首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
On Day 0, young adult female F344 rats were adrenalectomized and intrasplenically implanted with a pituitary gland and capsule containing estrone. All were thereafter given 2.5 mg deoxycorticosterone per week and the choice of saline or tap water. This treatment yields high prolactin levels and glucocorticoid deficiency (Prl+/Glc-). On Day +48, total recoverable mammary DNA was increased by more than sevenfold, tritiated thymidine uptake by nearly fourfold, and total mammary clonogens by about fivefold. Irradiation with 4, 40, and 80 cGy X rays on Day +48 increased total mammary carcinomas per rat day at risk linearly with dose, and 40 and 80 cGy significantly decreased first carcinoma latency. A dose of 40 cGy X rays on Day -1 yielded tumor latencies and frequencies insignificantly different from unirradiated controls and significantly different from the dose on Day +48. Total carcinomas per rat day at risk were better fit by a function of dose to the power 0.4 than by a linear function after exposure to 1, 10, and 20 cGy fission neutrons, and 10 and 20 cGy significantly shortened the time to appearance of the first cancer. In contrast to results with X rays, 10 cGy neutrons on Day -1 yielded tumor frequencies and latencies insignificantly different from 10 cGy neutrons on Day +48. The carcinogenic action of X rays was thus influenced by total clonogen numbers and/or proliferation rates; that of neutrons was not.  相似文献   

2.
Measurements were made of clonogenic cell survival in rat rhabdomyosarcoma tumors as a function of time following in situ irradiation with single or fractionated doses of 225-kVp X rays or with 557-MeV/u neon ions in the distal position of a 4-cm extended-peak ionization region. Single doses of 20 Gy of X rays or 7 Gy of peak neon ions reduced the initial surviving fraction to approximately 0.025 for each modality. Daily fractionated doses (four fractions in 3 days) of either peak neon ions (1.75 Gy per fraction) or X rays (6 Gy per fraction) achieved a cell survival of approximately 0.02-0.03 after the fourth dose of radiation. In the single-dose experiments, significant 5- and 10-fold decreases in the fraction of clonogenic cells were observed between the third and fourth days after irradiation with peak neon ions and X rays, respectively. After the sixth day postirradiation, the residual clonogenic cells exhibited a rapid burst of proliferation leading to doubling times for the surviving cell fractions of approximately 1.5 days. Radiation-induced growth delay was consistent with the cellular repopulation dynamics. In the fractionated-dose experiments with both radiation modalities, a large delayed decrease in cell survival was observed at 1-3 days after completion of the fractionated-dose schedule. Cellular repopulation was consistent with postirradiation tumor volume regression and regrowth for both radiation modalities. The extent of decrease in survival following the four-fraction radiation schedule was approximately two times greater in X-irradiated than in neon-ion-irradiated tumors that produced the same survival level immediately after the fourth dose. Mechanisms underlying the marked reduction in cell survival 3-4 days postirradiation are discussed, including the possible role of a toxic host cell response against the irradiated tumor cells.  相似文献   

3.
Accelerated growth of tumor clonogens during the course of fractionated irradiation has been considered one of the major causes of radiation treatment failure. Alterations in clonogen growth rate could occur through three basic mechanisms: changes in cell-loss factor, changes in cell-cycle time, and recruitment of previously quiescent cells into the proliferative pool. This study was designed to assess changes in the cell-cycle time of clonogens of a murine fibrosarcoma during fractionated irradiation using an artificial pulmonary micrometastasis model. Lung colonies of various ages (4 h, 1 day, or 4 days) were exposed to single doses of irradiation ranging from 5-13 Gy; the fraction of surviving colonies was used to determine the preirradiation growth kinetics. The growth kinetics during fractionated irradiation was derived from colony-survival data of 4-day-old micrometastasis exposed to single doses or to 2, 5, 9, and 15 fractions separated by 4, 12, or 24-h intervals. The size of dose fractions used ranged from 1.7 to 14 Gy. The estimated clonogen doubling times before irradiation and during overall treatment periods of up to 14 days were 0.71 and 1.1 days, respectively. This significant (P less than 0.0001) increase in the doubling time was most likely a consequence of lengthening of the overall cell-cycle time of the clonogens by radiation-induced division delay. This observation suggests that accelerated growth, when it occurs in some tumors during fractionated treatment, is the result of a decreased cell-loss factor or recruitment of quiescent cells, but not a shortening of the cell-cycle time of the clonogens.  相似文献   

4.
Acceleration of clonogen repopulation during fractionated irradiation after about 3 weeks has been demonstrated previously in FaDu human squamous cell carcinoma in nude mice (Petersen et al., Int. J. Radiat. Oncol. Biol. Phys. 51, 483-493, 2001). Selection of genetically distinct, rapidly proliferating clones might contribute to this phenomenon. To address this question, three sublines (R1-R3) were established from FaDu tumors that recurred locally after fractionated irradiation. The tumors were retransplanted and irradiated under clamp hypoxia with single doses or with 18 x 3 Gy within 18 days or 36 days, followed by graded top-up doses. The results were compared with data obtained after the same treatment schedules in the parental tumor line. Histologies, tumor volume doubling times, and potential doubling times of FaDu sublines R1-R3 were not different from those of the parental line. The radiation dose required to control 50% of the tumors (TCD(50)) after single-dose irradiation of 37-38 Gy was the same for the FaDu sublines R1-R3 and the parental tumor. The top-up TCD(50) values for the FaDu sublines R1-R3 after 18 fractions within 36 days were 14-17 Gy higher than those after 18 fractions within 18 days, indicating significant repopulation. The magnitude of this effect was not significantly different between the sublines R1-R3 or between these sublines and the parental FaDu tumors. The results indicate that selection of genetically distinct, rapidly proliferating clones does not contribute to the acceleration of repopulation during fractionated irradiation in poorly differentiated FaDu tumors.  相似文献   

5.
The effect of hyperthermia on radiation-induced carcinogenesis   总被引:1,自引:0,他引:1  
Ten groups of mice were exposed to either a single (30 Gy) or multiple (six fractions of 6 Gy) X-ray doses to the leg. Eight of these groups had the irradiated leg made hyperthermic for 45 min immediately following the X irradiation to temperatures of 37 to 43 degrees C. Eight control groups had their legs made hyperthermic with a single exposure or six exposures to heat as the only treatment. In mice exposed to radiation only, the postexposure subcutaneous temperature was 36.0 +/- 1.1 degrees C. Hyperthermia alone was not carcinogenic. At none of the hyperthermic temperatures was the incidence of tumors in the treated leg different from that induced by X rays alone. The incidence of tumors developing in anatomic sites other than the treated leg was decreased in mice where the leg was exposed to hyperthermia compared to mice where the leg was irradiated. A systemic effect of local hyperthermia is suggested to account for this observation. In mice given single X-ray doses and hyperthermia, temperatures of 37, 39, or 41 degrees C did not influence radiation damage as measured by the acute skin reactions. A hyperthermic temperature of 43 degrees C potentiated the acute radiation reaction (thermal enhancement factor 1.1). In the group subjected to hyperthermic temperatures of 37 or 39 degrees C and X rays given in six fractions, the skin reaction was no different from that of the group receiving X rays alone. Hyperthermic temperatures of 41 and 43 degrees C resulted in a thermal enhancement of 1.16 and 1.36 for the acute skin reactions. From Day 50 to Day 600 after treatment, the skin reactions showed regular fluctuations with a 150-day periodicity. Following a fractionated schedule of combined hyperthermia and X rays, late damage to the leg was less than that following X irradiation alone. Mice subjected to X rays and hyperthermic temperatures of 41 and 43 degrees C had a lower median survival time than the mice treated with hyperthermia alone. This effect was not associated with tumor incidence.  相似文献   

6.
A further study on the response of the mouse kidney to d(4)-Be neutrons (EN = 2.3 MeV) is described. The results confirm and augment the work published previously by Stewart et al. [Br. J. Radiol. 57, 1009-1021 (1984)]; the present paper includes the data from a "top-up" design of experiment which extends the measurements of neutron RBE (relative to 240 kVp X rays) down to X-ray doses of 0.75 Gy per fraction. The mean RBE for these neutrons increases from 5.8 to 7.3 as X-ray dose per fraction decreases from 3.0 to 1.5 Gy in the kidney. This agrees with the predictions from the linear quadratic (LQ) model, based on the renal response to X-ray doses above 4 Gy per fraction. The mean RBE estimate from a single dose group at 0.75 Gy per fraction of X rays is, however, 3.9. This is below the LQ prediction and may indicate increasing X-ray sensitivity at low doses. Data from this study and from those published previously have been used to determine more accurately the shape of the underlying response to d(4)-Be neutrons; an alpha/beta ratio of 20.5 +/- 3.7 Gy was found. The best value of alpha/beta for X rays determined from these experiments was 3.04 +/- 0.35 Gy, in agreement with previous values.  相似文献   

7.
The sensitivity of the target cells responsible for the gastrointestinal syndrome in mice was deduced from the steepness of the dose-survival curve for mice assessed on Day 7 after irradiation. The D0 value was 1.25 +/- 0.22 Gy, virtually identical to the value of 1.23 +/- 0.08 measured for microcolony-forming cells (clonogens) over about the same range of dose in concurrent experiments. The survival of clonogens was similar when assayed in mice surviving to Days 3, 4, or 5, but clonogenic sensitivity was lower when assessed on Day 7. This was shown at one dose to be due largely to a selection of mice with high colony counts with only a small contribution from crypt budding. The LD50 for mice corresponded to a surviving fraction of crypts of about 0.35. An injection of 5 mg streptomycin sulphate ip daily for 5 days after irradiation increased the latent period by about 1 day, increased the LD50 by about 1.4 Gy, but did not significantly change the survival of clonogens. These studies are the first to test and satisfy the interpretation of a dose-response curve for animal survival in terms of "target cell" survival, where measurements of both are made over a similar range of dose in concurrent experiments.  相似文献   

8.
Postirradiation tumor volume response, cellular repopulation dynamics, cell-cycle perturbations, and phase-specific cell survival were characterized in rat rhabdomyosarcoma R-1 tumors (the R2C5 subline) following an in situ 10-Gy dose of 225-kVp X rays. This X-ray dose produced a 7.5-day delay in tumor growth to twice the volume measured at the time of irradiation, and reduced the initial surviving fraction of R2C5 cells to 0.17 as measured by the excision assay procedure. The surviving fraction of R2C5 cells returned to unity by the 16th day after tumor irradiation. On the basis of flow cytometry measurements of DNA content in tumor cells stained with a noncytotoxic concentration of Hoechst 33342 (5 microM, 2 h, 37 degrees C), a transient G2 block was observed 1 day after irradiation. Flow cytometry measurements also demonstrated that the tetraploid R2C5 cells constituted only 30% of the total tumor cell population, with the remainder being diploid host cells comprised of macrophages, monocytes, lymphocytes, and granulocytes. Large numbers of host cells infiltrated the irradiated tumors, leading to an increase in the percentage of diploid cells by Day 2 and reaching a level of more than 80% of the total tumor cell population by 4 to 8 days after irradiation. The influx of host cells into irradiated tumors was correlated temporally with a significant 12-fold decrease in the surviving fraction of R2C5 cells that occurred between Days 2 and 4 postirradiation. When the diploid host cell population was removed by cell sorting procedures, the surviving fraction of R2C5 cells at Day 4 was substantially greater than that in the presence of the host cells. Experiments involving the mixing of 4/1 and 12/1 ratios of diploid host cells and tetraploid tumor cells isolated from irradiated and unirradiated tumors demonstrated that the cytotoxic effect of the host cells was specific for the irradiated tumor cells. The significant toxic effect of host cells on irradiated tumor cells was observed only at 2 to 4 days after irradiation, and not at earlier or later times. The data obtained in these experiments indicate that the immunogenicity of R2C5 cells is increased significantly by irradiation, and a resultant cell-mediated host immune response produced a delayed decrease in tumor cell survival that is most pronounced 4 days after irradiation. The cell survival characteristics of R2C5 cells in different cell-cycle phases were found to be similar through the 16-day postirradiation interval that was studied.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Experiments using the alkaline comet assay, which measures all single-strand breaks regardless of their origin, were performed to evaluate the biological effectiveness of photons with different energies in causing these breaks. The aim was to measure human lymphocytes directly for DNA damage and subsequent repair kinetics induced by mammography 29 kV X rays relative to 220 kV X rays, 137Cs gamma rays and 60Co gamma rays. The level of DNA damage, predominantly due to single-strand breaks, was computed as the Olive tail moment or percentage DNA in the tail for different air kerma doses (0.5, 0.75, 1, 1.5, 2 and 3 Gy). Fifty cells were analyzed per slide with a semiautomatic imaging system. Data from five independent experiments were transformed to natural logarithms and fitted using a multiple linear regression analysis. Irradiations with the different photon energies were performed simultaneously for each experiment to minimize interexperimental variation. Blood from only one male and one female was used. The interexperimental variation and the influence of donor gender were negligible. In addition, repair kinetics and residual DNA damage after exposure to a dose of 3 Gy were evaluated in three independent experiments for different repair times (10, 20, 30 and 60 min). Data for the fraction of remaining damage were fitted to the simple function F(d) = A/(t + A), where F(d) is the fraction of remaining damage, t is the time allowed for repair, and A (the only fit parameter) is the repair half-time. It was found that the comet assay data did not indicate any difference in the initial radiation damage produced by 29 kV X rays relative to the reference radiation types, 220 kV X rays and the gamma rays of 137Cs and 60Co, either for the total dose range or in the low-dose range. These results are, with some restrictions, consistent with physical examinations and predictions concerning, for example, the assessment of the possible difference in effectiveness in causing strand breaks between mammography X rays and conventional (150-250 kV) X rays, indicating that differences in biological effects must arise through downstream processing of the damage.  相似文献   

10.
Considering that tumors are maintained by clonogenic cells, and that the primary target in the therapy of cancer is the clonogenic cell, the density of clonogens in a tumor could become an important parameter in quantitating the response to therapy. Indirect methods for determining the density of clonogenic cells in human tumors based on the response of tumors to radiation suggest there are circa 1 X 10(5) clonogens per gram with a large range. Direct methods, based on the measurement of cloning efficiency of enzymatically disaggregated biopsies of human tumors in soft agar, suggest a clonogen density of approximately 1,500 clonogens per gram. As this value is inconsistent with the prior data, we chose to determine the density of clonogenic cells in human tumors by assaying the enzyme digest of biopsies of human tumors for clonogenic cells using an enriched monolayer clonogenic assay. We determined the average clonogen density to be 1.12 x 10(5) clonogens per gram with a large range. The agreement with the indirect method suggests that the enriched monolayer clonogenic assay supports the proliferation of the cell population responsible for maintaining the tumor.  相似文献   

11.
The RBE for tritium was estimated in reference to 200-kVp X rays, using acceleration of breast tumor appearance in the female Sprague-Dawley rat as the end-point. Chronic X-ray doses of 0.3-2.0 Gy were delivered over 10 days. Intraperitoneal injections of tritiated water ranging in concentrations from 45 to 370 MBq/100 g body wt were administered, followed by four additional injections at 2-day intervals and half of the initial concentrations. Seventy-five percent of the total tritium dose was delivered to the mammary gland within the first 10 days and 95% within the first 20 days after the start of the tritium exposure. RBE estimations were based on various criteria including the tumor incidence per Gy at 450 days postirradiation and the time required to induce tumors in 50% of the animals at risk. The results suggest that tritium beta rays are about 1.1-1.3 times more effective than chronic 200-kVp X rays for acceleration of the appearance of rat mammary tumors. However, the uncertainties involved in these calculations are such that the effects of tritium beta rays could not be reliably distinguished from those of chronic 200-kVp X rays. Measured differences in RBE values were slightly larger for the comparison between acute and chronic X rays than for the comparison between chronic tritium beta rays and chronic X rays.  相似文献   

12.
Subpopulations of mouse lens epithelial cells, differing in proliferative status, were irradiated with either X rays or fission spectrum neutrons given singly or in four weekly fractions. After various times, epithelia were mitogenically stimulated by wounding and DNA synthesis responses were determined by incorporation of [3H]thymidine. At 1 h following both X and neutron irradiations, significant suppression of the wound response after single doses and a sparing effect of fractionation were evident in both the mitotically quiescent and the slowly proliferating subpopulations. At 1 week following single or fractionated doses of both radiations, recovery was evident in both subpopulations. By 4 weeks, the quiescent subpopulation showed significant recovery after both single and fractionated doses of X rays or neutrons. In contrast, a marked decreased ability to respond after neutron irradiation and, in addition, a significant enhancement effect of neutron fractionation were observed for the slowly proliferating subpopulation. Per gray, neutrons were about 7.5 times more effective than X rays as a single dose and 25 times more effective in four equal fractions. The shift from an initial sparing to a final enhancing effect of neutron fractionation for the slowly proliferating subpopulation has importance for understanding divergent early and late radiation responses following dose fractionation.  相似文献   

13.
The radiosensitivity of spermatogonial stem cells to X rays was determined in the various stages of the cycle of the seminiferous epithelium of the CBA mouse. The numbers of undifferentiated spermatogonia present 10 days after graded doses of X rays (0.5-8.0 Gy) were taken as a measure of stem cell survival. Dose-response relationships were generated for each stage of the epithelial cycle by counting spermatogonial numbers and also by using the repopulation index method. Spermatogonial stem cells were found to be most sensitive to X rays during quiescence (stages IV-VII) and most resistant during active proliferation (stages IX-II). The D0 for X rays varied from 1.0 Gy for quiescent spermatogonial stem cells to 2.4 Gy for actively proliferating stem cells. In most epithelial stages the dose-response curves showed no shoulder in the low-dose region.  相似文献   

14.
Inducible responses are well documented to play a role in the radiation response of cells. However, it is not known whether clinically relevant fractionated X-radiation treatment could elicit an inducible-like radioprotective response and whether there is a direct correlation between the inducible radiation response phenomenon and the intrinsic radiation response of the cell. Therefore, the purpose of this study was to determine whether closely related human colorectal tumor (HCT116) clones treated with fractionated X rays could elicit an inducible-like radiation response to a subsequent acute (i.e. single) X-ray challenge, and whether the magnitude of the inducible-like response correlates with the intrinsic X-ray resistance of the responding clones. After fractionated X irradiation, only the radiosensitive clone showed enhanced clonogenic survival with a subsequent acute X-ray exposure. Cell cycle changes or the selection of subclones with increased intrinsic radiation resistance induced by the fractionated X rays were excluded as the basis of this enhanced tolerance, suggesting the presence of an inducible-like radioprotective response. Using the comet assay, we found similar amounts of intrinsic DNA damage among the clones after acute X irradiation. Our findings demonstrate that fractionated X-ray treatment can elicit an inducible-like radioprotective response and represent the first evidence that this response is independent of the intrinsic radiation resistance/sensitivity of the responding cells.  相似文献   

15.
The effect of low doses of 240 kVp X rays or of 3 MeV neutrons has been investigated using skin reactions on mouse feet as the biological system. Eight or nine repeated small doses of radiation were used, followed by graded "top-up" doses to bring the reactions into a detectable range. By comparing dose-response curves, the RBE has been determined for neutron doses per fraction ranging from 0.25-1.0 Gy. The data are consistent with a limiting RBE of between 7 and 10 at very low doses. A review of other published RBE values for low doses per fraction shows a wide range of RBEs . Very few studies show a plateau value for the RBE. These findings are more consistent with dose-response data that fit a linear-quadratic model than with a multitarget single-hit model.  相似文献   

16.
The effect of a single local dose of 15 Gy on salivary gland function in male Albino Wistar rats was compared with the effect of two doses of 7.5 Gy. The intervals chosen were 0-24 h and 1 week. Before and 1-30 days after the last radiation dose, samples of parotid and submandibular saliva were collected simultaneously after stimulation of the glands with pilocarpine. Irradiation with the single dose resulted in an increased lag phase and potassium concentration, and a decreased flow rate and sodium concentration. The rate of secretion of amylase was decreased during Days 1-6, increased at Day 10, and was decreased again at Day 30. With two dose fractions, substantial dose-sparing effects on lag phase, flow rate, and secretion of amylase were observed for both the very early (0-6 days postirradiation) and later (6-30 days postirradiation) effects. These effects were maximal when the interval between the fractions was 6 h. A significant dose-sparing effect on electrolytes was observed for the later effects only, again with a maximum for the 6-h interval. The dose-sparing observed for the very early effects cannot be explained satisfactorily by repair of sublethal damage (SLD), redistribution of cells over the cell cycle, or repopulation of salivary gland tissue between the doses. In contrast to the earlier dose-sparing effects, the split-dose recovery seen for later damage may be attributed, in part, to SLD repair in providing for greater reproductive survival of intercalated ductal cells and enhanced tissue regeneration.  相似文献   

17.
The experimental design consisting of a partial tolerance dose followed by a top-up dose, is used as a method of comparing the effects of different radiations and irradiation schedules in vivo. It complements the usual approach of giving multiple equal fractions of a single radiation type to obtain an iso-effect, as it enables low doses per fraction to be studied without the need to use a large number of fractions or a long overall time. For normal tissues in animals, the effect of X-ray doses as low as 0.1 Gy per fraction can be detected when given as 20-40 fractions followed by a top-up dose of neutrons. In order to minimize variations in the effect of the top-up dose, neutrons are used as a top-up radiation in preference to X-rays. The methods of implementing this approach are explained in detail. Analysis of the data is described, with emphasis on the Linear Quadratic model of radiation dose-fractionation. However, it is not necessary to adopt this or any particular mathematical model in order to intercompare directly the effects of different radiations or irradiation schedules using the top-up approach. Such models nevertheless simplify the design of top-up experiments. Whilst any type of radiation can in principle be used as the top-up, this is given optimally as a dose of fast neutrons split into two fractions.  相似文献   

18.
Previous experiments on the radiosensitivity of O-2A glial progenitors determined for single-dose fission-neutron and X irradiation showed log-linear survival curves, suggesting a lack of accumulation of recovery of sublethal damage. In the present study, we addressed this question and further characterized the radiobiological properties of these glial stem cells by investigating the recovery capacity of glial stem cells using either fractionated or protracted whole-body irradiation. Irradiations were performed on newborn, 2-week-old or 12-week-old rats. Fractionated irradiations (four fractions) were performed with 24-h intervals, followed by cell isolations 16- 24 h after the last irradiation. Single-dose irradiations were followed by cell isolation 16-24 h after irradiation or delayed cell isolation (4 days after irradiation) of the O-2A progenitor cells from either spinal cord (newborns) or optic nerve (2- and 12-week-old rats). Results for neonatal progenitor cell survival show effect ratios for both fractionated fission-neutron and X irradiation of the order of 1.8 when compared with single-dose irradiation. A similar ratio was found after single-dose irradiation combined with delayed plating. Comparable results were observed for juvenile and adult optic nerve progenitors, with effect ratios of the order of 1.2. The present investigation clearly shows that fractionated irradiation regimens using X rays or fission neutrons and CNS tissue from rats of various ages results in an increase in O-2A progenitor cell survival while repair is virtually absent. This recovery of the progenitor pool after irradiation can be observed at all ages but is greatest in the neonatal spinal cord and can probably be attributed to repopulation.  相似文献   

19.
HeLa cells irradiated with 2 Gy of 220-kV X rays suffer a 60-70% loss of colony-forming ability which is increased to 90% by postirradiation treatment with 10 mM caffeine for 6 hr. The detailed postirradiation patterns of cell death and sister-cell fusion in such cultures and in cultures in which the colony-forming ability was brought to about the same level by treatment with a larger (4 Gy) X-ray dose alone or by longer (48 hr) treatment with 10 mM caffeine alone were recorded by time-lapse cinemicrography. Because the patterns of cell death and fusion differ radically in irradiated and in caffeine-treated cultures, the response of the additional cells killed by the combined treatment can be identified as X-ray induced rather than caffeine induced. The appearance of cultures after several days of incubation confirms the similarity of the post-treatment patterns of proliferation in cultures suffering enhanced killing to those occurring in cultures treated with larger doses of X rays alone. It is concluded that X rays do not sensitize cells to caffeine, but rather that caffeine enhances the expression of potentially lethal radiation-induced damage.  相似文献   

20.
Jia D  Gaddy D  Suva LJ  Corry PM 《Radiation research》2011,176(5):624-635
Localized irradiation is a common treatment modality for malignancies in the pelvic-abdominal cavity. We report here on the changes in bone mass and strength in mice 7-14 days after abdominal irradiation. Male C57BL/6 mice of 10-12 weeks of age were given a single-dose (0, 5, 10, 15 or 20 Gy) or fractionated (3 Gy × 2 per day × 7.5 days) X rays to the abdomen and monitored daily for up to 14 days. A decrease in the serum bone formation marker and ex vivo osteoblast differentiation was detected 7 days after a single dose of radiation, with little change in the serum bone resorption marker and ex vivo osteoclast formation. A single dose of radiation elicited a loss of bone mineral density (BMD) within 14 days of irradiation. The BMD loss was up to 4.1% in the whole skeleton, 7.3% in tibia, and 7.7% in the femur. Fractionated abdominal irradiation induced similar extents of BMD loss 10 days after the last fraction: 6.2% in the whole skeleton, 5.1% in tibia, and 13.8% in the femur. The loss of BMD was dependent on radiation dose and was more profound in the trabecula-rich regions of the long bones. Moreover, BMD loss in the total skeleton and the femurs progressed with time. Peak load and stiffness in the mid-shaft tibia from irradiated mice were 11.2-14.2% and 11.5-25.0% lower, respectively, than sham controls tested 7 days after a single-dose abdominal irradiation. Our data demonstrate that abdominal irradiation induces a rapid loss of BMD in the mouse skeleton. These effects are bone type- and region-specific but are independent of radiation fractionation. The radiation-induced abscopal damage to the skeleton is manifested by the deterioration of biomechanical properties of the affected bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号