共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium-dependent amino acid transport in reconstituted membrane vesicles from Ehrlich ascites cell plasma membranes 总被引:5,自引:0,他引:5
Plasma membranes, isolated from Ehrlich ascites tumor cells, were dissolved in 2% cholate, 4 M urea and then reformed into liposomes upon dialysis at 4 degrees with exogenous phospholipids. Reconstituted vesicles regain the ability to transport amino acids. Na+ was shown to accelerate the uptake of alpha-aminoisobutyrate, phenylalanine, and methionine, but not leucine or epsilon-aminohexanoic acid. With the reconstituted vesicles, methionine, but not leucine, inhibited the uptake of alpha-aminoisobutyrate. An apparent Km value for alpha-aminoisobutyrate uptake of 3.0 mM was obtained. This value is close to that observed with the intact cells and the native membrane vesicles. A Na+ gradient (high Na+ outside) increased alpha-aminoisobutyrate uptake, whereas a reversed gradient (high Na+ inside) increased alpha-aminoisobutyrate efflux. The latter flux was increased by valinomycin, suggesting electrogenic transport. A modest extent of coupling between a Na+ gradient and uphill flow of alpha-aminoisobutyrate was observed. 相似文献
2.
3.
A method was developed for isolating plasma membranes from Ehrlich ascites tumor cells. The plasma membranes appeared as highly irregular shrunken sacs or ghosts. Enzymatic characterization of the plasma membranes showed them to be high in (Na+ + K+-ATPase activity and K+-stimulated phosphatase activity. A detailed study showed that both of these latter enzymic functions were stimulated by various amino acids. Such stimulation occurred in the 1–15 mM range of amino acids and was most effective for aromatic species, e.g. phenylalanine and histidine. The amino acid stimulation, which appeared to show little or no stereospecificity, was eliminated by a one carbon separation of NH2 and COOH groups. Since the metal chelating agent EDTA was also effective in mimicking the stimulation by amino acids, and since a mild washing procedure did not render membranes insensitive to subsequent amino acid or EDTA stimulation, it is proposed that the operation of the (Na+ + K+)-ATPase (and K+-stimulated phosphatase) is to some extent controlled by a tightly bound metal. The possible physiological function of an amino acid-regulated transport ATPase is discussed. 相似文献
4.
Miguel A. Medina Ana R. Quesada Ignacio Núñez de Castro 《Journal of bioenergetics and biomembranes》1991,23(4):689-697
Native vesicles isolated from Ehrlich ascites tumor cells accumulate glutamine by means of Na+-dependent transport systems; thiocyanate seems to be the more effective anion. The apparent affinity constant for the process was 0.38 mM. The Arrhenius plot gave an apparent activation energy of 12.3 kJ/mol. The structural analogs of glutamine, acivicin (2.5 mM) and azaserine (2.5 mM), inhibited the net uptake by 67 and 70%, respectively. The sulfhydryl reagents mersalyl, PCMBS, NEM, and DTNB also inhibited net uptake, suggesting that sulfhydryl groups may be involved in the activity of the carrier protein. A strong inhibition was detected when the vesicles were incubated in the presence of alanine, cysteine, or serine; in addition, histidine, but not glutamate or leucine, had a negative effect on glutamine transport. 相似文献
5.
6.
Homo- and hetero-exchange diffusion of amino acids in Ehrlich ascites carcinoma cells 总被引:1,自引:0,他引:1
E Gillespie 《Biochimica et biophysica acta》1967,135(5):1016-1029
7.
8.
Na+-dependent amino acid transport can be reconstituted from solubilized Ehrlich cell plasma membranes by addition of asolectin vesicles, gel filtration, and a freeze-thaw cycle. Removal of phosphatidic acid (approximately 10% of the total lipid) by Ba2+ precipitation reduces the efficiency of reconstitution of Na+-dependent amino acid transport by approximately 73% and decreases intravesicular volume of the proteoliposomes by approximately 43%. The loss of transport activity is not due to exclusion of specific proteins during reconstitution. The phosphatidic acid-free liposomes are less permeable and require more time to attain an equilibrium distribution of solute. Transport activity and intravesicular volume can be restored to Ba2+-precipitated asolectin proteoliposomes by addition of egg-phosphatidic acid during reconstitution. The extent of recovery of transport activity is proportional to the change in intravesicular volume and depends on the amount of phosphatidic acid present. Replacement of phosphatidic acid with 20% phosphatidylserine or phosphatidylglycerol leads to increases in intravesicular volume with little or no increase in amino acid transport. Generation of phosphatidic acid in situ by treatment of Ba2+-precipitated proteoliposomes with phospholipase D also restored transport. The observed increase in transport activity (9-fold) is accompanied by a 46% increase in intravesicular volume, presumably caused by vesicle fusion. Phosphatidic acid is also required for successful reconstitution of Na+-dependent amino acid transport from pure phosphatidylcholine:phosphatidylethanolamine (1:1) mixtures with only a small change (approximately 16%) in intravesicular volume. The results provide evidence for both indirect and direct effects of phosphatidic acid on reconstitution of Na+-dependent amino acid transport. The indirect effects occur through enlargement of intravesicular volume, large vesicles showing higher rates of transport. However, there is also evidence to indicate a specific effect of phosphatidic acid on the Na+-dependent amino acid transporter, since other acidic lipids may change intravesicular volume without a commensurate change in transport activity. 相似文献
9.
10.
Motoyasu Ohsawa Michael S. Kilberg Gene Kimmel Halvor N. Christensen 《生物化学与生物物理学报:生物膜》1980,599(1):175-190
We redirect attention to contributions to the energization of the active transport of amino acids in the Ehrlich cell, beyond the known energization by down-gradient comigration of Na+, beyond possible direct energization by coupling to ATP breakdown, and beyond known energization by exchange with prior accumulations of amino acids. We re-emphasize the uphill operation of System L, and by prior depletion of cellular amino acids show that this system must receive energy beyond that made available by their coupled exodus. After this depletion the Na+-independent accumulation of the norbornane amino acid, 2-aminobicycloheptane-2-carboxylic acid becomes strongly subject to stimulation by incubation with glucose. Energy transfer between Systems A and L through the mutual substrate action of ordinary amino acids was minimized although not entirely avoided by the use of amino acid analogs specific to each system.When 2,4-dinitrophenol was included in the depleting treatment, and pyruvate, phenazine methosulfate, or glucose used for restoration, recovery of uptake of the norbornane amino acid was independent of external Na+ or K+ levels. Restoration of the uptake of 2-(methylamino)isobutyric acid was, however, decreased by omission of external K+. Contrary to an earlier finding, restoration of uptake of each of these amino acids was associated with distinct and usually correlated rises in cellular ATP levels. ATP addition failed to stimulate exodus of the norbornane amino acid from plasma membrane vesicles, although either NADH or phenazine methosulfate did stimulate exodus. ATP production and use is thus associated with transport energization, although evidence for a direct role failed to appear. 相似文献
11.
12.
Ehrlich ascites tumor cells release free fatty acids (FFA) during in vitro incubation in media that contain albumin. The released FFA are derived by lipolysis from endogenous lipid esters. Addition of glucose to the incubation medium greatly decreases the quantity of fatty acid released by the cells. Cyanide, which inhibits endogenous lipid oxidation but not lipolysis, increases the quantity of fatty acid released to media containing albumin and causes free fatty acid to accumulate in the cells in the absence of exogenous albumin. The release of fatty acid, either preformed or derived by lipolysis during prolonged incubations, occurs under conditions of net fatty acid uptake from the incubation medium. Net release of fatty acid from the cell occurs only when fatty acid-extracted albumin is present in the extracellular medium; extrapolation of the data suggests that net release will not occur under physiological conditions. It is postulated that free fatty acid uptake and release are independent processes, the direction of net fatty acid movement being determined by the relationship between cellular free fatty acid concentration (regulating efflux) and the molar ratio of free fatty acid to albumin in the extracellular medium (regulating uptake). 相似文献
13.
R M Johnstone 《Biochimica et biophysica acta》1975,413(2):252-264
Gramicidin induces a marked Na+-dependent efflux of amino acids from Ehrlich cells. In absence of Na+, gramicidin does not alter the efflux. In presence gramicidin, glycine efflux is inhibited by methionine and less so by leucine. Glycine efflux caused by HgCl2 is neither Na+ dependent nor inhibitable by amino acids. Neither efflux of inositol which is transported by an Na+-dependent route, nor efflux of several other solutes which are transported by Na+-independent routes, is affected by gramicidin. The antibiotic appears to permit a reversal in the direction of of the operation of the Na+-dependent amino acid transport system. The increased efflux is partly, but not entirely, due to an increase in the cellular Na+ concentration and a reduction of the electrochemical potential difference for Na+. 相似文献
14.
Amino acid transport systems for alanine and leucine have been reconstituted into artificial lipid vesicles. Purified plasma membrane vesicles from Ehrlich ascites cells were dissolved in 2% sodium cholate, 1 mM dithiothreitol, 0.5 mM EDTA, a mixture which solubilized approximately 50% of the membrane protein. This solubilized protein fraction was further purified by a combination of ammonium sulfate precipitations, gel filtration, and DEAE-cellulose chromatography. A fraction containing approximately 15 Coomassie blue staining bands on sodium dodecyl sulfate gels was obtained. This material was reconstituted into liposomes, and preliminary results demonstrated transport of alanine and leucine dependent on a sodium gradient. In addition, an electrogenic gradient mediated by valinomycin-induced potassium diffusion seemed to stimulate alanine uptake further. 相似文献
15.
Plasma membrane vesicles of Ehrlich ascites carcinoma cells have been isolated to a high degree of purity. In the presence of Mg2+, the plasma membrane preparation exhibits a Ca2+-dependent ATPase activity of 2 mumol Pi per h per mg protein. It is suggested that this (Ca2+ + Mg2+)-ATPase activity is related to the measured Ca2+ transport which was characterized by Km values for ATP and Ca2+ of 44 +/- 9 microM and 0.25 +/- 0.10 microM, respectively. Phosphorylation of plasma membranes with [gamma-32P]ATP and analysis of the radioactive species by polyacrylamide gel electrophoresis revealed a Ca2+-dependent hydroxylamine-sensitive phosphoprotein with a molecular mass of 135 kDa. Molecular mass and other data differentiate this phosphoprotein from the catalytic subunit of (Na+ + K+)-ATPase and from the catalytic subunit of (Ca2+ + Mg2+)-ATPase of endoplasmic reticulum. It is suggested that the 135 kDa phosphoprotein represents the phosphorylated catalytic subunit of the (Ca2+ + Mg2+)-ATPase of the plasma membrane of Ehrlich ascites carcinoma cells. This finding is discussed in relation to previous attempts to identify a Ca2+-pump in plasma membranes isolated from nucleated cells. 相似文献
16.
The uptake and intracellular accumulation of an amino acid mixture by incubated Ehrlich ascites tumour cells was studied. The composition of the amino acid mixture simulated that of mouse intraperitoneal fluid and amino acid uptake was studied over a range of concentrations between 0.0 (no added amino acids) and 10.0-times intraperitoneal concentrations. For most amino acids uptake into cells and intracellular accumulation occurred as concentrations were increased up to 6.0-times the intraperitoneal concentrations; further increases in external amino acid concentrations did not increase concomitantly with intracellular concentrations. These data, when analysed indicated a net protein synthetic rate of 20% d-1 and that the rate of protein synthesis may be limited by the availability of the amino acids lysine, threonine and methionine. 相似文献
17.
R.M. Johnstone 《生物化学与生物物理学报:生物膜》1975,413(2):252-264
Gramicidin induces a marked Na+-dependent efflux of amino acids from Ehrlich cells. In absence of Na+, gramicidin does not alter the efflux. In presence of gramicidin, glycine efflux is inhibited by methionine and less so by leucine. Glycine efflux caused by HgCl2 is neither Na+ dependent nor inhibitable by amino acids. Neither efflux of inositol which is transported by an Na+-dependent route, nor efflux of several other solutes which are transported by Na+-independent routes, is affected by gramicidin. The antibiotic appears to permit a reversal in the direction of the operation of the Na+-dependent amino acid transport system. The increased efflux is partly, but not entirely, due to an increase in the cellular Na+ concentration and a reduction of the electrochemical potential difference for Na+. 相似文献
18.
Levorene, a polyenic antibiotic, lowered the concentration of amino acids in the cells of Ehrlich carcinoma. The decrease in the intracellular level of the amino acids was due not only to inhibition of their entrance to the cells but also to their increased leaching from the cells. The effect of levorene on the intracellular level of the neutral amino acids was higher than that on the main amino acids which was associated with different sensitivity of the amino acid transport systems to the antibiotic. 相似文献
19.
20.