首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free radicals, because of their marked chemical activity, have often been found to be involved in many human diseases. Enzymatic antioxidant systems, namely glutathione-reductase, present both in red blood cells and in serum, have been demonstrated to play a key role as free radicals scavengers. The present work has been carried out in order to evaluate the possible role played by free radicals in the demineralization process of the bone matrix. Glutathione-reductase activity, assayed by a slightly modified Horn's method, was related to bone density measurements. All the subjects with reduced densitometric values showed reduced glutathione-reductase levels. Our results seem to support the hypothesis of a strict relationship between low activity of antioxidant systems and demineralization process of the bone, in consequence of enhanced free radical levels.  相似文献   

2.
Osteogenic growth peptide: from concept to drug design   总被引:20,自引:0,他引:20  
Bab I  Chorev M 《Biopolymers》2002,66(1):33-48
Recently, the osteogenic growth peptide (OGP) and its C-terminal pentapeptide H-Tyr-Gly-Phe-Gly-Gly-OH [OGP(10-14)] have attracted considerable clinical interest as bone anabolic agents and hematopoietic stimulators. They are present in mammalian serum in micromolar concentrations, increase bone formation and trabecular bone density, and stimulate fracture healing when administered to mice and rats. In cultures of osteoblastic and other bone marrow stromal cells, derived from human and other mammalian species, OGP regulates proliferation, alkaline phosphatase activity and matrix mineralization via an autocrine/paracrine mechanism. In vivo it also regulates the expression of type I collagen and the receptor for basic fibroblast growth factor. In addition, OGP and OGP(10-14) enhance hematopoiesis, including the stimulation of bone marrow transplant engraftment and hematopoietic regeneration after ablative chemotherapy. Apparently, the hematopoietic effects of these peptides are secondary to their effect on the bone marrow stroma. Detailed structure-activity relationship study identified the side chains of Tyr(10) and Phe(12) as the principal pharmacophores for OGP-like activity. Recently, it has been demonstrated that several cyclostereoisomers of OGP(10-14), including the analogue retro-inverso (Gly-Gly-D-Phe-Gly-D-Tyr), share the full spectrum of OGP-like bioactivities. Taken together, OGP represents an interesting case of a "housekeeping" peptide that plays an important role in osteogenesis and hematopoiesis, and interacts with its putative macromolecular target via distinct pharmacophores presented in a specific spatial organization.  相似文献   

3.
Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53) from donors 54–95 years of age (22 men and 30 women, 1 unknown) and previous cited parameters were evaluated. Collagen cross-link content (PYD, DPD, PEN and % of collagen) was measured on surrounding trabecular bone. We found that determinants of microdamage were mostly the age of donors, architecture, mineral characteristics and mature enzymatic cross-links. Moreover, linear microcracks were mostly associated with the bone matrix characteristics whereas diffuse damage was associated with architecture. We conclude that linear and diffuse types of microdamage seemed to have different determinants, with age being critical for both types.  相似文献   

4.
Fracture repair recapitulates in adult organisms the sequence of cell biological events of endochondral ossification during skeletal development and growth. After initial inflammation and deposition of granulation tissue, a cartilaginous callus is formed which, subsequently, is remodeled into bone. In part, bone formation is influenced also by the properties of the extracellular matrix of the cartilaginous callus. Deletion of individual macromolecular components can alter extracellular matrix suprastructures, and hence stability and organization of mesenchymal tissues. Here, we took advantage of the collagen IX knockout mouse model to better understand the role of this collagen for organization, differentiation and maturation of a cartilaginous template during formation of new bone. Although a seemingly crucial component of cartilage fibrils is missing, collagen IX-deficient mice develop normally, but are predisposed to premature joint cartilage degeneration. However, we show here that lack of collagen IX alters the time course of callus differentiation during bone fracture healing. The maturation of cartilage matrix was delayed in collagen IX-deficient mice calli as judged by collagen X expression during the repair phase and the total amount of cartilage matrix was reduced. Entering the remodeling phase of fracture healing, Col9a1(-/-) calli retained a larger percentage of cartilage matrix than in wild type indicating also a delayed formation of new bone. We concluded that endochondral bone formation can occur in collagen IX knockout mice but is impaired under conditions of stress, such as the repair of an unfixed fractured long bone.  相似文献   

5.
The development of the skeleton requires the coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts. The activities of these two cell types are likely to be regulated by TGF-beta, which is abundant in bone matrix. We have used transgenic mice to evaluate the role of TGF-beta 2 in bone development and turnover. Osteoblast- specific overexpression of TGF-beta 2 from the osteocalcin promoter resulted in progressive bone loss associated with increases in osteoblastic matrix deposition and osteoclastic bone resorption. This phenotype closely resembles the bone abnormalities seen in human hyperparathyroidism and osteoporosis. Furthermore, a high level of TGF- beta 2 overexpression resulted in defective bone mineralization and severe hypoplasia of the clavicles, a hallmark of the developmental disease cleidocranial dysplasia. Our results suggest that TGF-beta 2 functions as a local positive regulator of bone remodeling and that alterations in TGF-beta 2 synthesis by bone cells, or in their responsiveness to TGF-beta 2, may contribute to the pathogenesis of metabolic bone disease.  相似文献   

6.
We have sequenced a cDNA of urinary stone protein. cDNA sequences show complete homology between urinary stone protein and human osteopontin (bone sialoprotein) (nucleotides 265-886 and 1183-1424). Osteopontin is a recently discovered bone matrix protein which has been implicated in mediating mineral formation within bone extracellular matrix. This result shows that osteopontin is presumably involved in stone formation as stone matrix.  相似文献   

7.
To eliminate the potential for infection, many tissue banks routinely process and terminally sterilize allografts prior to transplantation. A number of techniques, including the use of scanning electron microscopy, bone graft models, and mechanical property tests, are used to evaluate the properties of allograft bone. However, as these methods are time consuming and often destroy the bone sample, the quality assessment of allograft bones are not routinely performed after processing and sterilization procedures. Raman spectroscopy is a non-destructive, rapid analysis technique that requires only small sample volumes and has recently been used to evaluate the mineral content, mineral crystallinity, acid phosphate and carbonate contents, and collagen maturity in human and animal bones. Here, to establish a quality assessment method of allograft bones using Raman spectroscopy, the effect of several common sterilization and preservation procedures on rat femoral bones were investigated. We found that freeze-thawing had no detectable effects on the composition of bone minerals or matrix, although heat treatment and gamma irradiation resulted in altered Raman spectra. Our findings suggest Raman spectroscopy may facilitate the quality control of allograft bone after processing and sterilization procedures.  相似文献   

8.
In this paper, hydrophilic polymer membranes based on macromolecular chitosan networks have been synthesized and characterized. The structure of the membrane has been altered in several ways during the formation to adjust the properties, particularly with regard to the elasticity, tensile strength, permeability, and surface structure. An alteration of the network structure was achieved by addition of flexibilizer, cross-linking with dialdehydes, symplex formation of the chitosan with the polyanion sulfoethyl cellulose, and the introduction of artificial pores on the micro- and nanometer scale into the chitosan matrix with silica particles or poly(ethylene glycol). The resulting network structures and morphologies of these unique membranes that combine the novel alteration techniques have been characterized in detail and correlated with molecular parameters of the chitosan as degree of deacetylation, molar mass, and charge density. Finally, we report on the impact of the new network structures on physical properties of the membranes, the water vapor and gas permeability and the tensile strength, to evaluate possible application of the membranes as a wet wound dressing material with microbial barrier function that actively assists the healing process of problematic wounds. Parts of the novel combined membrane alteration and formation techniques are now covered by the patent DE 102004047115.  相似文献   

9.
Early detection of fracture risk is important for initiating treatment and improving outcomes from both physiologic and pathologic causes of bone loss. While bone mineral density (a quantity measure) has traditionally been used for this purpose, alternative structural imaging parameters (quality measures) are proposed to better predict bone's true mechanical properties. To further elucidate this, trabecular bone from cadaveric human calcanei were used to evaluate the interrelationship of mechanical and structural parameters using mechanical testing, dual energy X-ray absorptiometry (DXA) scanning, and micro computed tomography (microCT) imaging. Directional specific structural properties were assessed in three-dimensional (3-D) and correlated to mechanical testing and DXA. The results demonstrated that microCT-derived indices of bone quality (i.e., volume fraction and structural model index) are better than DXA-derived bone mineral density for the prediction of the mechanical parameters of bone (i.e., elastic modulus, yield stress, and ultimate stress). Diagnostically, this implies that future work on the early prediction of fracture risk should focus as much on bone quality as on quantity. Furthermore, the results of this study show that a loss of bone primarily affects the connectedness and overall number of trabeculae. Ultimate stress, however, is better correlated with trabecular number than thickness. As such, primary prevention of osteoporosis may be more important than later countermeasures for bone loss.  相似文献   

10.
Human bones sustain fatigue damage in the form of in vivo microcracks as a result of the normal everyday loading activities. These microcracks appear to preferentially accumulate in certain regions of bone and most notably in interstitial bone matrix areas. These are remnants of old bone tissue left unremodelled, which show a higher than average mineral content and consequently the occurrence of microcracks has been attributed to the possible brittleness brought about by such hypermineralisation. There is a need, therefore, for information on the in situ bone matrix properties in the vicinity of such in vivo microcracks to elucidate the possible causes of their appearance. The present study examined the elastic, strain rate (viscous) and plastic properties of bone matrix in selectively targeted areas by nanoindentation and in both quasistatic and dynamic mode. The results showed that in vivo crack areas are not as stiff as some well-known extremely mineralised and brittle bone examples (bulla, rostrum); the strain rate effects of crack regions were identical to those of other regions of human bone and agreed well with values collected for human bone in the past at the macroscale; while the plasticity index of the crack regions was also not statistically different from most bone examples (including human at random, bovine, bulla and rostrum) except antler, which showed lower plasticity and thus a greater fraction of elastic recovery in indentation energy. It is difficult, therefore, to explain the susceptibility of these interstitial regions to crack in terms of the mineral content and its after-effects on elasticity, viscosity and plasticity alone, but one need to attribute the cracks to the cumulative loading history of these areas, or raise the suggestion that these areas of bone matrix are in some measure 'aged' or material/quality defective.  相似文献   

11.
Clinicians await the availability of synthetic bioimplants that will replace the need for autogeneic bone grafts in bone reconstructive surgery. For more than a decade, researchers have evaluated delivery vehicles for the tissue morphogen bone morphogenetic protein. The object of this investigation was to measure induced bone development when bone morphogenetic protein was delivered by human tendon collagen, human demineralized bone matrix, hydroxyapatite, a composite of human tendon collagen and human demineralized bone matrix (tendon collagen + demineralized bone matrix), Poloxamer 407, and a composite of human demineralized bone matrix and Poloxamer 407. Sixty-three adult male Swiss Webster mice (Harlan Sprague-Dawley, Indianapolis, Ind.) received 126 implants. The animals were divided into seven groups of nine animals, depending on carrier (six carriers plus the positive control group) used. Each animal received a bone morphogenetic protein-enhanced carrier in one hindquarter muscle mass, with the contralateral leg being implanted with the carrier alone. Implants were evaluated by quantitative radiomorphometry validated by histologic methods. Radiographically, no significant differences were identified among any of the implants evaluated (p > 0.05). Histomorphometric analysis demonstrated that Poloxamer 407 was significantly (p < 0.05) better at delivering bone morphogenetic protein than the other carriers involved in this investigation. The new bone developed in a tubular or spherical shape. Interaction of endogenous and exogenous delivery systems seems to be essential for optimal transmission of bone morphogenetic protein. The importance of the excipient to deliver bone morphogenetic protein and develop a bone morphogenetic protein concentration gradient has been emphasized by other investigators and confirmed by our research on poloxamer. With further research on the physicochemical mechanisms of localization and transmission of bone morphogenetic protein, it may be possible to avoid hazardous operations with autogeneic bone.  相似文献   

12.
The biochemical content of articular cartilage: an original MRI approach   总被引:7,自引:0,他引:7  
The MR aspect of articular cartilage, that reflects the interactions between protons and macromolecular constituents, is affected by the intrinsic tissue structure (water content, the content of matrix constituents, collagen network organization), imager characteristics, and acquisition parameters. On the T1-weighted sequences, the bovine articular cartilage appears as an homogeneous tissue in high signal intensity, whatever the age of animals considered, whereas on the T2-weighted sequences, the articular bovine cartilage presents variations of its imaging pattern (laminar appearance) well correlated to the variations of its histological and biochemical structure. The T2 relaxation time measurement (T2 mapping), which reflects quantitatively the signal intensity variations observed on T2 weighted sequences, is a way to evaluate more precisely the modifications of cartilage structure during the aging and maturation processes (rat's study). This technique so far confined to experimental micro-imagers is now developed on clinical imagers. Consequently, it may permit to depict the early stages of osteoarthritic disease (OA) or to evaluate the chondroprotective effect of drugs.  相似文献   

13.
Suprastructures of the extracellular matrix, such as banded collagen fibrils, microfibrils, filaments, or networks, are composites comprising more than one type of macromolecule. The suprastructural diversity reflects tissue-specific requirements and is achieved by formation of macromolecular composites that often share their main molecular components alloyed with minor components. Both, the mechanisms of formation and the final macromolecular organizations depend on the identity of the components and their quantitative contribution. Collagen I is the predominant matrix constituent in many tissues and aggregates with other collagens and/or fibril-associated macromolecules into distinct types of banded fibrils. Here, we studied co-assembly of collagens I and XI, which co-exist in fibrils of several normal and pathologically altered tissues, including fibrous cartilage and bone, or osteoarthritic joints. Immediately upon initiation of fibrillogenesis, the proteins co-assembled into alloy-like stubby aggregates that represented efficient nucleation sites for the formation of composite fibrils. Propagation of fibrillogenesis occurred by exclusive accretion of collagen I to yield composite fibrils of highly variable diameters. Therefore, collagen I/XI fibrils strikingly differed from the homogeneous fibrillar alloy generated by collagens II and XI, although the constituent polypeptides of collagens I and II are highly homologous. Thus, the mode of aggregation of collagens into vastly diverse fibrillar composites is finely tuned by subtle differences in molecular structures through formation of macromolecular alloys.  相似文献   

14.
丝素蛋白在电纺丝法构建组织工程支架中的应用进展   总被引:1,自引:0,他引:1  
丝素蛋白是天然高分子纤维蛋白,具有良好的物理和机械力学性能及生物相容性,因而在组织工程领域有着广阔的应用前景。文中对丝素蛋白的化学组成、分子结构特点、提取方法以及利用静电纺丝技术在组织工程化支架构建中的应用作了概述。总结了丝素蛋白在用于组织工程材料上的性能和优势以及在人工血管、皮肤、骨组织等工程化支架方面的应用情况,探讨了丝素蛋白支架对细胞在其上生长、增殖和功能的影响,同时对丝素蛋白在组织工程化食道支架及其他再生医学上的应用前景进行了展望。  相似文献   

15.
16.
Human bone marrow-derived mesenchymal stem cells (MSCs) have been shown to differentiate into distinct mesenchymal tissues including bone and cartilage. The capacity of MSCs to replicate undifferentiated and to mature into cartilaginous tissues suggests these cells as an attractive cell source for cartilage tissue engineering. Here we show that the stimulation of human bone marrow-derived MSCs with recombinant bone morphogenetic protein-2 (BMP2) results in chondrogenic lineage development under serum-free conditions. Histological staining of proteoglycan with Alcian blue and immunohistochemical staining of cartilage-specific type II collagen revealed the deposition of typical cartilage extracellular matrix components. Semi-quantitative real-time gene expression analysis of characteristic chondrocytic matrix genes, such as cartilage link protein, cartilage oligomeric matrix protein, aggrecan, and types I, II, and IX collagen, confirmed the induction of the chondrocytic phenotype in high-density culture upon stimulation with BMP2 and transforming growth factor-beta3 (TGFbeta3). Histologic staining of mineralized extracellular matrix with von Kossa, immunostaining of type X collagen (typical for hypertrophic chondrocytes), and gene expression analysis of osteocalcin and adipocyte-specific fatty acid binding protein (aP2) further documented that BMP2 induced chondrogenic lineage development and not osteogenesis and/or adipogenesis in human MSCs. These results suggest BMP2 as a promising candidate for tissue engineering approaches regenerating articular cartilage on the basis of mesenchymal progenitors from bone marrow.  相似文献   

17.
Current studies of protein phosphorylation focus primarily on the importance of specific phosphoproteins and their landscapes of phosphorylation in the regulation of different cellular functions. However, global changes in phosphorylation of extracellular matrix phosphoproteins measured “in bulk” are equally important. For example, correct global phosphorylation of different bone matrix proteins is critical to healthy tissue biomineralization. To study changes of bone matrix global phosphorylation, we developed a strategy that combines a procedure for in vitro phosphorylation/dephosphorylation of fully mineralized bone in addition to quantitation of the global phosphorylation levels of bone matrix proteins. For the first time, we show that it is possible to enzymatically phosphorylate/dephosphorylate fully mineralized bone originating from either cadaveric human donors or laboratory animals (mice). Using our strategy, we detected the difference in the global phosphorylation levels of matrix proteins isolated from wild-type and osteopontin knockout mice. We also observed that the global phosphorylation levels of matrix proteins isolated from human cortical bone were lower than those isolated from trabecular bone. The developed strategy has the potential to open new avenues for studies on the global phosphorylation of bone matrix proteins and their role in biomineralization as well for other tissues/cells and protein-based materials.  相似文献   

18.
《IRBM》2009,30(3):139-140
Injectable biomaterials are a particular field of biomaterials used for noninvasive surgical techniques (e.g. percutaneous surgery). The fundamental characteristic of this type of biomaterials is their rheological properties during implantation. In this context, the subject of this research work was to evaluate the rheological properties of two injectable biomaterials used in osteoarticular and dental tissue engineering: (i) a synthetic extracellular matrix and (ii) an injectable calcium phosphate suspension. The rheological properties of silated hydroxypropylmethylcellulose hydrogel were studied. It is shown that although silanization reduces the hydrodynamic volume in dilute solution, it does not affect significantly the rheological behavior of the concentrated solutions. In dilute solution, intrinsic viscosity of different HPMC-Si solutions before steam sterilization indicated that macromolecular chains occupied larger hydrodynamic volume compared to the sterilized HPMC-Si solutions. For the sterilized HPMC-Si concentrated solutions, the limiting viscosities decreased when the pH increased. This change, remarked in dilute and concentrated domain has been attributed to the formation of both intra- and intermolecular associations during the phase separation process of HPMC-Si during steam sterilization. The formation of HPMC-Si hydrogels from injectable aqueous solution was studied after neutralization. The study of the gelation process revealed the dependence of the final concentration of HPMC-Si hydrogel, pH and temperature on cross-linking kinetics and viscoelastic properties. An injectable calcium phosphate ceramic suspension was studied. This “ready-to-use” injectable bone substitute is consisting of an aqueous HPMC solution as matrix and calcium phosphate particles as fillers. The rheological characterization revealed the macromolecular behavior of the HPMC. The investigations of settling kinetics showed the dependence of the particle size and the HPMC concentration on the settling velocity and sediment compactness before and after sterilization. The rheological properties and injectability of this suspension were also studied. The suspensions showed a strongly increased viscosity as compared to the HPMC solution. The rheological proprieties of suspensions depend on the composition. A simple device has been used to characterize extrusion of the paste using a disposable syringe fitted with a needle. The injectability modeling was realized. A theoretical approach based on the capillary flow of non newtonian fluids was used to predict the necessary pressure for injection, on the basis of rheological properties and extrusion conditions. The theoretical estimation of the extrusion pressure showed a wall slip in the suspensions, so that the injection pressure is less than anticipated. The influence of wall slip leads, however, to a constant proportionality factor between theory and injection experiments.  相似文献   

19.
Mandibular condyles from 18- to 20-week-old human fetuses were examined in the light and electron microscope with particular attention to intratissue organization and extracellular matrix. In the human fetus the condyle has been divided into five layers: (1) the most superficial, articular layer, (2) chondroprogenitor cell layer, (3) condroblast cell layer, (4) nonmineralized hypertrophic cell layer, and (5) mineralized hypertrophic cell layer. The articular layer is rich in collagen fibers (mostly of the type I collagen), but the cells seldom divide. By contrast, in the chondroprogenitor cell layer and upper part of the chondroblastic cell layer mitosis gives rise to new cells. The matrix in the latter layer is composed of thick banded 'lucent' fibrils in a loose feltwork of granules representing cartilage proteoglycans. The daughter cells in the progenitor cell layer undergo differentiation which is apparently completed along the lower border of the mineralized hypertrophic cell layer--the ossification front. The matrix in the hypertrophic cell layer reveals distinct matrix vesicles that undergo mineralization and subsequently coalesce to form larger sheets of mineralized extracellular matrix. Mineralized cartilage serves as a backbone for new bone formation as marrow-derived osteoblasts and osteoclasts attach to remnants of mineralized cartilage, which enables the turning on of the remodeling cycles involved in new bone formation. It can be concluded that the process of endochondral ossification as has been reported in lower animals is recapitulated in the human fetus, thus the dynamics associated with condylar morphogenesis is maintained through phylogeny.  相似文献   

20.
Patients with pycnodysostosis, a rare skeletal dysplasia, present with bone abnormalities such as short stature, acroosteolysis of distal phalanges, and skull deformities. The disease is caused by a deficiency of the cysteine protease cathepsin K which is responsible for degradation of collagen type I and other bone proteins. Osteoclasts, bone cells of hematopoietic origin responsible for bone mineral as well as protein matrix degradation, are dysfunctional in patients with pycnodysostosis due to mutations in the cathepsin K gene. Cathepsin K deficient osteoclasts can demineralize bone but cannot degrade the protein matrix. Mutations in the cathepsin K gene disrupting wild type cathepsin K activity have been described in patients with pycnodysostosis. Animal models of cathepsin K deficiency have been created and provide a valuable tool to study osteoclast function and treatment for cathepsin K deficiency. Understanding the regulation and role of cathepsin K in osteoclast function is important for designing future therapies for pycnodysostosis. Cathepsin K inhibitors will be useful in pathological processes involving excess osteoclast activation and bone resorption such as osteoporosis, bone metastasis and multiple myeloma. This review will discuss the bone remodeling cycle, the human disease pycnodysostosis caused by cathepsin K deficiency and cathepsin K activity and regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号