首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have shown that treatment of Medicago microcallus suspensions with the cognate Rhizobium meliloti Nod signal molecule NodRm-IV(C16:2,S) can modify gene expression both qualitatively and quantitatively. At concentrations of 10(-6) - 10(-9) M, this host specific plant morphogen but not the inactive non-sulfated molecule stimulated cell cycle progression as indicated by the significantly enhanced thymidine incorporation, elevated number of S phase cells, increase in kinase activity of the p34cdc2-related complexes and enhancement of the level of expression of several cell cycle marker genes, the histone H3-1, the cdc2Ms and the cyclin cycMs2. The presented data suggest that at least part of the physiological role of the Nod factor may be linked to molecular events involved in the control of the plant cell division cycle. In situ hybridization experiments with antisense H3-1 RNA probe indicated that only certain cells of the calli were able to respond to the Nod factor. High (10(-6) M) but not low (10(-9) M) concentrations of the active Nod factors induced the expression of the isoflavone reductase gene (IFR), a marker gene of the isoflavonoid biosynthesis pathway in most callus cells. Our results indicate that Medicago cell responses to the Nod signal molecules can be investigated in suspension cultures.  相似文献   

3.
The plant cell cycle   总被引:1,自引:0,他引:1  
The first aim of this paper is to review recent progress in identifying genes in plants homologous to cell division cycle (cdc) genes of fission yeast. In the latter, cdc genes are well-characterised. Arguably, most is known about cdc2 which encodes a 34 kDa protein kinase (p34cdc2) that functions at the G2-M and G1-S transition points of the cell cycle. At G2-M, the p34cdc2 protein kinase is regulated by a number of gene products that function in independent regulatory pathways. The cdc2 kinase is switched on by a phosphatase encoded by cdc25, and switched off by a protein kinase encoded by weel. p34 Must also bind with a cyclin protein to form maturation promoting factor before exhibiting protein kinase activity. In plants, homologues to p34cdc2 have been identified in pea, wheat, Arabidopsis, alfalfa, maize and Chlamydomonas. They all exhibit the PSTAIRE motif, an absolutely conserved amino acid sequence in all functional homologues sequenced so far. As in animals, some plant species contain more than one cdc2 protein kinase gene. but in contrast to animals where one functions at G2-M and the other (CDK2 in humans and Egl in Xenopus) at G1-S, it is still unclear whether there are functional differences between the plant p34cdc2 protein kinases. Again, whereas in animals cyclins are well characterised on the basis of sequence analysis, into class A, class B (G2-M) and CLN (G1 cyclins), cyclins isolated from several plant species cannot be so clearly characterised. The differences between plant and animal homologues to p34cdc2 and cyclins raises the possibility that some of the regulatory controls of the plant genes may be different from those of their animal counterparts. The second aim of the paper is to review how planes of cell division and cell size are regulated at the molecular level. We focus on reports showing that p34cdc2 binds to the preprophase band (ppb) in late G2 of the cell cycle. The binding of p34cdc2 to ppbs may be important in regulating changes in directional growth but, more importantly, there is a requirement to understand what controls the positioning of ppbs. Thus, we highlight work resolving proteins such as the microtubule associated proteins (MAPs) and those mitogen activated protein kinases (MAP kinases), which act on, or bind to, mitotic microtubules. Plant homologues to MAP kinases have been identified in alfalfa. Finally, some consideration is given to cell size at division and how alterations in cell size can alter plant development. Transgenic tobacco plants expressing the fission yeast gene, cdc25, exhibited various perturbations of development and a reduced cell size at division. Hence, cdc25 affected the cell cycle (and as a consequence, cell size at division) and cdc25 expression was correlated with various alterations to development including precocious flowering and altered floral morphogenesis. Our view is that the cell cycle is a growth cycle in which a cell achieves an optimal size for division and that this size control has an important bearing on differentiation and development. Understanding how cell size is controlled, and how plant cdc genes are regulated, will be essential keys to ‘the cell cycle locks’, which when ‘opened’, will provide further clues about how the cell cycle is linked to plant development.  相似文献   

4.
The symbiosis between the actinorhizal tree Allocasuarina verticillata and the actinomycete Frankia leads to the formation of root nodules inside which bacteria fix atmospheric nitrogen. Actinorhizal nodule organogenesis starts with the induction of cell divisions in the root cortex and in the pericycle cells opposite protoxylem poles near Frankia -infected root hairs. To study the ability of Frankia to induce progression through the cell cycle, we monitored the expression of the β-glucuronidase ( gus ) gene driven by the promoter from cdc2aAt , an Arabidopsis cyclin-dependent kinase gene that displays competence for cell division, during plant growth and nodule ontogenesis. In non-symbiotic tissues, the gus gene was mainly expressed in primary and secondary meristems of roots and shoots. Auxins and cytokinins were found to induce reporter gene activity in the root system of whole plants, showing that the promoter cdc2aAt displayed the same regulation by hormones in Allocasuarina as that reported in Arabidopsis . In transgenic nodules, gus expression was found to be restricted to the phellogen. During the early stages of the interaction between Frankia and the plant root system, cdc2aAt was strongly induced in the lateral roots surrounded by hyphae of the actinomycete. Histochemical analysis of β-glucuronidase activity revealed that cells from the pericycle opposite protoxylem poles were very deeply stained. These data indicate that upon Frankia infection, cells from the lateral roots, and notably pericycle cells that can give rise to a nodule or a root primordium, prepare to re-enter the cell cycle.  相似文献   

5.
6.
7.
During the last decade, the cell cycle and its control by cyclin-dependent kinases (CDKs) has been extensively studied in eukaryotes. The regulation of CDK activity includes, among others, its activation by Cdc25 phosphatase at G2/M. However, within the plant kingdom studies of this regulation have lagged behind and a plant cdc25 homologue has not been identified yet. Here, we report on the effects of transformation of tobacco (Nicotiana tabacum L., cv. Samsun) with fission yeast (Schizosaccharomyces pombe) cdc25 (Spcdc25) on de novo plant organ formation, a process dependent on rate and orientation of cell division. On shoot-inducing medium (low 1-naphthylacetic acid (NAA), high 6-benzylaminopurine (BAP)) the number of shoots formed on internode segments cultured from transgenic plants was substantially higher than in the non-transformed controls. Anatomical observations indicated that the shoot formation process was accelerated but with no changes in the quality and sequence of shoot development. Surprisingly, and in contrast to the controls, when on root-inducing medium (high NAA, low BAP) cultured segments from transgenic plants failed to initiate hardly any roots. Instead, they continued to form shoots at low frequencies. Moreover, in marked contrast to the controls, stem segments from transgenic plants were able to form shoots even without the addition of exogenous growth regulators to the medium. The results indicate that Spcdc25 expression in culture tobacco stem segments mimicked the developmental effects caused by an exogenous hormone balance shifted towards cytokinins. The observed cytokinin-like effects of Spcdc25 transformation are consistent with the concept of an interaction between cell cycle regulators and phytohormones during plant development.  相似文献   

8.
9.
The cdc2 kinases are important cell cycle regulators in all eukaryotes. MAP kinases, a closely related family of protein kinases, are involved in cell cycle regulation in yeasts and vertebrates, but previously have not been documented in plants. We used PCR to amplify Brassica napus DNA sequences using primers corresponding to amino sequences that are common to all known protein kinases. One sequence was highly similar to KSS1, a MAP kinase from Saccharomyces cerevisiae. This sequence was used to isolate a full-length MAP kinase-like clone from a pea cDNA library. The pea clone, called D5, shared approximately 50% amino acid identity with MAP kinases from yeasts and vertebrates and about 41% identity with plant cdc2 kinases. An expression protein encoded by D5 was recognized by an antiserum specific to human MAP kinases (ERKs). Messenger RNA corresponding to D5 was present at similar levels in all tissues examined, without regard to whether cell division or elongation were occurring in those tissues.  相似文献   

10.
The ability of a functional gene to complement a nonfunctional gene may depend upon the intracellular relationship of the two genes. If so, the function of the gene product in question must be limited in time or in space. CDC (cell division cycle) gene products of Saccharomyces cerevisiae control discrete steps in cell division; therefore, they constitute reasonable candidates for genes that function with temporal or spatial restrictions. In an attempt to reveal such restrictions, we compared the ability of a CDC gene to complement a temperature-sensitive cdc gene in diploids where the genes are located within the same nucleus to complementation in heterokaryons where the genes are located in different nuclei. In CDC X cdc matings, complementation was monitored in rare heterokaryons by assaying the production of cdc haploid progeny (cytoductants) at the restrictive temperature. The production of cdc cytoductants indicates that the cdc nucleus was able to complete cell division at the restrictive temperature and implies that the CDC gene product was provided by the other nucleus or by cytoplasm in the heterokaryon. Cytoductants from cdc28 or cdc37 crosses were not efficiently produced, suggesting that these two genes are restricted spatially or temporally in their function. We found that of the cdc mutants tested 33 were complemented; cdc cytoductants were recovered at least as frequently as CDC cytoductants. A particularly interesting example was provided by the CDC4 gene. Mutations in CDC4 were found previously to produce a defect in both cell division and karyogamy. Surprisingly, the cell division defect of cdc4 nuclei is complemented by CDC4 nuclei in a heterokaryon, whereas the karyogamy defect is not.  相似文献   

11.
12.
13.
14.
Analysis of Schizosaccharomyces pombe mutants that are defective in septum formation and cytokinesis has identified the product of the cdc15 gene as a key element in formation of a division septum. S. pombe cells lacking cdc15p function cannot assemble a functional medial ring, and do not make a division septum. cdc15 mRNA accumulates periodically during the cell cycle, peaking after entry into mitosis, and increased expression of the gene in G2-arrested cells can promote F-actin ring formation. Here, we have investigated the effects of mutations that block cell division upon the expression of cdc15 in synchronised cell populations, and analysed the expression of cdc15 when septum formation is induced by ectopic activation of the septation signalling network. We concluded the following: (i) the septation signalling network genes are not required for periodic accumulation of cdc15 mRNA; (ii) induction of septum formation in G2-arrested cells by activation of the septation signalling network does not result in accumulation of cdc15 mRNA, which is therefore not a prerequisite for septum formation; (iii) failure to turn off septum formation at the end of mitosis results in continued expression of cdc15; and (iv) periodic accumulation of cdc15 mRNA is mediated by a 97 bp region 5' to the mRNA start site.  相似文献   

15.
16.
Mutation of the Schizosaccharomyces pombe cdc7 gene prevents formation of the division septum and cytokinesis. We have cloned the cdc7 gene and show that it encodes a protein kinase which is essential for cell division. In the absence of cdc7 function, spore germination, DNA synthesis and mitosis are unaffected, but cells are unable to initiate formation of the division septum. Overexpression of p120cdc7 causes cell cycle arrest; cells complete mitosis and then undergo multiple rounds of septum formation without cell cleavage. This phenotype, which is similar to that resulting from inactivation of cdc16 protein, requires the kinase activity of p120cdc7. Mutations inactivating the early septation gene, cdc11, suppress the formation of multiple septa and allow cells to proliferate normally. If formation of the division septum is prevented by inactivation of either cdc14 or cdc15, p120cdc7 overproduction does not interfere with other events in the mitotic cell cycle. Septation is not induced by overexpression of p120cdc7 in G2 arrested cells, indicating that it does not bypass the normal dependency of septation upon initiation of mitosis. These findings indicate that the p120cdc7 protein kinase plays a key role in initiation of septum formation and cytokinesis in fission yeast and suggest that p120cdc7 interacts with the cdc11 protein in the control of septation.  相似文献   

17.
The mammalian homologue of the cdc2 gene of the fission yeast Schizosaccharomyces pombe encodes a p34cdc2 cyclin-dependent kinase that regulates the cell cycle of a wide variety of cell types. Resting murine T lymphocytes contained no detectable p34cdc2 protein, histone kinase activity, or specific mRNA for the cdc2 gene. Activation of the T cells by immobilized anti-CD3 resulted in the expression of specific mRNA late in the G1 phase of the cell cycle, and p34cdc2 protein was detectable at or near G1/S. At this point in the cell cycle, the protein was phosphorylated at tyrosine and displayed no H1 histone kinase activity. As the cells progressed through the cycle, the amount of specific mRNA and p34cdc2 increased, and H1 histone kinase activity was detectable when the cells were blocked at G2/M by nocodazole. The activation of T cells by phorbol dibutyrate induced the expression of IL-2R but failed to induce the synthesis of IL-2 or the expression of cdc2-specific mRNA. Under these conditions, the activated cells failed to enter the S phase of the cell cycle. Because the presence of IL-2 added exogenously during activation by phorbol dibutyrate resulted in the expression of cdc2-specific mRNA and progression through the cell cycle, either IL-2 or the interaction with IL-2R may be involved in the expression of cdc2 and regulation of the G1/S transition.  相似文献   

18.
19.
The isolation of plant genes homologous to cdk and cyclin components from yeast and animals proves the existence of a basic cell cycle machinery in all eukaryotes. cdk and cyclin expression has been shown to be involved in the spatial and temporal control of cell division in a variety of developmental processes. In plants, cell division and development are closely interlinked processes that are regulated by phytohormones. cdks and cyclins were found to be under control of phytohormones underscoring their integral role in mediating different developmental pathways. Furthermore, studies on cdk and cyclin expression not only correlate with actual cell cycle activity but also with cell division competence providing a working model to understand regeneration capacity at the molecular level.  相似文献   

20.
Fission yeast cdc25 is a cell-cycle regulated protein   总被引:11,自引:0,他引:11  
Fission yeast cell division is initiated by the cdc2/cdc13-cyclin protein kinase which in its catalytically active state comprises the mitotic inducer. During interphase the cdc2/cyclin complex is assembled in an inactive state that requires cdc25+ gene function for M-phase activation. The cdc25+ product, a 76 kd phosphoprotein, is shown to oscillate in abundance during the cell cycle, reaching a peak at G2/M, and to be sensitive to nitrogen starvation. The level of cdc25 is subject to feedback regulation involving both cdc25 and cdc2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号