首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluation of transgenic crops under field conditions is a fundamental step for the production of genetically engineered varieties. In order to determine if there is pollen dispersal from transgenic to nontransgenic soybean plants, a field release experiment was conducted in the Cerrado region of Brazil. Nontransgenic plants were cultivated in plots surrounding Roundup Ready transgenic plants carrying the cp4 epsps gene, which confers herbicide tolerance against glyphosate herbicide, and pollen dispersal was evaluated by checking for the dominant gene. The percentage of cross-pollination was calculated as a fraction of herbicide-tolerant and -nontolerant plants. The greatest amount of transgenic pollen dispersion was observed in the first row, located at one meter from the central (transgenic) plot, with a 0.52% average frequency. The frequency of pollen dispersion decreased to 0.12% in row 2, reaching 0% when the plants were up to 10 m distance from the central plot. Under these conditions pollen flow was higher for a short distance. This fact suggests that the management necessary to avoid cross-pollination from transgenic to nontransgenic plants in the seed production fields should be similar to the procedures currently utilized to produce commercial seeds.  相似文献   

2.
The objective of this study was to evaluate pollen dispersal inBrassica napus (oilseed rape). The selectable marker, used to follow pollen movement, was a dominant transgene (bar) conferring resistance to the herbicide glufosinate-ammonium. Transgenic and non-transgenic plants of the cultivar Westar were planted in a 1.1 ha field trial, with the transgenic plants in a 9 m diameter circle at the centre, surrounded by non-transgenic plants to a distance of at least 47 m in all directions. A 1 m circle of non-transgenic plants was sown in the centre of the transgenic area to allow estimation of the level of pollen dispersal when plants were in close contact. Honeybee hives were placed at the trial site to optimize the opportunity for cross-pollination. During the flowering period, regular observations were made of the number of plants flowering and the number and type of insects present in 60 1 m2 areas. These areas were located uniformly around the plot at distances of 1, 3, 6, 12, 24, 36 and 47 m from the edge of the 9 m circle of transgenic plants. Seed samples were harvested from each of the 7 distances so that approximately 20% of the circumference of the plot was sampled at each distance. The centre non-transgenic circle was also sampled. Plants were grown from the seed samples and sprayed with glufosinate to estimate the frequency of pollen dispersal at each distance. In order to screen enough samples to detect low frequency cross-pollination events, seed samples were tested in the greenhouse and on a larger scale in the field. Results were confirmed by testing progeny for glufosinate resistance and by Southern blot analysis. The estimated percentage of pollen dispersal in the non-transgenic centre circle was 4.8%. The frequency was estimated to be 1.5% at a distance of 1 m and 0.4% at 3 m. The frequency decreased sharply to 0.02% at 12 m and was only 0.00033% at 47 m. No obvious directional effects were detected that could be ascribed to wind or insect activity.  相似文献   

3.
 In order to help establish a basis for the assessment of gene flow associated with the large-scale release of transgenic oilseed rape, we previously designed a method which makes it possible to retrieve the average pollen dispersal of a single plant from that of a large source plot. The ‘individual’ pollen distribution thus obtained is less dependent on the experimental design than pollen distributions usually published and could therefore be used to model the possible escape of a transgene from commercial transgenic crops. In this study we report on a field experiment set up to study the pollen dispersal from an herbicide-resistant transgenic variety of oilseed rape and to test the applicability of the method on the experimental data. Two techniques were used to determine the individual pollen dispersal, and their outcomes are compared. The results suggest that approximately half of the pollen produced by an individual plant fell within 3 m and that the probability of fertilisation afterwards decreased slowly along a negative exponential of the distance. Comparison with the global pollen distribution from the source plot indicates that pollen-dispersal distributions based on dispersal from whole plots instead of individual plants would have underestimated the proportion of pollen that was dispersed over average or long distances. Received: 20 September 1997 / Accepted: 28 October 1997  相似文献   

4.
The testing of transgenic crops in the field is a necessary part of the validation of genetically engineered cultivars, but in the early stages of testing, biosafety procedures must be carefully monitored to ensure that the modified plants do not have deleterious effects on the environment. This study was carried out over two seasons to determine the effectiveness of containment procedures under australian environmental conditions by measuring the dispersal of pollen amay from a test plot of transgenic cotton into a surrounding buffer field of non-transgenic cotton plants whose function was to act as a sink for pollen carried by nectar feeding and pollen-gathering insects. Dispersal was estimated by measuring the frequency of the dominant selectable marker transgene, neomycin phosphotransferase (NptII) in the progeny of the buffer plants. The presence of nptii was determined by a sensitive radioactive enzyme assay. Pollen dispersal was low in both years, but increased with an increase in the size of the source plot in the second year. In the first year outcrossing averaged from 0.15% of progeny at 1 m to below 0.08% at 4 m from the test plot. Outcrossing was highest within the central test plot where progeny from non-transgenic control plants, immediately adjacent to transgenic plants, had transgenic progeny at frequencies of up to 1.7%. In the second year, with a bigger source of transgenic plants, outcrossing declined on average from 0.4% at 1 m to below 0.03% at 16 m into the buffer zone. These results indicate that 20 m buffer zones would serve to limit dispersal of transgenic pollen from small-scale field tests.  相似文献   

5.
Papaya is an economically important plant in Thailand for domestic consumption and export. However, papaya is extremely susceptible to disease caused by the papaya ring spot virus. Although transgenic papaya has been developed, commercial cultivation of transgenic plants in Thailand is still illegal. One concern is cross-pollination to conventional varieties. In this study, windborne-pollen dispersion of papaya (Carica papaya L.) was investigated using geographic information systems (GIS) and remotely sensed data. Pollen traps were placed around a papaya plot in eight geographic directions, with radiuses varying from 5 to 900 m from the plot. Pollen counts were made for 12 different dates, and data were input into a GIS database. The distribution of pollen and its relation to land use were analyzed using land use data obtained from Quickbird imagery acquired during 2007. Comparative analyses of pollen dispersal, wind direction, and speed were made using data collected from a micro-climatic station set up at a papaya plot. The furthest distance from the plot that pollen was found was at 0.9 km, a distance at which only 1 pollen grain was found. The number of pollen grains carried by wind decreased as distance increased. The direction of dispersal was not in accordance with wind direction data. Most pollen grains were found in agricultural areas and bare land. The total number of pollen grains found in exposed areas was considerably higher than the total found in areas sheltered by dense tree lines.  相似文献   

6.
Pollen dispersal has been recently focused on as a major issue in the risk assessment of transgenic crop plants. The shape of the pollen dispersal of individual plants is hard to determine since a very large number of plants must be monitored in order to track rare longdistance dispersal events. Conversely, studies using large plots as a pollen source provide a pollen distribution that depends on the shape of the source plot. We report here on a method based on the use of Fourier transforms by which the pollen dispersal of a single, average individual can be obtained from data using large plots as pollen sources, thus allowing the estimation of the probability of long-distance dispersal for single plants. This method is subsequently implemented on simulated data to test its susceptibility to random noise and edge effects. Its conditions of application and value for use in ecological studies, in particular risk assessment of the deliberate release of transgenic plants, are discussed.  相似文献   

7.
The dispersal of pollen from a Lolium perenne source has previously been described using various Gaussian plume models which take distance and wind direction into account. One of these models is used here to calculate, using integration, possible pollen deposition onto small conspecific populations a kilometer from the source. The percentage of immigrant pollen is compared for six different sets of parameter values previously estimated from pollen-dispersal experiments. The source size is then scaled up to simulate what might happen if transgenic ryegrass was grown on a large scale. In this case it is seen that small conspecific populations might, in some conditions, be swamped by immigrant pollen, even if they are not directly downwind of the source. The implications of this are discussed in terms of assessing and managing the risks of releasing wind-pollinated transgenic crops. Received: 10 July 1999 / Accepted: 27 August 1999  相似文献   

8.
Recent developments in the modelling of pollen dispersal and deposition have led to the development of user-friendly computer software for simulating vegetation mosaics and pollen assemblages at specified points within those mosaics. In this paper we discuss the possible application of these approaches to modelling the pollen deposition in mountain areas. First, we demonstrate the use of the Multiple Scenario Approach by reconstructing mid-Holocene tree line position in the southern Dark Peak area of the Peak District in northern England from a published pollen record. However, the underlying model of pollen dispersal and deposition assumes a flat landscape, which makes extending the approach to mountainous areas problematic. Therefore we also present simulation experiments exploring the effects of modifying aspects of the existing model to better simulate the montane situation (ecotone structure, changes in the wind rose to mimic the effects of topography on aerial pollen transport). We suggest that, as a first approximation, topographic effects can be incorporated in the models by varying the wind rose at the sampling point to reflect the impact of topography on air flow.  相似文献   

9.
Development of plant genetic engineering has led to the deployment of transgenic crops and, simultaneously, to the need for a thorough assessment of the risks associated with their environmental release. This study investigated the occurrence of gene flow from transgenic rice to non-transgenic rice plants under agronomic conditions using a herbicide resistance gene as a tracer marker. Two field experiments were established in the paddy fields of two main Mediterranean rice-growing areas of Spain and Italy. In both locations analyses of phenotypic, molecular and segregation data showed that pollination of recipient plants with pollen of the transgenic source occurred at a significant frequency. A gene flow slightly lower than 0.1% was detected in a normal side-by-side plot design. Similar results were found in a circular plot when the plants were placed at 1-m distance from the transgenic central nucleus. A strong asymmetric distribution of the gene flow was detected among this circle and highest values (0.53%) were recorded following the direction of the dominant wind. A significant lowest value (0.01%) was found in the other circle (5 m from the transgenic plants) as was expected according to the characteristics of rice pollen. Such circular-field trial designs could also prove to be very useful in studying the gene flow to other commercial cultivars of rice with the aim of establishing strategies to prevent pollen dispersal from commercial transgenic fields to the neighbouring conventional fields. Received: 23 February 2001 / Accepted: 31 March 2001  相似文献   

10.
Fast development and commercialization of genetically modified plants have aroused concerns of transgene escape and its environmental consequences. A model that can effectively predict pollen‐mediated gene flow (PMGF) is essential for assessing and managing risks from transgene escape. A pollen‐trap method was used to measure the wind‐borne pollen dispersal in cultivated rice and common wild rice, and effects of relative humidity, temperature and wind speed on pollen dispersal were estimated. A PMGF model was constructed based on the pollen dispersal pattern in rice, taking outcrossing rates of recipients and cross‐compatibility between rice and its wild relatives into consideration. Published rice gene flow data were used to validate the model. Pollen density decreased in a simple exponential pattern with distances to the rice field. High relative humidity reduced pollen dispersal distances. Model simulation showed an increased PMGF frequency with the increase of pollen source size (the area of a rice field), but this effect levelled off with a large pollen‐source size. Cross‐compatibility is essential when modelling PMGF from rice to its wild relatives. The model fits the data well, including PMGF from rice to its wild relatives. Therefore, it can be used to predict PMGF in rice under diverse conditions (e.g. different outcrossing rates and cross‐compatibilities), facilitating the determination of isolation distances to minimize transgene escape. The PMGF model may be extended to other wind‐pollinated plant species such as wheat and barley.  相似文献   

11.
The development of maize (Zea mays L.) varieties as factories of pharmaceutical and industrial compounds has renewed interest in controlling pollen dispersal. The objective of this study was to compare gene flow into maize fields of different local pollen densities under the same environmental conditions. Two fields of approximately 36 ha were planted with a nontransgenic, white hybrid, in Ankeny, Iowa, USA. In the center of both fields, a 1-ha plot of a yellow-seeded stacked RR/Bt transgenic hybrid was planted as a pollen source. Before flowering, the white receiver maize of one field was detasseled in a 4:1 ratio to reduce the local pollen density (RPD). The percentage of outcross in the field with RPD was 42.2%, 6.3%, and 1.3% at 1, 10, and 35 m from the central plot, respectively. The percentage of outcross in the white maize with normal pollen density (NPD) was 30.1%, 2.7%, and 0.4%, respectively, at these distances. At distances greater than 100 m, the outcross frequency decreased below 0.1 and 0.03% in the field with RPD and NPD, respectively. A statistical model was used to compare pollen dispersal based on observed outcross percentages. The likelihood ratio test confirmed that the models of outcrossing in the two fields were significantly different (P is practically 0). Results indicated that when local pollen is low, the incoming pollen has a competitive advantage and the level of outcross is significantly greater than when the local pollen is abundant. This journal paper of the Iowa Agricultural and Home Economics Experiment Station, Ames, Iowa, Project No. 3638, was supported by Hatch Act, State of Iowa fund and by a USDA-CREES BRA Grant.  相似文献   

12.
Pollen-mediated gene flow (PMGF) is the main mode of transgene flow in flowering plants. The study of pollen and gene flow of transgenic wheat can help to establish the corresponding strategy for preventing transgene escape and contamination between compatible genotypes in wheat. To investigate the pollen dispersal and gene flow frequency in various directions and distances around the pollen source and detect the association between frequency of transgene flow and pollen density from transgenic wheat, a concentric circle design was adopted to conduct a field experiment using transgenic wheat with resistance to wheat yellow mosaic virus (WYMV) as the pollen donor and dwarf male-sterile wheat as the pollen receptor. The results showed that the pollen and gene flow of transgenic wheat varied significantly among the different compass sectors. A higher pollen density and gene flow frequency was observed in the downwind SW and W sectors, with average frequencies of transgene flow of 26.37 and 23.69% respectively. The pollen and gene flow of transgenic wheat declined dramatically with increasing distance from its source. Most of the pollen grains concentrated within 5 m and only a few pollen grains were detected beyond 30 m. The percentage of transgene flow was the highest where adjacent to the pollen source, with an average of 48.24% for all eight compass directions at 0 m distance. Transgene flow was reduced to 50% and 95% between 1.61 to 3.15 m, and 10.71 to 20.93 m, respectively. Our results suggest that climate conditions, especially wind direction, may significantly affect pollen dispersal and gene flow of wheat. The isolation-by-distance model is one of the most effective methods for achieving stringent transgene confinement in wheat. The frequency of transgene flow is directly correlated with the relative density of GM pollen grains in air currents, and pollen competition may be a major factor influencing transgene flow.  相似文献   

13.
Pyrrhopappus carolinianus and Hemihalictus lustrans constitute a mutualistic association: the early morning flowering of Pyrrhopappus provides the matinal bee with a nearly exclusive pollen source, although other plants must be visited for nectar. Female Hemihalictus, the primary pollen vector, tear open the anthers and remove the pollen before it is available to other bees. The foraging behavior of the bee insures cross-pollination. The flight pattern of the bees generally restricts the pollen dispersal range. If cross-pollination fails, then autogamy results from twisting of the styles that brings the stigmas in contact with the pollen presented on the styles of other florets. Schinia mitis is an important predator of the capitulae of P. carolinianus.  相似文献   

14.
Transgenic Bt cotton NewCott 33B and transgenic tfd A cotton TFD were chosen to evaluate pollen dispersal frequency and distance of transgenic cotton (Gossypium hirsutum L.) in the Huanghe Valley Cotton-producing Zone, China. The objective was to evaluate the efficacy of biosafety procedures used to reduce pollen movement. A field test plot of transgenic cotton (6×6 m) was planted in the middle of a nontransgenic field measuring 210×210 m. The results indicated that the pollen of Bt cotton or tfd A cotton could be dispersed into the environment. Out-crossing was highest within the central test plot where progeny from nontransgenic plants, immediately adjacent to transgenic plants, had resistant plant progeny at frequencies up to 10.48%. Dispersal frequency decreased significantly and exponentially as dispersal distance increased. The flow frequency and distance of tfd A and Bt genes were similar, but the pollen-mediated gene flow of tfd A cotton was higher and further to the transgenic block than that of Bt cotton (χ2 = 11.712, 1 degree of freedom, p<0.001). For the tfd A gene, out-crossing ranged from 10.13% at 1 m to 0.04% at 50 m from the transgenic plants. For the Bt gene, out-crossing ranged from 8.16% at 1 m to 0.08% at 20 m from the transgenic plants. These data were fit to a power curve model: y=10.1321x −1.4133 with a correlation coefficient of 0.999, and y=8.0031x −1.483 with a correlation coefficient of 0.998, respectively. In this experiment, the farthest distance of pollen dispersal from transgenic cotton was 50 m. These results indicate that a 60-m buffer zone would serve to limit dispersal of transgenic pollen from small-scale field tests.  相似文献   

15.
A mathematical and statistical framework for modelling dispersal   总被引:1,自引:0,他引:1  
Tord Snäll  Robert B. O'Hara  Elja Arjas 《Oikos》2007,116(6):1037-1050
Mechanistic and phenomenological dispersal modelling of organisms has long been an area of intensive research. Recently, there has been an increased interest in intermediate models between the two. Intermediate models include major mechanisms that affect dispersal, in addition to the dispersal curve of a phenomenological model. Here we review and describe the mathematical and statistical framework for phenomenological dispersal modelling. In the mathematical development we describe modelling of dispersal in two dimensions from a point source, and in one dimension from a line or area source. In the statistical development we describe applicable observation distributions, and the procedures of model fitting, comparison, checking, and prediction. The procedures are also demonstrated using data from dispersal experiments. The data are hierarchically structured, and hence, we fit hierarchical models. The Bayesian modelling approach is applied, which allows us to show the uncertainty in the parameter estimates and in predictions. Finally, we show how to account for the effect of wind speed on the estimates of the dispersal parameters. This serves as an example of how to strengthen the coupling in the modelling between the phenomenon observed in an experiment and the underlying process – something that should be striven for in the statistical modelling of dispersal.  相似文献   

16.
Drawing on field studies of pollen dispersal, we identify features of the hybridization process that need quantification. Our emphasis is on standardized measures, as opposed to the idiosyncratic and often anecdotal methods with which gene flow or out-crossing data are currently reported. In addition to proposing specific maximum likelihood approaches, we summarize some results to date from small-scale field trials that bear on the risks anticipated for large-scale commercialization. We conclude that absolute containment of recombinant pollen or genes is unlikely if physical isolation is the only containment strategy. Because we conclude that the escape of transgenic pollen is inevitable, we argue that the focus of risk analysis should be shifted towards the 'invasiveness' of transgenic plants and 'mitigation' of their impact on natural, as well as agricultural systems.  相似文献   

17.
Models of windblown pollen or spore movement are required to predict gene flow from genetically modified (GM) crops and the spread of fungal diseases. We suggest a simple form for a function describing the distance moved by a pollen grain or fungal spore, for use in generic models of dispersal. The function has power-law behaviour over sub-continental distances. We show that air-borne dispersal of rapeseed pollen in two experiments was inconsistent with an exponential model, but was fitted by power-law models, implying a large contribution from distant fields to the catches observed. After allowance for this 'background' by applying Fourier transforms to deconvolve the mixture of distant and local sources, the data were best fit by power-laws with exponents between 1.5 and 2. We also demonstrate that for a simple model of area sources, the median dispersal distance is a function of field radius and that measurement from the source edge can be misleading. Using an inverse-square dispersal distribution deduced from the experimental data and the distribution of rapeseed fields deduced by remote sensing, we successfully predict observed rapeseed pollen density in the city centres of Derby and Leicester (UK).  相似文献   

18.
花粉介导的转Bt基因棉花田间基因流监测   总被引:1,自引:0,他引:1  
采用花粉粒染色法对转Bt基因棉的花粉漂移距离和强度进行了观测,并应用PCR法检测转Bt基因棉的基因流频率.花粉粒染色法监测结果表明:同株异花间的花粉散布频率显著高于异株异花间(P<0.01);靠近转Bt基因棉花粉染色区1 m处的平均花粉散布频率,在东、南、西、北4个方向分别为44.8%、48.9%、57.1%和21.5%,但随着距转基因棉田距离的增大,4个方向的平均花粉散布频率都呈下降趋势.PCR结果的统计分析表明,在25m内,花粉散布距离和方向对基因流频率有极显著影响(P<0.01),随着距转基因棉田距离的增大,基因流频率呈下降趋势,最远距离为25 m时的最高基因流频率为2.0%.  相似文献   

19.
Information on the extent of transgene dispersal by pollen to adjacent potato plots and to related weed species is an important requisite for risk assessment; a procedure followed before novel transgenic plants are evaluated under field conditions. The purpose of the investigation was to determine the frequency of cross-pollination between potato (Solanum tuberosum) plants at different distances, using a kanamycin resistnace transgene (nptII) as a selectable marker. All potato plants were from the variety Désirée. Non-transgenic potato plants, used as potential recipients of transgene-containing pollen, were planted in 12 sub-plots, at distances of 0–20 m from the nearest transgenic potato plants. Seeds harvested from the non-transgenic plants were screened for resistance to kanamycin, and molecular methods were used to confirm that resistant progeny contained thenptII gene. Where transgenic and non-transgenic potato plants were in alternate rows (leaves touching), 24% of seedlings from the non-transgenic parent plants were kanamycin-resistant. Comparable seedlings from plants at up to 3 m distance had a resistance frequency of 2%, at 10 m the frequency was 0.017% and at 20 m no resistant progeny were observed. Plants of the weed speciesS. dulcamara andS. nigrum were also planted close to the transgenic potatoes to test for evidence of hybridization, and no kanamycin-resistant seedlings were observed among progeny fromS. dulcamara andS. nigrum. This investigation provided evidence that the extent of gene dispersal from transgenic potatoes to non-transgenic potatoes falls markedly with increasing distance, and is negligible at 10 m. There was, also, no evidence of transgene movement from potato toS. dulcamara andS. nigrum under field conditions. These data will be valuable in defining genetic isolation procedures for the early field evaluation and the use of novel transgenic potato genotypes.  相似文献   

20.
Information regarding gene flow in wind-pollinated, outcrossing forage grasses is essential for any future releases of value-added transgenic cultivars. Experiments on pollen dispersal was carried out by growing transgenic tall fescue (Festuca arundinacea) in a central plot, surrounded by exclosures containing recipient plants up to a distance of 200 m from the central source plants in eight directions. The central transgenic tall fescue plants carried a chimeric hygromycin phosphotransferase gene (hph) and a chimeric -glucuronidase gene (gusA). Seeds were collected from the recipient plants and germinated seedlings were used for high throughput DNA isolation and polymerase chain reaction (PCR) analysis. More than 21,000 seedlings were PCR analyzed for the experiments conducted in three years. Transgenes were detected in recipient plants at up to 150 m from the central transgenic plot. The highest transgene frequencies, 5% at 50 m, 4.12% at 100 m and 0.96% at 150 m, were observed north of the central plot, the prevailing wind direction. Lower transgene frequencies were detected in other directions, particularly at 100 m and 150 m distances. No transgene was detected at 200 m distance in any direction. Transgene flow was less effective or ineffective when recipient plants were further away from the central donor plants. Southern blot hybridization analysis confirmed the transgenic nature of the PCR positive plants. A supplementary experiment demonstrated that transgene flow can be controlled by placing transgenic plantings downwind and long distances from non-transgenic seed increases, thus allowing tall fescue breeding and transgene development programs to be conducted concurrently at the same research station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号