首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 742 毫秒
1.
Global nitrogen fixation contributes 413 Tg of reactive nitrogen (Nr) to terrestrial and marine ecosystems annually of which anthropogenic activities are responsible for half, 210 Tg N. The majority of the transformations of anthropogenic Nr are on land (240 Tg N yr−1) within soils and vegetation where reduced Nr contributes most of the input through the use of fertilizer nitrogen in agriculture. Leakages from the use of fertilizer Nr contribute to nitrate (NO3) in drainage waters from agricultural land and emissions of trace Nr compounds to the atmosphere. Emissions, mainly of ammonia (NH3) from land together with combustion related emissions of nitrogen oxides (NOx), contribute 100 Tg N yr−1 to the atmosphere, which are transported between countries and processed within the atmosphere, generating secondary pollutants, including ozone and other photochemical oxidants and aerosols, especially ammonium nitrate (NH4NO3) and ammonium sulfate (NH4)2SO4. Leaching and riverine transport of NO3 contribute 40–70 Tg N yr−1 to coastal waters and the open ocean, which together with the 30 Tg input to oceans from atmospheric deposition combine with marine biological nitrogen fixation (140 Tg N yr−1) to double the ocean processing of Nr. Some of the marine Nr is buried in sediments, the remainder being denitrified back to the atmosphere as N2 or N2O. The marine processing is of a similar magnitude to that in terrestrial soils and vegetation, but has a larger fraction of natural origin. The lifetime of Nr in the atmosphere, with the exception of N2O, is only a few weeks, while in terrestrial ecosystems, with the exception of peatlands (where it can be 102–103 years), the lifetime is a few decades. In the ocean, the lifetime of Nr is less well known but seems to be longer than in terrestrial ecosystems and may represent an important long-term source of N2O that will respond very slowly to control measures on the sources of Nr from which it is produced.  相似文献   

2.
Butterbach-Bahl  K.  Gasche  R.  Willibald  G.  Papen  H. 《Plant and Soil》2002,240(1):117-123
During 4 years continuous measurements of N-trace gas exchange were carried out at the forest floor-atmosphere interface at the Höglwald Forest that is highly affected by atmospheric N-deposition. The measurements included spruce control, spruce limed and beech sites. Based on these field measurements and on intensive laboratory measurements of N2-emissions from the soils of the beech and spruce control sites, a total balance of N-gas emissions was calculated. NO2-deposition was in a range of –1.6 –2.9 kg N ha–1 yr–1 and no huge differences between the different sites could be demonstrated. In contrast to NO2-deposition, NO- and N2O-emissions showed a huge variability among the different sites. NO emissions were highest at the spruce control site (6.4–9.1 kg N ha–1 yr–1), lowest at the beech site (2.3–3.5 kg N ha–1 yr–1) and intermediate at the limed spruce site (3.4–5.4 kg N ha–1 yr–1). With regard to N2O-emissions, the following ranking between the sites was found: beech (1.6–6.6 kg N ha–1 yr–1) >> spruce limed (0.7–4.0 kg N ha–1 yr–1) > spruce control (0.4–3.1 kg N ha–1 yr–1). Average N-trace gas emissions (NO, NO2, N2O) for the years 1994–1997 were 6.8 kg N ha–1 yr–1 at the spruce control site, 3.6 kg N ha–1 yr–1 at the limed spruce site and 4.5 kg N ha–1 yr–1 at the beech site. Considering N2-losses, which were significantly higher at the beech (12.4 kg N ha–1 yr–1) than at the spruce control site (7.2 kg N ha–1 yr–1), the magnitude of total gaseous N losses, i.e. N2-N + NO-N + NO2-N + N2O-N, could be calculated for the first time for a forest ecosystem. Total gaseous N-losses were 14.0 kg N ha–1 yr–1 at the spruce control site and 15.5 kg N ha–1 yr–1 at the beech site, respectively. In view of the huge interannual variability of N-trace gas fluxes and the pronounced site differences in N-gas emissions it is concluded that more research is needed in order to fully understand patterns of microbial N-cycling and N-gas production/emission in forest ecosystems and mechanisms of reactions of forest ecosystems to the ecological stress factor of atmospheric N-input.  相似文献   

3.
Methane (CH4) and nitrous oxide (N2O) dynamics were studied in a boreal Sphagnum fuscum pine bog receiving annually (from 1991 to 1996) 30 or 100 kg NH4NO3-N ha–1. The gas emissions were measured during the last three growing seasons of the experiment. Nitrogen treatment did not affect the CH4 fluxes in the microsites where S. fuscum and S. angustifolium dominated. However, addition of 100 kg NH4NO3-N ha–1 yr–1 increased the CH4 emission from those microsites dominated by S. fuscum. This increase was associated with the increase in coverage of cotton grass (Eriophorum vaginatum) induced by the nitrogen treatment. The differences in the CH4 emissions were not related to the CH4 oxidation and production potentials in the peat profiles. The N2O fluxes were negligible from all microsites. Only minor short-term increases occurred after the nitrogen addition.  相似文献   

4.
Cai  Zucong  Xing  Guangxi  Yan  Xiaoyuan  Xu  Hua  Tsuruta  Haruo  Yagi  Kazuyuki  Minami  Katsuyuki 《Plant and Soil》1997,196(1):7-14
Methane and N2O emissions affected by nitrogen fertilisers were measured simultaneously in rice paddy fields under intermittent irrigation in 1994. Ammonium sulphate and urea were applied at rates of 0 (control), 100 and 300 kg N ha-1. The results showed that CH4 emission, on the average, decreased by 42 and 60% in the ammonium sulphate treatments and 7 and 14% in the urea treatments at rates of 100 and 300 kg N ha-1, respectively, compared to the control. N2O emission increased significantly with the increase in the nitrogen application rate. N2O emission was higher from ammonium sulphate treatments than from the urea treatments at the same application rate. A trade-off effect between CH4 and N2O emission was clearly observed. The N2O flux was very small when the rice paddy plots were flooded, but peaked at the beginning of the disappearance of floodwater. In contrast, the CH4 flux peaked during flooding and was significantly depressed by mid-season aeration (MSA). The results suggest that it is important to evaluate the integrative effects of water management and fertiliser application for mitigating greenhouse gas emissions in order to attenuate the greenhouse effect contributed by rice paddy fields.  相似文献   

5.
This study estimated the potential emissions of greenhouse gases (GHG) from bioenergy ecosystems with a biogeochemical model AgTEM, assuming maize (Zea mays L.), switchgrass (Panicum virgatum L.), and Miscanthus (Miscanthus × giganteus) will be grown on the current maize‐producing areas in the conterminous United States. We found that the maize ecosystem acts as a mild net carbon source while cellulosic ecosystems (i.e., switchgrass and Miscanthus) act as mild sinks. Nitrogen fertilizer use is an important factor affecting biomass production and N2O emissions, especially in the maize ecosystem. To maintain high biomass productivity, the maize ecosystem emits much more GHG, including CO2 and N2O, than switchgrass and Miscanthus ecosystems, when high‐rate nitrogen fertilizers are applied. For maize, the global warming potential (GWP) amounts to 1–2 Mg CO2eq ha?1 yr?1, with a dominant contribution of over 90% from N2O emissions. Cellulosic crops contribute to the GWP of less than 0.3 Mg CO2eq ha?1 yr?1. Among all three bioenergy crops, Miscanthus is the most biofuel productive and the least GHG intensive at a given cropland. Regional model simulations suggested that substituting Miscanthus for maize to produce biofuel could potentially save land and reduce GHG emissions.  相似文献   

6.
Mosier  Arvin R 《Plant and Soil》2001,228(1):17-27
Crop and livestock agricultural production systems are important contributors to local, regional and global budgets of NH3, NOx (NO + NO2) and N2O. Emissions of NH3 and NOx (which are biologically and chemically active) into the atmosphere serve to redistribute fixed N to local and regional aquatic and terrestrial ecosystems that may otherwise be disconnected from the sources of the N gases. The emissions of NOx also contribute to local elevated ozone concentrations while N2O emissions contribute to global greenhouse gas accumulation and to stratospheric ozone depletion.Ammonia is the major gaseous base in the atmosphere and serves to neutralize about 30% of the hydrogen ions in the atmosphere. Fifty to 75% of the 55 Tg N yr–1 NH3 from terrestrial systems is emitted from animal and crop-based agriculture from animal excreta and synthetic fertilizer application. About half of the 50 Tg N yr–1 of NOx emitted from the earth surface annually arises from fossil fuel combustion and the remainder from biomass burning and emissions from soil. The NOx emitted, principally as nitric oxide (NO), reacts rapidly in the atmosphere and in a complex cycle with light, ozone and hydrocarbons, and produces nitric acid and particulate nitrate. These materials can interact with plants and the soil locally or be transported form the site and interact with atmospheric particulate to form aerosols. These salts and aerosols return to fertilize terrestrial and aquatic systems in wet and dry deposition. A small fraction of this N may be biologically converted to N2O. About 5% of the total atmospheric greenhouse effect is attributed to N2O from which 70% of the annual global anthropogenic emissions come from animal and crop production.The coupling of increased population with a move of a large sector of the world population to diets that require more energy and N input, will lead to continued increases in anthropogenic input into the global N cycle. This scenario suggests that emissions of NH3, NOx and N2O from agricultural systems will continue to increase and impact global terrestrial and aquatic systems, even those far removed from agricultural production, to an ever growing extent, unless N resources are used more efficiently or food consumption trends change.  相似文献   

7.
Drainage has turned peatlands from a carbon sink into one of the world's largest greenhouse gas (GHG) sources from cultivated soils. We analyzed a unique data set (12 peatlands, 48 sites and 122 annual budgets) of mainly unpublished GHG emissions from grasslands on bog and fen peat as well as other soils rich in soil organic carbon (SOC) in Germany. Emissions and environmental variables were measured with identical methods. Site‐averaged GHG budgets were surprisingly variable (29.2 ± 17.4 t CO2‐eq. ha?1 yr?1) and partially higher than all published data and the IPCC default emission factors for GHG inventories. Generally, CO2 (27.7 ± 17.3 t CO2 ha?1 yr?1) dominated the GHG budget. Nitrous oxide (2.3 ± 2.4 kg N2O‐N ha?1 yr?1) and methane emissions (30.8 ± 69.8 kg CH4‐C ha?1 yr?1) were lower than expected except for CH4 emissions from nutrient‐poor acidic sites. At single peatlands, CO2 emissions clearly increased with deeper mean water table depth (WTD), but there was no general dependency of CO2 on WTD for the complete data set. Thus, regionalization of CO2 emissions by WTD only will remain uncertain. WTD dynamics explained some of the differences between peatlands as sites which became very dry during summer showed lower emissions. We introduced the aerated nitrogen stock (Nair) as a variable combining soil nitrogen stocks with WTD. CO2 increased with Nair across peatlands. Soils with comparatively low SOC concentrations showed as high CO2 emissions as true peat soils because Nair was similar. N2O emissions were controlled by the WTD dynamics and the nitrogen content of the topsoil. CH4 emissions can be well described by WTD and ponding duration during summer. Our results can help both to improve GHG emission reporting and to prioritize and plan emission reduction measures for peat and similar soils at different scales.  相似文献   

8.
Oilseed rape is one of the leading feedstocks for biofuel production in Europe. The climate change mitigation effect of rape methyl ester (RME) is particularly challenged by the greenhouse gas (GHG) emissions during crop production, mainly as nitrous oxide (N2O) from soils. Oilseed rape requires high nitrogen fertilization and crop residues are rich in nitrogen, both potentially causing enhanced N2O emissions. However, GHG emissions of oilseed rape production are often estimated using emission factors that account for crop‐type specifics only with respect to crop residues. This meta‐analysis therefore aimed to assess annual N2O emissions from winter oilseed rape, to compare them to those of cereals and to explore the underlying reasons for differences. For the identification of the most important factors, linear mixed effects models were fitted with 43 N2O emission data points deriving from 12 different field sites. N2O emissions increased exponentially with N‐fertilization rates, but interyear and site‐specific variability were high and climate variables or soil parameters did not improve the prediction model. Annual N2O emissions from winter oilseed rape were 22% higher than those from winter cereals fertilized at the same rate. At a common fertilization rate of 200 kg N ha?1 yr?1, the mean fraction of fertilizer N that was lost as N2O‐N was 1.27% for oilseed rape compared to 1.04% for cereals. The risk of high yield‐scaled N2O emissions increased after a critical N surplus of about 80 kg N ha?1 yr?1. The difference in N2O emissions between oilseed rape and cereal cultivation was especially high after harvest due to the high N contents in oilseed rape's crop residues. However, annual N2O emissions of winter oilseed rape were still lower than predicted by the Stehfest and Bouwman model. Hence, the assignment of oilseed rape to the crop‐type classes of cereals or other crops should be reconsidered.  相似文献   

9.
Row‐crop agriculture is a major source of nitrous oxide (N2O) globally, and results from recent field experiments suggest that significant decreases in N2O emissions may be possible by decreasing nitrogen (N) fertilizer inputs without affecting economic return from grain yield. We tested this hypothesis on five commercially farmed fields in Michigan, USA planted with corn in 2007 and 2008. Six rates of N fertilizer (0–225 kg N ha?1) were broadcast and incorporated before planting, as per local practice. Across all sites and years, increases in N2O flux were best described by a nonlinear, exponentially increasing response to increasing N rate. N2O emission factors per unit of N applied ranged from 0.6% to 1.5% and increased with increasing N application across all sites and years, especially at N rates above those required for maximum crop yield. At the two N fertilizer rates above those recommended for maximum economic return (135 kg N ha?1), average N2O fluxes were 43% (18 g N2O–N ha?1 day?1) and 115% (26 g N2O–N ha?1 day?1) higher than were fluxes at the recommended rate, respectively. The maximum return to nitrogen rate of 154 kg N ha?1 yielded an average 8.3 Mg grain ha?1. Our study shows the potential to lower agricultural N2O fluxes within a range of N fertilization that does not affect economic return from grain yield.  相似文献   

10.
Estimates of global riverine nitrous oxide (N2O) emissions contain great uncertainty. We conducted a meta‐analysis incorporating 169 observations from published literature to estimate global riverine N2O emission rates and emission factors. Riverine N2O flux was significantly correlated with NH4, NO3 and DIN (NH4 + NO3) concentrations, loads and yields. The emission factors EF(a) (i.e., the ratio of N2O emission rate and DIN load) and EF(b) (i.e., the ratio of N2O and DIN concentrations) values were comparable and showed negative correlations with nitrogen concentration, load and yield and water discharge, but positive correlations with the dissolved organic carbon : DIN ratio. After individually evaluating 82 potential regression models based on EF(a) or EF(b) for global, temperate zone and subtropical zone datasets, a power function of DIN yield multiplied by watershed area was determined to provide the best fit between modeled and observed riverine N2O emission rates (EF(a): R2 = 0.92 for both global and climatic zone models, n = 70; EF(b): R2 = 0.91 for global model and R2 = 0.90 for climatic zone models, n = 70). Using recent estimates of DIN loads for 6400 rivers, models estimated global riverine N2O emission rates of 29.6–35.3 (mean = 32.2) Gg N2O–N yr−1 and emission factors of 0.16–0.19% (mean = 0.17%). Global riverine N2O emission rates are forecasted to increase by 35%, 25%, 18% and 3% in 2050 compared to the 2000s under the Millennium Ecosystem Assessment's Global Orchestration, Order from Strength, Technogarden, and Adapting Mosaic scenarios, respectively. Previous studies may overestimate global riverine N2O emission rates (300–2100 Gg N2O–N yr−1) because they ignore declining emission factor values with increasing nitrogen levels and channel size, as well as neglect differences in emission factors corresponding to different nitrogen forms. Riverine N2O emission estimates will be further enhanced through refining emission factor estimates, extending measurements longitudinally along entire river networks and improving estimates of global riverine nitrogen loads.  相似文献   

11.
The long‐term effects of conservation management practices on greenhouse gas fluxes from tropical/subtropical croplands remain to be uncertain. Using both manual and automatic sampling chambers, we measured N2O and CH4 fluxes at a long‐term experimental site (1968–present) in Queensland, Australia from 2006 to 2009. Annual net greenhouse gas fluxes (NGGF) were calculated from the 3‐year mean N2O and CH4 fluxes and the long‐term soil organic carbon changes. N2O emissions exhibited clear daily, seasonal and interannual variations, highlighting the importance of whole‐year measurement over multiple years for obtaining temporally representative annual emissions. Averaged over 3 years, annual N2O emissions from the unfertilized and fertilized soils (90 kg N ha?1 yr?1 as urea) amounted to 138 and 902 g N ha?1, respectively. The average annual N2O emissions from the fertilized soil were 388 g N ha?1 lower under no‐till (NT) than under conventional tillage (CT) and 259 g N ha?1 higher under stubble retention (SR) than under stubble burning (SB). Annual N2O emissions from the unfertilized soil were similar between the contrasting tillage and stubble management practices. The average emission factors of fertilizer N were 0.91%, 1.20%, 0.52% and 0.77% for the CT‐SB, CT‐SR, NT‐SB and NT‐SR treatments, respectively. Annual CH4 fluxes from the soil were very small (?200–300 g CH4 ha?1 yr?1) with no significant difference between treatments. The NGGF were 277–350 kg CO2‐e ha?1 yr?1 for the unfertilized treatments and 401–710 kg CO2‐e ha?1 yr?1 for the fertilized treatments. Among the fertilized treatments, N2O emissions accounted for 52–97% of NGGF and NT‐SR resulted in the lowest NGGF (401 kg CO2‐e ha?1 yr?1 or 140 kg CO2‐e t?1 grain). Therefore, NT‐SR with improved N fertilizer management practices was considered the most promising management regime for simultaneously achieving maximal yield and minimal NGGF.  相似文献   

12.
Nitrous oxide emissions from a cropped soil in a semi-arid climate   总被引:5,自引:0,他引:5  
Understanding nitrous oxide (N2O) emissions from agricultural soils in semi‐arid regions is required to better understand global terrestrial N2O losses. Nitrous oxide emissions were measured from a rain‐fed, cropped soil in a semi‐arid region of south‐western Australia for one year on a sub‐daily basis. The site included N‐fertilized (100 kg N ha?1 yr?1) and nonfertilized plots. Emissions were measured using soil chambers connected to a fully automated system that measured N2O using gas chromatography. Daily N2O emissions were low (?1.8 to 7.3 g N2O‐N ha?1 day?1) and culminated in an annual loss of 0.11 kg N2O‐N ha?1 from N‐fertilized soil and 0.09 kg N2O‐N ha?1 from nonfertilized soil. Over half (55%) the annual N2O emission occurred from both N treatments when the soil was fallow, following a series of summer rainfall events. At this time of the year, conditions were conducive for soil microbial N2O production: elevated soil water content, available N, soil temperatures generally >25 °C and no active plant growth. The proportion of N fertilizer emitted as N2O in 1 year, after correction for the ‘background’ emission (no N fertilizer applied), was 0.02%. The emission factor reported in this study was 60 times lower than the IPCC default value for the application of synthetic fertilizers to land (1.25%), suggesting that the default may not be suitable for cropped soils in semi‐arid regions. Applying N fertilizer did not significantly increase the annual N2O emission, demonstrating that a proportion of N2O emitted from agricultural soils may not be directly derived from the application of N fertilizer. ‘Background’ emissions, resulting from other agricultural practices, need to be accounted for if we are to fully assess the impact of agriculture in semi‐arid regions on global terrestrial N2O emissions.  相似文献   

13.
目前,高寒草甸对全球温室效应的贡献仍具有不确定性,而随着N沉降的增加,该系统温室体气排放也必将发生变化。为揭示高寒草甸对N沉降的响应机制,探讨其对全球变化的反馈作用,利用人工添加氮素的方法,于2014年生长季(6-9月)在那曲地区那曲县设置不同水平N添加梯度(0、7、20kg hm~(-2)a~(-1)和40 kg hm~(-2)a~(-1)),模拟氮沉降增加对藏北高寒草甸温室气体排放的影响。经过1a的研究结果表明:1)施氮显著促进了CO_2排放但对CH_4的吸收和N_2O的排放无显著影响。总体而言,添加氮素明显增加了温室气体排放总量,其中N2O处理下高寒草甸温室气体排放总量最高。2)回归分析结果表明,CO_2与NPP(总生物量)和TOC(土壤有机碳)线性相关(P0.05),而与TN(总氮)、NH_4~+-N和NO_3~--N均无显著相关关系(P0.05),CH_4与TN/NPP/TOC/NH_4~+-N/NO_3~--N均不相关(P0.05),N_2O与NPP/TOC/NO_3~--N均显著线性相关(P0.05),而与TN/NH_4~+-N不相关。综合初步研究结果,未来氮沉降增加条件下,藏北高寒草甸温室气体排放通量将有可能明显增加,从而对气候变化产生重要的反馈作用。  相似文献   

14.
Agricultural activities have greatly altered the global nitrogen (N) cycle and produced nitrogenous gases of environmental significance. More than half of all chemical N fertilizer produced globally is used in crop production in East, Southeast and South Asia, where rice is central to nutrition. Emissions of nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) from croplands in this region were estimated by considering background emission and emissions resulting from N added to croplands, including chemical N, animal manure, biologically fixed N and N in crop residues returned to fields. Background emission fluxes of N2O and NO from croplands were estimated to be 1.22 and 0.57 kg N ha?1 yr?1, respectively. Separate fertilizer‐induced emission factors were estimated for upland fields and rice fields. Total N2O emission from croplands in the study region was estimated to be 1.19 Tg N yr?1, with 43% contributed by background emissions. The average fertilizer‐induced N2O emission, however, accounts for only 0.93% of the applied N, which is less than the default IPCC value of 1.25%, because of the low emission factor from paddy fields. Total NO emission was 591 Gg N yr?1 in the study region, with 40% from background emissions. The average fertilizer‐induced NO emission factor was 0.48%. Total NH3 emission was estimated to be 11.8 Tg N yr?1. The use of urea and ammonium bicarbonate and the cultivation of rice led to a high average NH3 loss rate from chemical N fertilizer in the study region. Emissions were displayed at a 0.5° × 0.5° resolution with the use of a global landuse database.  相似文献   

15.
Soils are among the important sources of atmospheric nitric oxide (NO) and nitrous oxide (N2O), acting as a critical role in atmospheric chemistry. Updated data derived from 114 peer‐reviewed publications with 520 field measurements were synthesized using meta‐analysis procedure to examine the N fertilizer‐induced soil NO and the combined NO+N2O emissions across global soils. Besides factors identified in earlier reviews, additional factors responsible for NO fluxes were fertilizer type, soil C/N ratio, crop residue incorporation, tillage, atmospheric carbon dioxide concentration, drought and biomass burning. When averaged across all measurements, soil NO‐N fluxes were estimated to be 4.06 kg ha?1 yr?1, with the greatest (9.75 kg ha?1 yr?1) in vegetable croplands and the lowest (0.11 kg ha?1 yr?1) in rice paddies. Soil NO emissions were more enhanced by synthetic N fertilizer (+38%), relative to organic (+20%) or mixed N (+18%) sources. Compared with synthetic N fertilizer alone, synthetic N fertilizer combined with nitrification inhibitors substantially reduced soil NO emissions by 81%. The global mean direct emission factors of N fertilizer for NO (EFNO) and combined NO+N2O (EFc) were estimated to be 1.16% and 2.58%, with 95% confidence intervals of 0.71–1.61% and 1.81–3.35%, respectively. Forests had the greatest EFNO (2.39%). Within the croplands, the EFNO (1.71%) and EFc (4.13%) were the greatest in vegetable cropping fields. Among different chemical N fertilizer varieties, ammonium nitrate had the greatest EFNO (2.93%) and EFc (5.97%). Some options such as organic instead of synthetic N fertilizer, decreasing N fertilizer input rate, nitrification inhibitor and low irrigation frequency could be adopted to mitigate soil NO emissions. More field measurements over multiyears are highly needed to minimize the estimate uncertainties and mitigate soil NO emissions, particularly in forests and vegetable croplands.  相似文献   

16.
Willow coppice, energy maize and Miscanthus were evaluated regarding their soil‐derived trace gas emission potential involving a nonfertilized and a crop‐adapted slow‐release nitrogen (N) fertilizer scheme. The N application rate was 80 kg N ha?1 yr?1 for the perennial crops and 240 kg N ha?1 yr?1 for the annual maize. A replicated field experiment was conducted with 1‐year measurements of soil fluxes of CH4, CO2 and N2O in weekly intervals using static chambers. The measurements revealed a clear seasonal trend in soil CO2 emissions, with highest emissions being found for the N‐fertilized Miscanthus plots (annual mean: 50 mg C m?² h?1). Significant differences between the cropping systems were found in soil N2O emissions due to their dependency on amount and timing of N fertilization. N‐fertilized maize plots had highest N2O emissions by far, which accumulated to 3.6 kg N2O ha?1 yr?1. The contribution of CH4 fluxes to the total soil greenhouse gas subsumption was very small compared with N2O and CO2. CH4 fluxes were mostly negative indicating that the investigated soils mainly acted as weak sinks for atmospheric CH4. To identify the system providing the best ratio of yield to soil N2O emissions, a subsumption relative to biomass yields was calculated. N‐fertilized maize caused the highest soil N2O emissions relative to dry matter yields. Moreover, unfertilized maize had higher relative soil N2O emissions than unfertilized Miscanthus and willow. These results favour perennial crops for bioenergy production, as they are able to provide high yields with low N2O emissions in the field.  相似文献   

17.
Intensive dairy farming systems are a large source of emission of the greenhouse gas nitrous oxide (N2O), because of high nitrogen (N) application rates to grasslands and silage maize fields. The objective of this study was to compare measured N2O emissions from two different soils to default N2O emission factors, and to look at alternative emission factors based on (i) the N uptake in the crop and (ii) the N surplus of the system, i.e., N applied minus N uptake by the crop. Twelve N fertilization regimes were implemented on a sandy soil (typic endoaquoll) and a clay soil (typic endoaquept) in the Netherlands, and N2O emissions were measured throughout the growing season. Highest cumulative fluxes of 1.92 and 6.81 kg N2O-N ha–1 for the sandy soil and clay soil were measured at the highest slurry application rate of 250 kg N ha–1. Background emissions from unfertilized soils were 0.14 and 1.52 kg N2O-N ha–1 for the sandy soil and the clay soil, respectively. Emission factors for the sandy soil averaged 0.08, 0.51 and 0.26% of the N applied via fertilizer, slurry, and combinations of both. For the clay soil, these numbers were 1.18, 1.21 and 1.69%, respectively. Surplus N was linearly related to N2O emission for both the sandy soil (R2=0.60) and the clay soil (R2=0.40), indicating a possible alternative emission factor. We concluded that, in our study, N2O emission was not linearly related to N application rates, and varied with type and application rate of fertilizer. Finally, the relatively high emission from the clay soil indicates that background emissions might have to be taken into account in N2O budgets.  相似文献   

18.
The current Intergovernmental Panel on Climate Change (IPCC) default methodology (tier 1) for calculating nitrous oxide (N2O) emissions from nitrogen applied to agricultural soils takes no account of either crop type or climatic conditions. As a result, the methodology omits factors that are crucial in determining current emissions, and has no mechanism to assess the potential impact of future climate and land‐use change. Scotland is used as a case study to illustrate the development of a new methodology, which retains the simple structure of the IPCC tier 1 methodology, but incorporates crop‐ and climate‐dependent emission factors (EFs). It also includes a factor to account for the effect of soil compaction because of trampling by grazing animals. These factors are based on recent field studies in Scotland and elsewhere in the UK. Under current conditions, the new methodology produces significantly higher estimates of annual N2O emissions than the IPCC default methodology, almost entirely because of the increased contribution of grazed pasture. Total emissions from applied fertilizer and N deposited by grazing animals are estimated at 10 662 t N2O‐N yr?1 using the newly derived EFs, as opposed to 6 796 t N2O‐N yr?1 using the IPCC default EFs. On a spatial basis, emission levels are closer to those calculated using field observations and detailed soil modelling than to estimates made using the IPCC default methodology. This can be illustrated by parts of the western Ayrshire basin, which have previously been calculated to emit 8–9 kg N2O‐N ha?1 yr?1 and are estimated here as 6.25–8.75 kg N2O‐N ha?1 yr?1, while the IPCC default methodology gives a maximum emission level of only 3.75 kg N2O‐N ha?1 yr?1 for the whole area. The new methodology is also applied in conjunction with scenarios for future climate‐ and land‐use patterns, to assess how these emissions may change in the future. The results suggest that by 2080, Scottish N2O emissions may increase by up to 14%, depending on the climate scenario, if fertilizer and land management practices remain unchanged. Reductions in agricultural land use, however, have the potential to mitigate these increases and, depending on the replacement land use, may even reduce emissions to below current levels.  相似文献   

19.
A short rotation coppice (SRC) with poplar was established in a randomised fertilisation experiment on sandy loam soil in Potsdam (Northeast Germany). The main objective of this study was to assess if negative environmental effects as nitrogen leaching and greenhouse gas emissions are enhanced by mineral nitrogen (N) fertiliser applied to poplar at rates of 0, 50 and 75 kg N ha?1 year?1 and how these effects are influenced by tree age with increasing number of rotation periods and cycles of organic matter decomposition and tree growth after each harvesting event. Between 2008 and 2012, the leaching of nitrate (NO3 ?) was monitored with self-integrating accumulators over 6-month periods and the emissions of the greenhouse gases (GHG) nitrous oxide (N2O) and carbon dioxide (CO2) were determined in closed gas chambers. During the first 4 years of the poplar SRC, most nitrogen was lost through NO3 ? leaching from the main root zone; however, there was no significant relationship to the rate of N fertilisation. On average, 5.8 kg N ha?1 year?1 (13.0 kg CO2equ) was leached from the root zone. Nitrogen leaching rates decreased in the course of the 4-year study parallel to an increase of the fine root biomass and the degree of mycorrhization. In contrast to N leaching, the loss of nitrogen by N2O emissions from the soil was very low with an average of 0.61 kg N ha?1 year?1 (182 kg CO2equ) and were also not affected by N fertilisation over the whole study period. Real CO2 emissions from the poplar soil were two orders of magnitude higher ranging between 15,122 and 19,091 kg CO2 ha?1 year?1 and followed the rotation period with enhanced emission rates in the years of harvest. As key-factors for NO3 ? leaching and N2O emissions, the time after planting and after harvest and the rotation period have been identified by a mixed effects model.  相似文献   

20.
The increasing atmospheric N2O concentration and the imbalance in its global budget have triggered the interest in quantifying N2O fluxes from various ecosystems. This study was conducted to estimate the annual N2O emissions from a transitional grassland-forest region in Saskatchewan, Canada. The study region was stratified according to soil texture and land use types, and we selected seven landscapes (sites) to cover the range of soil texture and land use characteristics in the region. The study sites were, in turn, stratified into distinguishable spatial sampling units (i.e., footslope and shoulder complexes), which reflected the differences in soils and soil moisture regimes within a landscape. N2O emission was measured using a sealed chamber method. Our results showed that water-filled pore space (WFPS) was the variable most correlated to N2O fluxes. With this finding, we estimated the total N2O emissions by using regression equations that relate WFPS to N2O emission, and linking these regression equations with a soil moisture model for predicting WFPS. The average annual fluxes from fertilized cropland, pasture/hay land, and forest areas were 2.00, 0.04, and 0.02 kg N2O-N ha–1 yr–1, respectively. The average annual fluxes for the medium- to fine-textured and sandy-textured areas were 1.40 and 0.04 kg N2O-N ha–1 yr–1, respectively. The weighted-average annual flux for the study region is 0.95 kg N2O-N ha–1yr–1. The fertilized cropped areas covered only 47% of the regional area but contributed about 98% of the regional flux. We found that in the clay loam, cropped site, 2% and 3% of the applied fertilizer were emitted as N2O on the shoulders and footslopes, respectively.Contribution no. R824 of Saskatchewan Center for Soil Research, Saskatoon, Saskatchewan, Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号