首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteolytic attack of the cholesterol-binding pancreatic proteinase (CBPP) on the oxidized insulin A and B chains as well as on glucagon was investigated by kinetic studies. The reaction products were isolated by high-pressure liquid chromatography and identified by amino acid analysis. The combined results reveal a pronounced selectivity of CBPP for the peptide bonds at the carboxy ends of Ala, Val, Leu, Ser, His and Thr residues with Ala, Val and Leu most favoured, indicating a close catalytic relationship to porcine pancreatic elastase [Narayanan, A. S. & Anwar, R. A. (1969) Biochem. J. 114, 11-17] and the anionic porcine pancreatic protease E [Kobayashi R., Kobayashi, Y. & Hirs, C. H. W. (1981) J. Biol. Chem. 256, 2460-2465] which resembles human pancreatic elastase 1. The immunological comparison indeed disclosed the identity of CBPP with human pancreatic elastase 1.  相似文献   

2.
W F Shen  T S Fletcher  C Largman 《Biochemistry》1987,26(12):3447-3452
Although protease E was isolated from human pancreas over 10 years ago [Mallory, P. A., & Travis, J. (1975) Biochemistry 14, 722-729], its amino acid sequence and relationship to the elastases have not been established. We report the isolation of a cDNA clone for human pancreatic protease E and determination of the nucleic acid sequence coding for the protein. The deduced amino acid sequence contains all of the features common to serine proteases. The substrate binding region is highly homologous to those of porcine and rat elastases 1, explaining the similar specificity for alanine reported for protease E and these elastases. However, the amino acid sequence outside the substrate binding region is less than 50% conserved, and there is a striking difference in the overall net charge for protease E (6-) and elastases 1 (8+). These findings confirm that protease E is a new member of the serine protease family. We have attempted to identify amino acid residues important for the interaction between elastases and elastin by examining the amino acid sequence differences between elastases and protease E. In addition to the large number of surface charge changes which are outside the substrate binding region, there are several changes which might be crucial for elastolysis: Leu-73/Arg-73; Arg-217A/Ala-217A; Arg-65A/Gln-65A; and the presence of two new cysteine residues (Cys-98 and Cys-99B) which computer modeling studies predict could form a new disulfide bond, not previously observed for serine proteases. We also present evidence which suggests that human pancreas does not synthesize a basic, alanine-specific elastase similar to porcine elastase 1.  相似文献   

3.
C Largman 《Biochemistry》1983,22(16):3763-3770
Proelastase has been purified to homogeneity from rat pancreatic tissue by a combination of CM-Sephadex and immobilized protease inhibitor affinity resins. Trypsin activation yields an elastolytic enzyme that possesses a specificity toward small hydrophobic residues in synthetic amide substrates, similar to those of porcine elastase 1 and canine elastase. However, the rat enzyme also rapidly hydrolyzes a substrate containing tyrosine in the P1 position. N-Terminal sequence analysis reveals that rat proelastase has an identical activation peptide with that of porcine proelastase 1 and has two conservative amino acid sequence differences from the activation peptide of canine proelastase. The sequence data established that rat proelastase corresponds to the elastase 1 mRNA clone isolated by MacDonald et al. [MacDonald, R. J., Swift, G. H., Quinto, C., Swain, W., Pictet, R. L., Nikovits, W., & Rutter, W. J. (1982) Biochemistry 21, 1453]. The sequence and substrate data obtained for rat and canine elastases suggest that there is a family of pancreatic elastases with properties similar to those of the classically described porcine elastase 1.  相似文献   

4.
We have cloned a DNA from a human pancreatic cDNA library using a cloned rat pancreatic elastase 1 cDNA as a probe, and determined its nucleotide sequence. This cDNA contains a coding region of 810 nucleotides which encodes a 270-amino-acid protein. The deduced amino acid sequence shows less than 60% homologies with rat and porcine pancreatic elastase 1, although its substrate binding region is homologous with those of the above elastases 1. When this deduced amino acid sequence was compared with known amino acid sequences of pancreatic proteases other than elastases, it was found to contain an amino acid sequence which was highly homologous with the N-terminal amino acid sequence of porcine pancreatic protease E. We also purified human pancreatic protease E isozymes from human pancreatic juice, and determined their N-terminal amino acid sequences. One of the isozymes does not hydrolyze elastin but does hydrolyze a synthetic substrate. Endoglycosidase F digests glycoside bonds of the isozyme. These results suggest that the cDNA cloned by us corresponded to one of the human protease E isozymes.  相似文献   

5.
P A Mallory  J Travis 《Biochemistry》1975,14(4):722-730
?An enzyme with proteolytic activity has been isolated from activated extracts of human pancreatic tissue. The purification procedure included salt fractionation followed by ion-exchange chromatography on SE-TSephadex C-25 and on DEAE-Sephadex A-50. The homogeneity of this enzyme, designated protease te, was demonstrated by disc electrophoresis and by sedimentation equilibrium centrifugation stidues. The homogeneous enzyme shows the ability to hydrolyze many of the conventional synthetic substrates used for the identification of elastase activity; however, it demonstrates no significant elastolytic activity. A comparison of human protease E with porcine elastase reveals a high degree of similarity between the two proteases with respect to inhibition by active-site directed peptide chloromethyl ketones, stability, decreased susceptibility to naturally occurring proteinase inhibitors, and specificity for synthetic substrates as well as several other physical properties. The major difference between human protease E and porcine elastase, other than the lack of elastolytic activity by human protease E, seems to be in the ionic character and the amino acid composition of these two proteins. Porcine elastase is a cationic enzyme, while human protease E appears to be anionic in nature. These dissimilarities concerning elastolytic activity and ionic character appear to be directly related.  相似文献   

6.
Subunit III (BSIII) of the bovine ternary complex of procarboxypeptidase A-S6 (PCPA-S6), a defective serine endopeptidase-like protein, actively synthesized by the pancreas of some ruminant species, is highly homologous to human protease E (HPE). Both proteins possess the same atypical disulfide bridge in position 98-99b. They are structurally related to porcine elastase 1 and human elastase 2 (about 56% identity). However, in contrast to those two enzymes which have an overall positive net charge, BSIII and HPE are negatively charged. Three-dimensional models of BSIII and HPE have been constructed from the crystallographic structure of porcine pancreatic elastase 1. The inhibitor-binding site for TFAI in these three proteins seems to be very similar; the atypical disulfide bridge does not seem to be involved in this binding site. The specific structural features of BSIII and HPE strongly support the assumption that BSIII is a truncated protease E and that both proteins belong to a separate serine endopeptidase family.  相似文献   

7.
By using porcine elastase I cDNA as a probe, we have isolated two different but closely related cDNAs encoding elastase-like proteases from a human pancreatic cDNA library. The amino acid sequences deduced from the cloned cDNA sequences showed 56-61% identity with those of both pancreatic elastases I and II, similar to the homology between elastases I and II. The active form of the elastase-like proteases appeared to be composed of 242 amino acids and preceded by a signal peptide and propeptide of 28 amino acids. Dot blot analysis of various tissue mRNAs demonstrated that the genes for the cloned cDNAs are expressed at a high level only in the pancreas. In addition, sequence analysis of the cloned genomic genes corresponding to one of the cDNAs showed that they are members of the elastase gene family. These results indicate that the two enzymes encoded by the cDNAs should be classified into a third class of elastase isozyme. Therefore, we designated them as human pancreatic elastases IIIA and IIIB. They strongly resembled cholesterol-binding pancreatic protease, suggesting that they may possess not only a digestive function but also function(s) related to cholesterol metabolism or transport in the intestine.  相似文献   

8.
We have cloned a DNA that is complementary to the messenger RNA that encodes porcine pancreatic elastase 1 from pancreas using rat pancreatic elastase 1 cDNA as a probe. This complementary DNA contains the entire protein coding region of 798 nucleotides which encodes an elastase of 266 amino acids, and 22 and 136 nucleotides of the 5' and 3'-untranslated sequences. When this deduced amino acid sequence was compared with known amino acid sequences, a carboxy-terminal 240 amino acids long peptide was found to be identical with a mature form of porcine pancreatic elastase 1, except for two amino acids. The porcine enzyme contains the same number of amino acid residues as the rat enzyme, and their amino acid sequences are 85% homologous. Taking the above findings together, we conclude that the cloned cDNA encodes a mature enzyme of 240 amino acids including a leader and activation peptide of 26 amino acids. We expressed the cloned porcine pancreatic elastase 1 cDNA in E. coli as a lac-fused protein. The resulting fused protein showed enzymatic activity and immunoreactivity toward anti-elastase serum.  相似文献   

9.
10.
The specificities of human neutrophile elastase and chymotrypsin-like protease towards oxidized insulin B chain were studied. The neutrophile elastase was found to differ from porcine pancreatic elastase in its specificity towards insulin B chain. The neutrophile elastase preferred mostly valine near the cleaved bond in contrast to pancreatic elastase which preferred alanine as well as valine near the cleaved bond. Human neutrophile chymotrypsin-like protease was found to cleave mostly bonds involving leucine and phenylalanine.  相似文献   

11.
12.
This paper is a continuation of our study of various animal pancreatic enzymes which are related to human pancreatic elastase 1 (Sziegoleit, A. & Linder, D. (1986) Biol. Chem. Hoppe-Seyler, 367, 527-531). The isolation and immunological analysis of the related protein from bovine pancreas disclosed that the third subunit of the procarboxypeptidase A complex is the antibody-binding component. The similarity of this subunit to elastase 1 is affirmed by comparison of their primary structures. While the complete amino-acid sequence of bovine subunit III recently has been published (Venot, N., Sciaky, M., Puigserver, A., Desnuelle, P. & Laurent, G. (1986) Eur. J. Biochem. 157, 91-99), we here present the amino-acid sequence of the carboxy-terminal tryptic peptide of human pancreatic elastase 1 showing a high degree of homology.  相似文献   

13.
Hepatic lipase: a member of a family of structurally related lipases   总被引:1,自引:0,他引:1  
Partial amino acid sequence of rat hepatic lipase was obtained by gas-phase microsequence analysis of proteolytic fragments. Sequence comparison to bovine lipoprotein lipase and porcine pancreatic lipase reveals a highly conserved region existing among these three physiologically distinct lipolytic enzymes. In a stretch of 36 amino acid residues previously reported for pancreatic lipase (De Caro, J., Boudouard, M., Bonicel, J., Guidoni, A., Desnuelle, P. and Rovery, M. (1981) Biochim. Biophys. Acta 671, 129-138), nineteen residues are identical for all three enzymes, whereas 27 of 36 are identical in rat hepatic lipase and bovine lipoprotein lipase. The fact that this primary structural conservation extends to three different animal species emphasizes the conclusion that these lipolytic enzymes comprise a protein family originating from a common ancestral gene.  相似文献   

14.
A novel proteinase from human pancreas   总被引:3,自引:0,他引:3  
A cholesterol-binding protein was previously isolated from human pancreas [Sziegoleit (1982) Biochem. J. 207, 573-582] and shown to consist of a single polypeptide chain with an apparent Mr of 28 000 and an isoelectric point of pH 4.9. In further investigations, a proteolytic activity was observed to be present in preparations of this protein. The enzyme activity was not dissociable from the cholesterol-binding protein. It decreased in the presence of sodium dodecyl sulphate or urea parallel to degradation of the protein, indicating autodegradation in the presence of these denaturants. Glucagon digestion studies indicated the carbonyl bond of alanine to be a favoured site of the enzymic cleavage. The proteinase was inactive against chromogenic substrates relatively specific for elastase, trypsin and chymotrypsin, but was found to cleave benzyloxycarbonylalanine p-nitrophenyl ester efficiently. The enzyme was inactivated by phenylmethanesulphonyl fluoride and was thus classified as a serine proteinase. Autoradiographic studies demonstrated binding to serum alpha 1-antitrypsin and alpha 2-macroglobulin in a similar manner to that observed with other pancreatic endo-proteinases. The collective results indicate that the isolated protein, provisionally named 'cholesterol-binding pancreatic proteinase', is a novel proteinase of the human pancreas. Quantitative measurements indicate that it comprises 4-6% of total protein in pancreatic secretions.  相似文献   

15.
The selectivity of hepatitis C virus (HCV) non-structural protein 3 (NS3) protease inhibitors was determined by evaluating their inhibitory effect on other serine proteases (human leukocyte elastase (HLE), porcine pancreatic elastase (PPE), bovine pancreatic chymotrypsin (BPC)) and a cysteine protease (cathepsin B). For these peptide inhibitors, the P1-side chain and the C-terminal group were the major determinants of selectivity. Inhibitors with electrophilic C-terminal residues were generally non-selective while compounds with non-electrophilic C-terminal residues were more selective. Furthermore, compounds with P1 aminobutyric acid residues were non-selective, while 1-aminocyclopropane-1-carboxylic acid (ACPC) and norvaline-based inhibitors were generally selective. The most potent and selective inhibitors of NS3 protease tested contained a non-electrophilic phenyl acyl sulfonamide C-terminal residue. HLE was most likely to be inhibited by the HCV protease inhibitors, in agreement with similar substrate specificities for these enzymes. The identified structure-activity relationships for selectivity are of significance for design of selective HCV NS3 protease inhibitors.  相似文献   

16.
One way in which serum promotes survival of primary cultured hepatocytes is by inhibiting plasma membrane protease (Nakamura, T., Asami, O., Tanaka, K., and Ichihara, A. (1984) Exp. Cell Res. 155, 81-91). One of these proteases was solubilized from the plasma membranes of rat liver with 4% octyl glucoside and purified to a homogeneous state by affinity chromatography on bovine pancreatic trypsin inhibitor linked to Sepharose 4B. The protease had an apparent Mr = 120,000 by Sephacryl S-200 gel filtration and the Mr of its subunits was 30,000, as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. It appeared to be a glycoprotein. A high concentration of detergent was necessary to keep the protein soluble. The purified enzyme readily hydrolyzed synthetic tripeptide nitroanilides at sites adjacent to Arg or Lys residues, but did not degrade synthetic substrates of chymotrypsin, elastase, or aminopeptidase. It showed endopeptidase activity, hydrolyzing various proteins such as casein, hemoglobin, and denatured albumin. The enzyme was strongly inhibited by diisopropyl fluorophosphate, phenylmethanesulfonyl fluoride, bovine pancreatic trypsin inhibitor, leupeptin, antipain, and alpha 1-antitrypsin, but not by chymostatin, elastatinal, or inhibitors of carboxyl, thiol, or metallo proteases, suggesting that it is a seryl trypsin-like protease. This protease was found in plasma membranes of rat and mouse liver and in small amounts in those of kidney, but not in those of brain, red cells, Ehrlich ascites tumor, or two Morris hepatomas, suggesting that it may be involved in differentiated functions of normal hepatocytes.  相似文献   

17.
The content of Trp-tRNA synthetase in pancreas and liver of cattle, sheep, swine, rat, rabbit and man was assayed by direct radioimmunoblotting with a 125I-labelled monoclonal antibody Am1, specifically interacting with any eukaryotic Trp-tRNA synthetase. Its content in the organs studied, with the exception of bovine and sheep pancreas, was found to be 0.002-0.012% of total proteins. The enzyme content in bovine pancreas was about 0.2% of total proteins, i.e. 70 times higher than in bovine liver; similar correlations were found for sheep. The Trp-tRNA synthetase levels in each organ varied from animal to animal of the same species by not more than a factor of four; these individual variations cannot affect the conclusion about the profound differences in the levels of the enzyme in pancreases of Ruminantia and of the other mammalians. As shown by indirect immunofluorescence technique, bovine Trp-tRNA synthetase is mainly located in the exocrine part of the pancreas. Moreover, the immunoreactive material is detectable also in bovine (not human) pancreatic juice. The abnormally high Trp-tRNA synthetase content in the ruminant pancreas may be connected with unknown function(s) of this protein somehow related to the peculiarities of digestion of these mammals.  相似文献   

18.
Protease susceptibility of homologous proteins in their native conformations was studied. This work aims to establish a broad and quantitative basis for the utilization of protease digestion to analyze the local stability of native proteins. Using high-performance liquid chromatography (HPLC) the time course of the proteolytic degradation of intact proteins was quantitatively traced. Rapid separation of peptide fragments with HPLC made possible the elucidation of sequential digestion originating from the cleavage at a very few sites which are locally unstable in the protein structure. Using four serine proteases, chymotrypsin, trypsin, elastase and subtilisin BPN', we found some common trends in proteolysis for a group of proteins of the cytochrome c family. By comparing of the proteolysis and thermal denaturation with ten homologous cytochromes c extracted from horse, beef, Candida krusei, Saccharomyces cerevisiae, chicken, tuna, pigeon, rabbit, dog and rat, protease susceptibility was related to locally unfolding states intrinsic to the native conformation.  相似文献   

19.
A low molecular weight serine protease inhibitor, named trypstatin, was purified from rat peritoneal mast cells. It is a single polypeptide with 61 amino acid residues and an Mr of 6610. Trypstatin markedly inhibits blood coagulation factor Xa (Ki = 1.2 x 10(-10) M) and tryptase (Ki = 3.6 x 10(-10) M) from rat mast cells, which have activities that convert prothrombin to thrombin. It also inhibits porcine pancreatic trypsin (Ki = 1.4 x 10(-8) M) and chymase (Ki = 2.4 x 10(-8) M) from rat mast cells, but not papain, alpha-thrombin, or porcine pancreatic elastase. Trypstatin forms a complex in a molar ratio of 1:1 with trypsin and one subunit of tryptase. The complete amino acid sequence of this inhibitor was determined and compared with those of Kunitz-type inhibitors. Trypstatin has a high degree of sequence homology with human and bovine inter-alpha-trypsin inhibitors, A4(751) Alzheimer's disease amyloid protein precursor, and basic pancreatic trypsin inhibitor. However, unlike other known Kunitz-type protease inhibitors, it inhibits factor Xa most strongly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号