首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 679 毫秒
1.
Staphylococcus aureus FDA 209P cells when suspended in 24% (w/v) NaCl were rendered osmotically fragile by exposure to lysostaphin for time intervals ranging from 2 to 60 min. Such cells were analyzed chemically and serologically for evidence of residual cell wall material, were plated in hypertonic sucrose medium to determine revertibility to normal, and were subjected to manometric studies to determine metabolic capabilities. Most of the cells (95%) which were exposed to lysostaphin (0.5 or 1.0 unit/ml) for 2 min, although osmotically fragile, retained their cell wall hexosamine and were capable of reverting to osmotically normal cells when plated in hypertonic medium. Cells exposed to lysostaphin for 5 and 10 min also retained much of their cell wall hexosamine, but lost their ability to revert to normal staphylococci. Cells exposed to lysostaphin for 2 to 10 min continued to react with staphylococcus anti-k antiserum. Complete removal of cell wall hexosamine was attained only after exposure to lysostaphin for 20 min or more; these cells failed to react with k antiserum. Lysostaphin-induced L-type colonies were extremely rare in our experiments, even if incubation times and media were optimal for their detection. Lysostaphin-induced staphylococcal protoplasts were as active metabolically in manometric studies as were untreated staphylococci.  相似文献   

2.
When Staphylococcus aureus FDA 209P cells were treated with lysostaphin (1 unit/ml) in hypertonic sodium chloride or sucrose environments, viable, osmotically fragile spheroplasts were produced. Turbidimetric studies indicated that 64% (w/v) sucrose or 20 to 28% (w/v) sodium chloride gives maximal protection against lysis of the lysostaphin-treated cells. The NaCl appeared to give greater protection than the sucrose and proved to be much more suitable for viability and related studies. Viability of both shocked and nonshocked treated cells was determined by S. aureus colony counts on agar plates overlayered with the test dilution of the cells suspended in 4 ml of semisolid agar containing 72% sucrose. The difference in the counts represented the number of revertible spheroplasts. Under these conditions, 30 to 50% of the test cells were recovered as osmotically fragile, but revertible, spheroplasts after 5 to 10 min of exposure to lysostaphin in 24% NaCl. This rewere obtained after 5 to 10 min of exposure to lysostaphin in 24% NaCl. This recovery rate fell off rapidly with prolonged exposure. In view of residual turbidity of 30- and even 60-min exposure preparations, it appeared probable that most of the osmotically fragile cells were eventually converted to protoplasts by the prolonged lysostaphin treatment. Osmotically fragile cells were converted to osmotic stability by fixation with 4% (v/v) Formalin.  相似文献   

3.
A lytic enzyme active against viable, intact staphylococci is released into culture fluids upon lysis of bacteriophage-infected Staphylococcus aureus PS53 cells. This enzyme, staphylococcal phage-associated lysin (PAL), was partially purified by ammonium sulfate precipitation and gel filtration through Sephadex G-200. PAL is optimally active at pH 6.5 and 30 C, and lytic activity is greatly enhanced by the addition of reducing agents. Lytic activity was observed against all strains of staphylococci tested and against purified staphylococcal cell walls, but no activity was noted against other bacterial species. PAL possesses peptidase activity and results in the production of spheroplasts which can be osmotically stabilized for extended periods by the addition of 7.5% polyethylene glycol 4000.  相似文献   

4.
The advent of Staphylococcus aureus strains that are resistant to virtually all antibiotics has increased the need for new antistaphylococcal agents. An example of such a potential therapeutic is lysostaphin, an enzyme that specifically cleaves the S. aureus peptidoglycan, thereby lysing the bacteria. Here we tracked over time the structural and physical dynamics of single S. aureus cells exposed to lysostaphin, using atomic force microscopy. Topographic images of native cells revealed a smooth surface morphology decorated with concentric rings attributed to newly formed peptidoglycan. Time-lapse images collected following addition of lysostaphin revealed major structural changes in the form of cell swelling, splitting of the septum, and creation of nanoscale perforations. Notably, treatment of the cells with lysostaphin was also found to decrease the bacterial spring constant and the cell wall stiffness, demonstrating that structural changes were correlated with major differences in cell wall nanomechanical properties. We interpret these modifications as resulting from the digestion of peptidoglycan by lysostaphin, eventually leading to the formation of osmotically fragile cells. This study provides new insight into the lytic activity of lysostaphin and offers promising prospects for the study of new antistaphylococcal agents.  相似文献   

5.
Summary Liquoid (polyanethole sulfonate) was neither capable of influencing the growth nor the viability of staphylococci. But liquoid induced a suppression of the activity of different autolytic wall systems of normally growing staphylococci, i.e., autolysins which participate in cross wall separation as well as autolysins which are responsible for cell wall turnover. Additionally, the lysostaphin-induced wall disintegration of staphylococci was inhibited by liquoid.However, no indication could be found for a direct inhibition of lytic wall enzymes by liquoid; rather an interaction of liquoid with the target structure for the autolytic wall enzymes, the cell wall itself, was postulated. On the basis of the experimental data with the teichoic acid- mutant S. aureus 52A5 the sites of wall teichoic acid were supposed to be an important target for the binding of liquoid to the staphylococcal cell wall.  相似文献   

6.
The effect of the bacteriolytic enzyme preparation, lysoamidase, on Staphylococcus aureus 209P cells was studied. The protoplast formation was examined by spectrophotometric, biochemical and electron microscopic methods. Optimal conditions for isolation of S. aureus protoplasts were chosen. The susceptibility of S. aureus cells to lysoamidase depended on the culture age: the maximum effect was observed in the logarithmic growth phase. The protoplast yield was 80% when 1 M sucrose was used as an osmotic stabilizer. Lysoamidase caused local disruptures of the staphylococcus cell walls, which resulted in the formation of osmotically fragile spheroplasts and the release of protoplasts into the medium. The protoplasts obtained could retain 85-90% of the respiration activity and were able of cell wall regeneration.  相似文献   

7.
Isosphaera pallida is an unusual gliding, budding eubacterium recently isolated from North American hot springs. Electron micrographs of ultrathin sections revealed a cell wall atypical of eubacteria: two electrondense layers separated by an electron-transparent layer, with no evident peptidoglycan layer. Growth was not inhibited by penicillin. Cell walls were isolated from sheared cells by velocity sedimentation. The rigid-layer fraction, prepared from cell walls by treatment with boiling 10% sodium dodecyl sulfate, was hydrolyzed and chemically analyzed for muramic acid. This essential component of peptidoglycan was absent. Amino acid analysis demonstrated a proteinaceous wall structure. Pitlike surface structures seen in negatively stained whole cells and thin sections were correlated with periodically spaced perforations of the rigid sacculus. An analysis of the lipid composition of I. pallida revealed typical ester-linked lipids with unbranched fatty acids, in contrast to the isoprenyl ether-linked lipids of archaebacteria, which also have proteinaceous cell walls. Capnoids, unusual sulfonolipids which are present in gliding bacteria of the Cytophaga-Flexibacter group, were absent.  相似文献   

8.
The primary goal of this review is to provide a compilation of the complex architectural features of staphylococcal cell walls and of some of their unusual morphogenetic traits including the utilization of murosomes and two different mechanisms of cell separation. Knowledge of these electron microscopic findings may serve as a prerequisite for a better understanding of the sophisticated events which lead to penicillin-induced death. For more than 50 years there have been controversial disputes about the mechanisms by which penicillin kills bacteria. Many hypotheses have tried to explain this fatal event biochemically and mainly via bacteriolysis. However, indications that penicillin-induced death of staphylococci results from overall biochemical defects or from a fatal attack of bacterial cell walls by bacteriolytic murein hydrolases were not been found. Rather, penicillin, claimed to trigger the activity of murein hydrolases, impaired autolytic wall enzymes of staphylococci. Electron microscopic investigations have meanwhile shown that penicillin-mediated induction of seemingly minute cross wall mistakes is the very reason for this killing. Such “morphogenetic death” taking place at predictable cross wall sites and at a predictable time is based on the initiation of normal cell separations in those staphylococci in which the completion of cross walls had been prevented by local penicillin-mediated impairment of the distribution of newly synthesized peptidoglycan; this death occurs because the high internal pressure of the protoplast abruptly kills such cells via ejection of some cytoplasm during attempted cell separation. An analogous fatal onset of cell partition is considered to take place without involvement of a detectable quantity of autolytic wall enzymes (“mechanical cell separation”). The most prominent feature of penicillin, the disintegration of bacterial cells via bacteriolysis, is shown to represent only a postmortem process resulting from shrinkage of dead cells and perturbation of the cytoplasmic membrane. Several schematic drawings have been included in this review to facilitate an understanding of the complex morphogenetic events.  相似文献   

9.
The action of the lysoamidase bacteriolytic complex on Staphylococcus aureus VKM B-209P cells has been studied to obtain protoplasts. The cells in the midlogarithmic phase were the most sensitive to lysoamidase action. It led to local destruction of cell wall due to hydrolysis of the peptidoglycan. Protoplast formation occurred in two steps in the presence of 1 M sucrose. First, osmotically fragile spheroplasts were formed. Then, the protoplasts were released from the destructed cell wall. The protoplast yield was about 80%. The protoplasts preserved the intact ultrastructure and were able to synthesize peptidoglycan fibrillae. Mainly the spheroplasts that maintained the cell-wall residues reversed into bacterial forms. The protoplasts had respiratory activity similar to cells. Respiration of cells and protoplasts was stimulated by various substrates. High rates of oxygen consumption were observed with -glycerophosphate and ethanol as substrates.  相似文献   

10.
A system for the formation of apparently wall-free protoplasts from exponential-phase cells of Streptococcus faecalis ATCC 9790 in the absence of added lytic enzymes was developed. Exponential-phase cells suspended in 0.04 M ammonium acetate, pH 6.7, 1 mM magnesium acetate, and 0.5 M sucrose become osmotically fragile within 1 to 1.5 h due to the action of the native, autolytic enzyme on the cell wall peptidoglycan. However, maximal cell wall loss occurred much more slowly, being complete only after 3 to 6 h. Under these conditions, the autolytically formed protoplasts (autoplasts) remained intact for prolonged periods (up to 24 h) with less than 5% of their deoxyribonucleic acid, ribonucleic acid, and protein lost during the first 6 h. During dissolution of the cell wall, release of autolytic enzyme to the supernatant fluid began after 60% of the wall was lost. The addition of trypsin to the incubation mixture increased the rate of attainment of osmotic fragility and cell wall loss two- to threefold, apparently due to the activation of the latent form of the autolysin. Electron microscopy was used to confirm cell wall loss and the presence of intact protoplasts at the end of the incubation periods.  相似文献   

11.
L F Lin  R E Levin 《Microbios》1990,63(255):109-115
Novozym 234 at a concentration of 1.0 mg/ml yielded 95.5% spheroplasts within 30 min at 37 degrees C, pH 7.0, with 36% regeneration which was the highest level of regeneration observed. Yeast lytic enzyme at a concentration of 1.0 mg/ml yielded 99.8% spheroplasts with only 1.5% regeneration. Glusulase was significantly less active in producing osmotically sensitive cells. All three enzymes yielded significantly higher levels of osmotically sensitive cells when cells were harvested from the mid-logarithmic phase of growth compared with later growth phases. beta-Glucuronidase failed to produce osmotically sensitive cells regardless of the phase of growth from which cells were harvested.  相似文献   

12.
Summary Spheroplasts were obtained by lysozyme treatment of 48 hour (4– 8cells) akinete germlings of the cultured cyanobacteriaAnabaena variabilis andA. azollae originally isolated from the leaf cavity of the fernAzolla pinnata. The osmotic stabilizer was 0.5 M sucrose. At least 50% of the cells in a short filament became spheroplasts after 1–4 hours in lysozyme (1 mg/ml) in incubation medium at 34 °C, with greater than 75% viability after 2 hours. The spheroplasts were osmotically fragile and showed intense chlorophyll autofluorescence in UV light. In phase microscopy, treated cells appeared larger, became spherical and lost some of their optical refraction. Transmission electron microscopy confirmed the loss of the peptidoglycan layer and the partial remains of the outer membrane after lysozyme exposure. We previously obtained protoplasts ofAzolla fern leaf cells so that we now can study the recognition sites in both members of theAzolla/Anabaena nitrogen fixing symbiosis during cell wall degradation and regeneration.  相似文献   

13.
A strain of Saccharomyces cerevisiae which produced elongated cells under our growth conditions was investigated. By digestion of the cell walls with snail enzyme, the cells became spheroplasts after a transient state which we termed "prospheroplast." The prospheroplast could be lysed like the spheroplast, but it retained the shape of the original yeast cell if osmotically protected. Prospheroplasts and spheroplasts were prepared, and thin sections of samples taken throughout the process of wall removal were studied in the electron microscope, at regular intervals up to the time of complete conversion to spheroplasts. In addition, cell wall remnants recovered from spheroplast preparations were shadow cast for electron microscopy. This material revealed structures resembling bud scars with attached membranous matter. The kinetic studies showed that after a certain period of time all cells were transformed into prospheroplasts, whereas spheroplast formation started later, depending on the enzyme concentration. In sections, the prospheroplasts appeared to be formed by detachment of the cell walls. Both the prospheroplasts and the spheroplasts showed asymmetric cytoplasmic membranes in which the outer leaflets appeared coated with a dense fibrillar layer. The experiments suggest that, after enzyme digestion, the cytoplasmic membrane retains a coating which is rigid in the prospheroplast but which loses rigidity when the cell is transformed into a spheroplast.  相似文献   

14.
Electron micrographs ofStaphylococcus aureus 7167 which had been grown anaerobically showed that the cell wall was approximately 5 times thicker than the wall of bacteria after aerobic growth. Cell walls prepared from anaerobically grownS. aureus were more sensitive to the bacteriolytic enzymes: lysostaphin, lysozyme, and the wall-associated autolytic enzyme ofB. subtilis 168 I?. Our findings are interpreted as evidence that the cell wall or surface of anaerobically grownS. aureus 7167 is different from that of aerobically grownS. aureus 7167. The findings suggest that the cell wall peptidoglycan of the anaerobe is a more loosely formed network, resulting in a more rapid solubilization by the bacteriolytic enzymes.  相似文献   

15.
The action of penicillin onSerratia marcescens was studied. In culture media containing sucrose (0.33m) and in the presence of magnesium ions, cell wall lesions occurred giving rise to osmotically fragile spheroplasts. However, in the absence of sucrose and magnesium ions it was still possible to induce some spheroplast formation. Quantitative aspects of the conversion of rods into spheroplasts were studied as well as physical properties of the spheroplasts.  相似文献   

16.
LysK is the endolysin from the staphylococcal bacteriophage K, and can digest the cell wall of many staphylococci. Lysostaphin is a bacteriocin secreted by Staphylococcus simulans to kill Staphylococcus aureus. Both LysK and lysostaphin have been shown to lyse methicillin-resistant S. aureus (MRSA). This study describes optimal reaction conditions for the recombinant His-tagged LysK protein (pH range pH 6-10, and 0.3-0.5 M NaCl), and C-His-LysK MIC (32.85+/-4.87 mug mL(-1)). LysK and lysostaphin demonstrate antimicrobial synergy by the checkerboard assay.  相似文献   

17.
Lytic enzymes were isolated from 14 strains of phage-infected Staphylococcus aureus. Cell walls were prepared from the same uninfected strains of bacteria. Comparison of the lytic rates was made for each enzyme, with each of the cell walls as substrate. Differences in the rate of substrate utilization of the various cell wall types exceeded 10-fold. Cell walls from strains 42E, 29, and 77 were the best substrates, whereas cell walls from strains 3C, 80, and 187 were the poorest substrates. The cell wall amino acid composition is discussed as related to lytic enzyme specificity. A possible explanation of phage typing of staphylococcal cells, based on enzyme activity and cell wall composition, is presented.  相似文献   

18.
Induction of Enterococcal L-Forms by the Action of Lysozyme   总被引:11,自引:5,他引:6       下载免费PDF全文
Suspensions of enterococci were treated with lysozyme in the presence of osmotic stabilizers. The resulting osmotically fragile bodies prepared from Streptococcus faecium strain F24 and S. faecalis strain E1 gave rise to L-forms under optimal osmotic and nutritional conditions for treatment and subsequent growth. The most critical component of the growth medium, to obtain maximum yields, was the nature and concentration of the added salt. The two most effective salts were sodium chloride and ammonium chloride in the range of 2 to 3% (w/v) added to a suitable agar base. Ammonium chloride was more versatile, because it could be used with either sucrose or polyethylene glycol 4000 as the osmotic stabilizer for preparation and dilution of the osmotically fragile bodies. Sodium chloride would not consistently support growth of S. faecium F24 as L-forms when polyethylene glycol 4000 was used as the osmotic stabilizer during lysozyme treatment. Time-course studies of concurrent cell wall removal and L-form induction suggested that maximal induction required only cell wall damage rather than complete wall removal. This method for induction of L-forms from a suspension of enterococci is a significant improvement over other presently known methods.  相似文献   

19.
Summary Yeast cells of Nadsonia elongata were cultivated in such a way that simultaneously with enzymatic lysis of the cell wall a partial synthesis of cell wall components was taking place. After the initial period of cultivation, which lasted about 10 h and during which the morphology of cells remained unchanged when compared to controls, the cells were transformed into prospheroplasts. The prospheroplasts were larger than the control cells and, though they enlarged in volume in distilled water, they still retained the shape of the original cells. However, some changes were found in the ultrastructure of the cell walls of prospheroplasts in comparison with that of the cell walls of intact cells: while in yeast cells the surface was smooth, in prospheroplasts the fibrillar network was revealed as a result of the removal of the amorphous component; the gradual disappearance of the outer cell wall layer and a swelling of the remaining cell wall fragment were seen in ultrathin sections. After about 20-h cultivation the prospheroplasts were transformed into spheroplasts. The spheroplasts were osmotically fragile, and did not retain the shape of the yeast cell, even in isoosmotic environment. On the surface of spheroplasts only the fibrillar network composed of separate fibrils was seen. The spheroplasts were the final stage of yeast cell transformation under the conditions employed in the present study. Under the mentioned conditions true protoplasts are never formed. However, if the synthesis of cell wall components could not take place simultaneously with the lysis of the cell wall, the cells were transformed to protoplasts.  相似文献   

20.
The effect of p-fluorophenylalanine (FPA) on growing cultures of Escherichia coli was studied with regard to the composition and morphology of the cell envelope. A cell wall fraction was prepared by autolysis in hypertonic medium, and the resulting spheroplasts were osmotically lysed to obtain a cytoplasmic membrane fraction. Incorporation of labeled phenylalanine, FPA, and N-acetylglucosamine into both fractions of FPA-inhibited cells suggested that the composition of the membrane changed with time, whereas that of the cell wall remained relatively constant. Amino acid analysis revealed changes in the composition of the membrane fraction after FPA inhibition. Electron micrographs of shadowed cells and membranes revealed the presence of electron-dense metachromatic granules during the early stages of FPA inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号