共查询到20条相似文献,搜索用时 10 毫秒
1.
Osvaldo Ferraresi-Filho Emy L. Ishii-Iwamoto Adelar Bracht 《Cell biochemistry and function》1997,15(2):69-80
The scope of the present work was to investigate the metabolism and the passage of octanoate from albumin into the phospholipid bilayer of the plasma membrane and from thence into the cell space. The experiments were done in the isolated perfused rat liver with infusions of albumin and octanoate at various concentrations. Once steady-state conditions were attained, trace amounts of [1-14C]-octanoate, [131I]-albumin and [3H]-water were injected simultaneously and the effluent perfusate was fractionated. The normalized dilution curves were used for model analysis. The model which gives the best fit to the experimental results and which also produces the most consistent parameters is one that presupposes a rapid distribution of octanoate into the cell membrane and a slow transfer from the cell membrane into the cytosol. The concentration dependence of the distribution between the membrane and the extracellular space is parabolic, suggesting that octanoate changes the properties of the cell membrane when present at higher concentrations. The passage from the cell membrane into the cell space is relatively slow and limits metabolic transformation partly or totally, depending on the octanoate concentration in the plasma membrane. The rapid transfer of octanoate from the albumin space into the plasma membrane corroborates previous measurements of the dissociation of the albumin–octanoate complex. © 1997 John Wiley & Sons, Ltd. 相似文献
2.
Hisataka Shikama Motoyuki Yajima Michio Ui 《Biochimica et Biophysica Acta (BBA)/General Subjects》1980,631(2):278-288
Hepatic glycogen metabolism was studied in rats during the period of transition from the fed to fasted states. Glycogenic activity was measured in vivo based on the incorporation of [14C]glucose into liver glycogen. Its changes were almost parallel to the changes in glucogen synthase activity. Progressive accumulation of liver glycogen that occurred in the fed state was associated with a proportional increase in glycogenic activity. Within 4 h after the cessation of food intake, glycogenic activity showd a precipitous fall from the peak to its nadir without significant changes in glycogen content. Meanwhile, the glucose concentration in the portal vein decreased. Upon further development of fasting, glycogenic activity displayed a progressive regain, reciprocally as glycogen contents gradually decreased. The precipitous fall of glycogenic activity during the transition from the fed to fasted states was associated with a transient increase in plasma glucagon, and was partly overcome by the injection of anti-glucagon serum. It is concluded that the fall of portal venous concentration of glucose and secretion of glucagon act as a signal to initiate liver glycogen metabolism characteristics of the fasted or postabsorptive state. 相似文献
3.
Margareta Wandel Trond Berg Winnie Eskild Kaare R. Norum 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1982,721(4)
The intracellular movement, following uptake of 125I-labelled denatured serum albumin into nonparenchymal liver cells, was followed by means of subcellular fractionation. Isolated nonparenchymal rat liver cells were prepared by means of differential centrifugation. The cells were homogenized in a sonifier and the cytoplasmic extract subjected to isopycnic centrifugation in a sucrose gradient. The intracellular movement of the labelled albumin was followed by comparing the distribution profile of radioactivity in the sucrose gradient with those of marker enzymes for plasma membrane and lysosomes. The distribution profiles for radioactivity after the cells had been exposed to the labelled denatured albumin for different time periods indicated that the radioactivity was first associated with subcellular fractions of lower modal densities than the lysosomes. With time of incubation the radioactivity moved towards higher densities. After prolonged incubations in the absence of extracellular labelled denatured albumin the radioactivity peak coincided with that of the lysosomal marker β-acetylglucosaminidase. When the cells were treated with the lysosomal inhibitor leupeptin, degradation of the labelled albumin was decreased, resulting in a massive intracellular accumulation of radioactivity. The radioactivity peak coincided with the peak of activity for the lysosomal marker β-acetylglucosaminidase, suggesting lysosomal degradation. 相似文献
4.
The gene product of mll6785 of a nitrogen-fixing symbiotic bacterium Mesorhizobium loti MAFF303099 was identified as pyridoxine 4-oxidase, the first enzyme in the vitamin B6-degradation pathway. The gene was cloned and ligated into pET-21a+. Escherichia coli BL21(DE3) was co-transformed with the constructed plasmid plus pKY206 containing groESL genes encoding chaperonins. The overexpressed protein was purified to homogeneity by the ammonium sulfate fractionation and three chromatography steps. The enzymatic properties of the purified protein, such as K(m) values for pyridoxine (213+/-19 microM) and oxygen (78+/-10 microM), were compared to those of pyridoxine 4-oxidase from two bacteria with known vitamin B6-degradation pathway. M. loti grown in a Rhizobium medium showed the enzyme activity. The results suggest that M. loti also contains the degradation pathway of vitamin B6. 相似文献
5.
Takaaki Kameji Yasuko Murakami Kazunobu Fujita Shin-Ichi Hayashi 《Biochimica et Biophysica Acta (BBA)/General Subjects》1982,717(1):111-117
Ornithine decarboxylase (EC 4.1.1.17) was purified to near homogeniety from livers of thioacetamide- and dl-α-hydrazino-δ-aminovaleric acid-treated rats by using three types of affinity chromatography with pyridoxamine phosphate-Sepharose, pyridoxamine phosphate-dipropylenetriamine-Sepharose and heparin-Sepharose. This procedure gave a purification of about 3.5·105-fold with an 8% yield; the specific activity of the final enzyme preparation was 1,1·106 nmol CO2/h per mg protein. The purified enzyme gave a single band of protein which coincided with activity peak on polyacrylamide gel electrophoresis and also gave a single major band on SDS-polyacrylamide gel electrophoresis. A single precipitin line was formed between the purified enzyme and an antiserum raised against a partially purified enzyme, on Ouchterlony immunodiffusion. The molecular weight of the enzyme was estimated to be 105 000 by polyacrylamide gel electrophoresis at several different gel concentrations; the dissociated subunits had molecular weights of 50 000 on SDS-polyacrylmide gels. The isoelectric point of the enzyme was pH 4.1. 相似文献
6.
Vitamin B6 is a designation for the vitamers pyridoxine, pyridoxal, pyridoxamine, and their respective 5′-phosphates. Pyridoxal 5′-phosphate, the biologically most-important vitamer, serves as a cofactor for many enzymes, mainly active in amino acid metabolism. While microorganisms and plants are capable of synthesizing vitamin B6, other organisms have to ingest it. The vitamer pyridoxine, which is used as a dietary supplement for animals and humans is commercially produced by chemical processes. The development of potentially more cost-effective and more sustainable fermentation processes for pyridoxine production is of interest for the biotech industry. We describe the generation and characterization of a Bacillus subtilis pyridoxine production strain overexpressing five genes of a non-native deoxyxylulose 5′-phosphate-dependent vitamin B6 pathway. The genes, derived from Escherichia coli and Sinorhizobium meliloti, were assembled to two expression cassettes and introduced into the B. subtilis chromosome. in vivo complementation assays revealed that the enzymes of this pathway were functionally expressed and active. The resulting strain produced 14 mg/l pyridoxine in a small-scale production assay. By optimizing the growth conditions and co-feeding of 4-hydroxy-threonine and deoxyxylulose the productivity was increased to 54 mg/l. Although relative protein quantification revealed bottlenecks in the heterologous pathway that remain to be eliminated, the final strain provides a promising basis to further enhance the production of pyridoxine using B. subtilis. 相似文献
7.
B.K. Semin A.A. Novakova A.Yu. Aleksandrov I.I. Ivanov A.B. Rubin R.N. Kuzmin 《Biochimica et Biophysica Acta (BBA)/General Subjects》1982,715(1):52-56
Mössbauer spectroscopy was used to investigate the distribution of iron in rat organs and its localisation in liver subcellular fractions. A 57Fe-sucrose complex solution was injected by 0.5 ml doses into tail veins of anmals every day, during a 6-day period. Mössbauer spectra were measured in spleen, blood, liver and liver subcellular fractions. The Mössbauer spectrum of a spleen sample has two symmetrical doublets, one with δ=0.6 mm/s and Δ=0.7 mm/s, and the other with δ=1.0 mm/s and Δ=2.35 mm/s. The Mössbauer spectrum of blood has parameters which are close to those for carboxyhemoglobin and oxyhemoglobin complexes. After the addition of sodium citrate, the proportion of the carboxyhemoglobin complexes increases. The Mössbauer spectrum of liver has a two-component pattern with two symmetrical doublets, the first with δ=0.6 mm/s and Δ=0.63 mm/s and the second with δ=1.4 mm/s and Δ=3.45 mm/s. The first component, which was identified as ferritin, is present in all subcellular fractions (800 × gav sediment fraction, mitochondrial/lysosomal, microsomal and supernatant fractions), with its content in microsomal fraction. After the addition of NaBH4 to mitochondrial/lysosomal fraction, about 20 % of the iron contained in ferritin was reduced. In the Mössbauer spectrum this is reflected by an appearance of a doublet with δ=0.85 mm/s and Δ=3.7 mm/s. 相似文献
8.
Michael I. Bird Peter B. Nunn Lucy A.J. Lord 《Biochimica et Biophysica Acta (BBA)/General Subjects》1984,802(2):229-236
Threonine is a precursor of glycine in the rat, but the metabolic pathway involved is unclear. To elucidate this pathway, the biosynthesis of glycine, and of aminoacetone, from l-threonine were studied in rat liver mitochondrial preparations of differing integrities. In the absence of added cofactors, intact mitochondria formed glycine and aminoacetone in approximately equal amounts from 20 mM l-threonine, but exogenous NAD+ decreased and CoA increased the ratio of glycine to aminoacetone formed. In intact and freeze-thawed mitochondria, the ratio of glycine to aminoacetone formed was markedly sensitive to the concentration of l-threonine, glycine being the major product at low l-threonine concentrations. Disruption of mitochondrial integrity by sonication (1 min) decreased the ratio of glycine to aminoacetone formed, and in 20 000 × g supernatant fractions from sonicated (3 min) mitochondria, aminoacetone was the major product. The main non-nitogenous tow-carbon compound detected when intact mitochondria catabolized l-threonine to glycine was acetate, which was probably derived from deacylation of acetyl-CoA. These results suggest that glycine formation from l-threonine in rat liver mitochondria occured primarily by the coupled activities of threonine dehydrogenase and 2-amino-3-oxobutyrate CoA-ligase, the extent of coupling between the enzymes being dependent upon a close physical relationship and upon the flux through the dehydrogenase reaction. In vivo glycine synthesis would predominate, and aminoacetone would be a minor product. 相似文献
9.
The use of Sepharose aminohexyl oxamate for the purification of glycolate oxidase and lactate dehydrogenase is described. The kinetics of both enzymes are reported in relation to their possible roles in the production of oxalate. A model is proposed in which glycolate oxidase in the peroxisomes and lactate dehydrogenase in the cytosol cooperate in the production of oxalate. 相似文献
10.
The role of microfilaments and microtubules on bile salt transport was studied by investigating the influence of a microfilament and a microtubule inhibitor, cytochalasin B and colchicine, respectively, on taurocholate uptake by isolated hepatocytes in vitro. Hepatocytes were prepared by the enzyme perfusion method and [14C]taurocholate uptake velocity was determined by a filtration assay. Taurocholate uptake obeyed Michaelis-Menten kinetics, maximal uptake velocity and apparent half-saturation constants averaging and , respectively. Cytochalasin B () inhibited taurocholate uptake in a competitive fashion; being . At concentrations above 100 μM the compound decreased 36Cl membrane potential and intracellular K+ concentration. Other parameters of cell viability were not affected by cytochalasin B. Colchicine (0.1–1.0 mM), by contrast, inhibited taurocholate uptake non-competitively, being . The inhibition brought about by colchicine was considerably smaller than that induced by cytochalasin B. None of the parameters of cell viability tested was affected by colchicine. These results suggest that microfilaments may be involved in the carrier-mediated hepatocellular transport of bile salts. This could, at least in part, account for cytochalasin B-induced cholestasis. The contribution of the microtubular system, if any, is less important quantitatively. The mechanisms whereby these two components of the cytoskeleton partake in bile salt transport remain to be elucidated. 相似文献
11.
Evidence of enzymatic formation of ethylene from methionine by rat liver extracts is presented. The ethylene production is closely associated with growth of the animal. The conversion of l-methionine to ethylene is oxygen dependent. Substrate analogue studies show that the ethylene-forming system is structurally specific and requires in the center of the molecule α-CH2-CH2- with one end attached to an unencumbered sulfur atom from a thioether moiety and the other end attached to a carboxyl group. Sylfhydryl agents are found to be very effective inhibitors of the ethylene-forming system. The finding of α-keto-4-methylthiobutyric acid to be a more efficient precursor of ethylene production suggests the possibility that α-keto-4-methylthiobutyric acid may be an intermediate in the biosynthesis of ethylene from methionine in mammalian tissues. 相似文献
12.
Vitamin B-12 is released from the purified gastric intrinsic factor-[57Co]vitamin B-12 (intrinsic factor- [57Co]vitamin B-12) complex, when incubated with rat intestinal mucosa. Maximum specific activity for splitting the complex is localized in ileal brush border. Release of [57Co]vitamin B-12 is not due to its mere exchange during incubation with endogenous non-radioactive vitamin B-12. The splitting process has specific requirement for Ca2+ and ATP and it is thermolabile, time- as well as temperature-dependent. It is also inactivated by the presence of p-chloromercuribenzoate. Further, the vitamin B-12-releasing factor has been isolated from solubilized brush border and is purified 70-fold by (NH4)2SO4 precipitation, gel filtration and Con. A-Sepharose 4B affinity chromatography. In SDS-polyacrylamide gel electrophoresis, it is resolved into a single band of about 25 kDa, indicating its purity. The releasing factor exhibits maximum activity at pH 7.4; isoelectric focusing reveals only one major form with pI 7.52. With intrinsic factor-[57Co]vitamin B-12-complex as the substrate, apparent Km and Vmax values obtained are 128.2·10−12 M/1 and 117.6 pg·h−1 100 μg protein, respectively. Amino acid and carbohydrate analyses reveal the glycoprotein nature of the factor. Intrinsic factor-[57Co]vitamin B-12 complex is not susceptible to unspecific proteolytic digestion/ Similarly, the releasing factor does not hydrolyse other proteins. Thus, the observed substrate-specificity of the releasing factor differentiates it from other known proteolytic enzymes of ileal brush borders. 相似文献
13.
We examined the metabolism of N-desisopropylpropranolol (NDP), which is generated from propranolol (PL) by side-chain N-desisopropylation, to naphthoxylactic acid (NLA) in rat liver. S(-)-NDP (S-NDP) and R(+)-NDP (R-NDP) were enantioselectively metabolized to NLA in isolated rat hepatocytes and in an enzyme reaction system of rat liver mitochondria with cofactor NAD+. Furthermore, the clearance profiles of NDP enantiomers were examined in an enzyme reaction system of rat liver mitochondria without NAD+. The amounts of S-NDP remaining in the incubation medium were similar to those of R-NDP, suggesting that monoamine oxidase (MAO) catalyzes the deamination of NDP to the aldehyde intermediate, but fails to deaminate enantioselectively S-NDP or R-NDP. Cyanamide, a potent inhibitor of aldehyde dehydrogenase (ALDH), markedly decreased the formation of NLA from racemic NDP in the enzyme reaction system of rat liver mitochondria with NAD+. When rat liver cytosol and microsomes were added to this enzyme reaction system, no significant alterations were observed in the amount of NLA generated from racemic NDP. We concluded that MAO deaminates NDP to an aldehyde intermediate, and that mitochondrial ALDH subsequently catalyzes the enantioselective metabolism of the aldehyde intermediate to NLA in rat liver. 相似文献
14.
R.A. Freedland G.L. Crozier B.L. Hicks A.J. Meijer 《Biochimica et Biophysica Acta (BBA)/General Subjects》1984,802(3):407-412
The question of arginine uptake by mitochondria is important in that arginine is an allosteric effector of N-acetylglutamate synthetase. Thus, changes in mitochondrial arginine concentration have the potential for acutely modifying levels of N-acetylglutamate, a compound necessary for maximal activity of carbamyl phosphate synthesis. Mitochondria were isolated from chow-fed rats, incubated with [guanido-14C]arginine and were centrifuged through silicon oil into perchloric acid for determination of intramitochondrial metabolites. Arginine was separated from urea by cation-exchange resin. Mitochondrial water space was determined by [14C]urea arising from arginase activity associated with the mitochondrial preparations. Extramatrix space was determined by parallel incubations with [inulin-14C]carboxylic acid or [14C]sucrose There was considerable degradation of arginine by arginase associated with the mitochondrial preparation. This was inhibited by 7 mM ornithine and 7 mM lysine. Arginine was concentrated intramitochondrially to 4-times the extramitochondrial levels. The concentration ratio was decreased in the presence of ornithine and lysine but not with citrulline, NH4Cl, glutamate, glutamate or leucine. No uptake was observed when mitochondria were incubated at 0°C. Mitochondria did not concentrate citrulline. 相似文献
15.
David A. Bender Gwyn M. McCreanor 《Biochimica et Biophysica Acta (BBA)/General Subjects》1982,717(1):56-60
It has been suggested (Ueda, T., Otsuka, H. and Goda, K. (1978) J. Biochem. 84, 687–696) that direct cleavage of kynurenine, catalysed by kynureninase, followed by microsomal hydroxylation of the resultant anthranilic acid, may provide an alternative to the established pathway of kynurenine metabolism that involves direct hydroxylation followed by cleavage to 3-hydroxyanthranilic acid. To test this suggestion, anthranilic acid was administered to rats; there was no increase in either the concentration of nicotinamide nucleotides in the liver or the urinary excretion of N1-methyl nicotinamide. However, injection of either kynurenine or 3-hydroxyanthranilic acid did increase the concentration of nicotinamide nucleotides in the liver. The kinetics of kynurenine hydroxylase (Km = 1.8±0.6·10?5 mol/l) and kynureninase (Km = 2.5±0.8·10?4 mol/l, liver steady-state kynurenine = 4.9±0.9 μmol/kg) are such that the preferred route of kynurenine metabolism is probably by way of hydroxylation rather than cleavage. 相似文献
16.
Enzymes involved in the pathway of de novo serine biosynthesis (L-phosphoserine aminotransferase) and in alternative pathways of serine utilization (L-serine hydroxymethyltransferase, L-serine dehydratase and L-serine aminotransferase) were assayed in normal adult and fetal rat tissues and in a range of transplantable sat tumors. Serine dehydratase and serine aminotransferase activities were essentially confined to normal adult liver and kidney, whereas phosphoserine aminotransferase and serine hydroxymethyltransferase activities showed a more ubiquitous tissue distribution. In particular, phosphoserine aminotransferase and serine hydroxymethyltransferase activities were appreciable in neoplastic tissues, in the absence of the other enzymes of serine utilization. The pattern of enzyme distribution suggests that the synthesis of serine de novo is metabolically coupled to its utilization for nucleotide biosynthesis in tumors of differing tissue origins. 相似文献
17.
A significant decrease in total carbohydrates and particularly in mannose, galactose and sialic acid has been observed in vitamin A-deficient rat liver lysosomal membrane. These alterations adversely affect the membrane permeability and structure-linked latency of the lysosomal enzymes.Significant reduction in the pH-dependent in vitro binding of the lysosomal arylsulfatase B to the highly purified membrane has been observed in vitamin A deficiency. This is attributed to the decrease in electro-negativity, mainly due to the observed reduction in negatively-charged sialic acid residues on the outer side of the membrane.Similar reduction in sialic acid content on the inner side of the membrane affects the microenvironment in the lysosomes. Intralysosomal pH, measured by computing the proteolytic activity of lysed lysosomes and of phagolysosomes, endocytosed with denatured 131I-labelled human serum albumin, is slightly but consistently higher in vitamin A-deficient groups compared to that in control one. This is reflected in the low rate of degradation of the entrapped proteins in vitamin A deficiency.The possible physiological significance of the observations is discussed with special reference to the loss of surface carbohydrates, particularly sialic acid, in vitamin A-deficient rats. 相似文献
18.
Isolated, intact rat liver nuclei have high-affiity (Kd=10−9 M) binding sites that are highly specific for nonsteroidal antiestrogens, especially for compounds of the triphenylethylene series. Nuclear [3H]tamoxifen binding capacity is thermolabile, being most stable at 4°C and rapidly lost at 37°C. More [3H]tamoxifen, however, is specifically bound at incubation temperatures of 25°C and 37°C than at 4°C although prewarming nuclei has no effect, suggesting exchange of [3H]tamoxifen for an unidentified endogenous ligand. Nuclear antiestrogen binding sites are destroyed by trypsin but not by deoxyribonuclease I or ribonuclease A. The nuclear antiestrogen binding protein is not solubilized by 0.6 M potassium chloride, 2 M sodium chloride, 0.6 M sodium thiocyanate, 3 M urea, 20 mM pyridoxal phosphate, 1% (w/v) digitonin or 2% (w/v) sodium cholate but is extractable by sonication, indicating that it is tightly bound within the nucleus. Rat liver nuclear matrix contains high-affinity (Kd=10−9 M) [3H]tamoxifen binding sites present in 5-fold higher concentrations (4.18 pmol/mg DNA) than in intact nuclei (0.78±0.10 (S.D.) pmol/mg DNA). Low-speed rat liver cytosol (20 000×g, 30 min) contains high-capacity (955±405 (S.D.) fmol/mg protein), low-affinity (Kd=10.9±4.5 (S.D.) nM) antiestrogen binding sites. In contrast, high-speed cytosol (100 000×g, 60 min) contains low-capacity (46±15 (S.D.) fmol/mg protein), high-affinity (Kd=0.61± 0.20 (S.D.) nM) binding sites. Low-affinity cytosolic sites constitute more than 90% of total liver binding sites, high-affinity cytosolic sites 0.3%–3.2%, and nuclear sites less than 0.5% of total sites. 相似文献
19.
The actute phase reaction mediated by the proinflammatory cytokine IL6 initiates a number of metabolic changes in the liver,
which may contribute to the pathogenesis of the septic shock during prolonged exposition. Here, the impact of IL6 on the hepatic
glucose providing capacity was studied by monitoring glycogen degradation and the expression of the gluconeogenic phosphoenolpyruvate
carboxykinase (PCK1) in rat livers during the daily feeding rhythm. Eight hours after i.p. injection of IL6, mRNA levels of
α2-macroglobulin, a prominent acute phase reactant in rat liver, were elevated as shown by Northern blot analysis and in situ
hybridization (ISH). PCK1 mRNA levels were decreased by IL6 to 50% of levels in untreated animals due to the reduction of
PCK1 mRNA in the periportal zone of the liver as shown by ISH. PCK1 enzyme activity was not affected by IL6. Glycogen degradation
was accelerated by IL6, which led to nearly complete depletion of glycogen pools in periportal areas 8 h after IL6 injection.
This was very likely due to inhibition of glycogen pool replenishment. Thus, the depletion of glycogen stores in the liver
might contribute to the impairment of hepatic glucose production during prolonged acute phase challenge. 相似文献
20.
Nava Bashan Yael Gross Shimon Moses Alisa Gutman 《Biochimica et Biophysica Acta (BBA)/General Subjects》1979,587(2):145-154
The correlation between blood glucose levels, the concentration of glycogen, the activities of glycogen sythase and phosphorylase and their respective kinases and phosphatases was examined in liver of rat fetuses between day 18 of gestation and one day after birth. Between day 18 and 21 there is a rapid increase in the concentration of glycogen and in the activity of synthase a and a much slower increase in the activity of phosphorylase a. The activity of the respective kinases increased rapidly during this period and reached maximun on day 21. The activity of synthase phosphatase and phosphorylase phosphatase increased after day 18, to reach a maximum on day 19 and 20, respectively, but decreased again towards day 21. The possibility that the changes in glycogen concentration and enzyme activities were related to an effect of glucose of AMP on the respective phosphatases was considered. It was found that the Km of phosphatase for glucose in the prenatal period was 5–7 mM, as in the adult. Since the level of blood glucose during this period was constant (2.8 mM), an effect of glucose on phosphatase activity seems unlikely. AMP concentration increased between day 18 and 21 from 6–15 nmol/g. In view of the low level of phosphorylase a activity during this period, the increase in AMP concentration is not considered to be important in the regulation of glycogen breakdown at this time.Immediately after birth blood glucose levels dropped to 5 mg/dl. This was accompanied by a rapid decrease in glycogen concentration and in the activity of glycogen synthase and a rise in phosphorylase activity. Blood glucose levels returned to the initial level within 1 h after birth, whereas the changes in glycogen concentration and enzyme activities continued for at least 3 h after birth. On day 22 all parameters examined had reached the level found in adult rat liver.It is suggested that the rapid changes observed immediately after birth are due to an effect of hypoglycemia mediated by hormones and cannot be ascribed to direct effects of metabolites on the enzyme systems involved. 相似文献