GluRS1 aminoacylates tRNAGlu1 and tRNAGlu2. In contrast, GluRS2 only misacylates tRNAGln to form Glu-tRNAGln. It is not clear how GluRS2 achieves specific recognition of tRNAGln while rejecting the two H. pylori tRNAGlu isoacceptors. Here, we show that GluRS2 recognizes major identity elements clustered in the tRNAGln acceptor stem. Mutations in the tRNA anticodon or at the discriminator base had little to no impact on enzyme specificity and activity.  相似文献   

9.
The putative zinc-binding domain (pZBD) in Escherichia coli glutamyl-tRNA synthetase (GluRS) is known to correctly position the tRNA acceptor arm and modulate the amino acid-binding site. However, its functional role in other bacterial species is not clear since many bacterial GluRSs lack a zinc-binding motif in the pZBD. From experimental studies on pZBD-swapped E. coli GluRS, with Thermosynechoccus elongatus GluRS, Burkholderia thailandensis GluRS and E. coli glutamyl-queuosine-tRNAAsp synthetase (Glu-Q-RS), we show that E. coli GluRS, containing the zinc-free pZBD of B. thailandensis, is as functional as the zinc-bound wild-type E. coli GluRS, whereas the other constructs, all zinc-bound, show impaired function. A pZBD-tinkered version of E. coli GluRS that still retained Zn-binding capacity, also showed reduced activity. This suggests that zinc is not essential for the pZBD to be functional. From extensive structural and sequence analyses from whole genome database of bacterial GluRS, we further show that in addition to many bacterial GluRS lacking a zinc-binding motif, the pZBD is actually deleted in some bacteria, all containing either glutaminyl-tRNA synthetase (GlnRS) or a second copy of GluRS (GluRS2). Correlation between the absence of pZBD and the occurrence of glutamine amidotransferase CAB (GatCAB) in the genome suggests that the primordial role of the pZBD was to facilitate transamidation of misacylated Glu-tRNAGln via interaction with GatCAB, whereas its role in tRNAGlu interaction may be a consequence of the presence of pZBD.  相似文献   

10.
The molecular basis of the genetic code relies on the specific ligation of amino acids to their cognate tRNA molecules. However, two pathways exist for the formation of Gln-tRNAGln. The evolutionarily older indirect route utilizes a non-discriminating glutamyl-tRNA synthetase (ND-GluRS) that can form both Glu-tRNAGlu and Glu-tRNAGln. The Glu-tRNAGln is then converted to Gln-tRNAGln by an amidotransferase. Since the well-characterized bacterial ND-GluRS enzymes recognize tRNAGlu and tRNAGln with an unrelated α-helical cage domain in contrast to the β-barrel anticodon-binding domain in archaeal and eukaryotic GluRSs, the mode of tRNAGlu/tRNAGln discrimination in archaea and eukaryotes was unknown. Here, we present the crystal structure of the Methanothermobacter thermautotrophicus ND-GluRS, which is the evolutionary predecessor of both the glutaminyl-tRNA synthetase (GlnRS) and the eukaryotic discriminating GluRS. Comparison with the previously solved structure of the Escherichia coli GlnRS-tRNAGln complex reveals the structural determinants responsible for specific tRNAGln recognition by GlnRS compared to promiscuous recognition of both tRNAs by the ND-GluRS. The structure also shows the amino acid recognition pocket of GluRS is more variable than that found in GlnRS. Phylogenetic analysis is used to reconstruct the key events in the evolution from indirect to direct genetic encoding of glutamine.  相似文献   

11.
The malaria parasite Plasmodium falciparum and related organisms possess a relict plastid known as the apicoplast. Apicoplast protein synthesis is a validated drug target in malaria because antibiotics that inhibit translation in prokaryotes also inhibit apicoplast protein synthesis and are sometimes used for malaria prophylaxis or treatment. We identified components of an indirect aminoacylation pathway for Gln-tRNAGln biosynthesis in Plasmodium that we hypothesized would be essential for apicoplast protein synthesis. Here, we report our characterization of the first enzyme in this pathway, the apicoplast glutamyl-tRNA synthetase (GluRS). We expressed the recombinant P. falciparum enzyme in Escherichia coli, showed that it is nondiscriminating because it glutamylates both apicoplast tRNAGlu and tRNAGln, determined its kinetic parameters, and demonstrated its inhibition by a known bacterial GluRS inhibitor. We also localized the Plasmodium berghei ortholog to the apicoplast in blood stage parasites but could not delete the PbGluRS gene. These data show that Gln-tRNAGln biosynthesis in the Plasmodium apicoplast proceeds via an essential indirect aminoacylation pathway that is reminiscent of bacteria and plastids.  相似文献   

12.
13.
14.
15.
Summary Using the pMB9 recombinant plasmid pMY3, which contains a functional gene for the tRNATry mutant Su+7, the EcoRI fragment containing the tRNATry gene is mapped and oriented with respect to the HindIII site in the tetracycline region of pMB9. Complete HpaII and HaeIII maps of the EcoRI fragment are derived. The Su+7 tRNA gene is placed by hybridization to these fragments, and the tRNA gene is oriented by using the restriction sites for HinfI, TaqI, and HpaII in the tRNA gene itself. A tRNAAsp gene is shown to lie adjacent to tRNATry, and is also placed and oriented in the map. The RI fragment itself originates in a locus adjacent to, and transcribed in the same direction as, the ribosomal RNA genes of 80d3.The implications of the structure of the cloned DNA for its previously measured regulatory and tRNA gene activities are discussed. In particular, the effect on the regulation of RNA synthesis is attributable to an E. coli DNA sequence, but cannot be due to the presence of a normal tRNA promoter on the plasmid.Abbreviations MD megadaltons; expressions of the form HpaII:0.075 refer to a fragment generated by the indicated restriction nuclease, having the indicated molecular weight, in MD  相似文献   

16.
17.
The fidelity of protein biosynthesis requires the aminoacylation of tRNA with its cognate amino acid catalyzed by aminoacyl-tRNA synthetase with high levels of accuracy and efficiency. Crucial bases in tRNALeu to aminoacylation or editing functions of leucyl-tRNA synthetase have been extensively studied mainly by in vitro methods. In the present study, we constructed two Saccharomyces cerevisiae tRNALeu knockout strains carrying deletions of the genes for tRNALeu(GAG) and tRNALeu(UAG). Disrupting the single gene encoding tRNALeu(GAG) had no phenotypic consequence when compared to the wild-type strain. While disrupting the three genes for tRNALeu(UAG) had a lethal effect on the yeast strain, indicating that tRNALeu(UAG) decoding capacity could not be compensated by another tRNALeu isoacceptor. Using the triple tRNA knockout strain and a randomly mutated library of tRNALeu(UAG), a selection to identify critical tRNALeu elements was performed. In this way, mutations inducing in vivo decreases of tRNA levels or aminoacylation or editing ability by leucyl-tRNA synthetase were identified. Overall, the data showed that the triple tRNA knockout strain is a suitable tool for in vivo studies and identification of essential nucleotides of the tRNA.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号