首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of glycosaminoglycans by human skin fibroblasts derived from normal subjects, Hurler and Marfan patients before and after transformation by SV40 virus has been studied. Virus transformation results in a marked increase in hyaluronic acid synthesis in normal and Hurler fibroblasts and, to a lesser extent, in Marfan fibroblasts which show augmented synthesis of this polysaccharide before transformation. There is also an increase in heparan sulfate synthesis but a moderate decrease in dermatan sulfate synthesis on transformation. Incubation of transformed fibroblasts with 4-methylumbelliferyl-beta-D-xyloside results in a marked increase in synthesis of free chondroitin sulfate chains. The synthesis of hyaluronic acid, but not of dermatan sulfate, is inversely proportional to cell density in normal fibroblasts but not in transformed fibroblasts.  相似文献   

2.
Studies have been initiated to identify various cell surface and matrix components of normal human skin through the production and characterization of murine monoclonal antibodies. One such antibody, termed PG-4, identifies both cell surface and matrix antigens in extracts of human foetal and adult skin as the dermatan sulfate proteoglycans, decorin and biglycan, and the chondroitin sulfate proteoglycan versican. Treatment of proteoglycans with chondroitinases completely abolishes immunoreactivity for all of these antigens which suggests that the epitope resides within their glycosaminoglycan chains. Further evidence for the carbohydrate nature of the epitope derives from competition studies where protein-free chondroitin sulfate chains from shark cartilage react strongly; however, chondroitin sulfate chains from bovine tracheal cartilage fail to exhibit a significant reactivity, an indication that the epitope, although present in some chondroitin sulfate chains, does not consist of random chondroitin 4- or 6-sulfate disaccharides. The presence of the epitope on dermatan sulfate chains and on decorin was also demonstrated using competition assays. Thus, PG-4 belongs to a class of antibodies that recognize native epitopes located within glycosaminoglycan chains. It differs from previously described antibodies in this class in that it identifies both chondroitin sulfate and dermatan sulfate proteoglycans. These characteristics make PG-4 a useful monoclonal antibody probe to identify the total population of proteoglycans in human skin.  相似文献   

3.
Endocytosis and subsequent degradation of iduronic acid-rich small dermatan sulfate proteoglycan from fibroblast secretions were studied in human fibroblasts. Upon endocytosis of [3H]leucine- and [35S]sulfate-labeled proteoglycan release of free leucine was 10 to 15 times more rapid than that of inorganic sulfate. Within approximately 3 h a steady state was approached between transport of proteoglycan to the compartment of core protein degradation and release of free leucine. No such steady state could be found with respect to the dermatan sulfate chains. In the presence of benzyloxycarbonyl-Phe-Ala-diazomethylketone or of other SH-protease inhibitors the degradation of the protein moiety of endocytosed proteoglycan was much less inhibited than the degradation of the polysaccharide chain. Benzyloxycarbonyl-Phe-Ala-diazomethylketone did not affect the degradation of dermatan sulfate chains taken up by fluid phase endocytosis and the activities of all known dermatan sulfate-degrading enzymes. Percoll gradient centrifugation indicated that also in the presence of the protease inhibitor the partially degraded proteoglycan accumulated in dense lysosomes. The isolation of intracellular dermatan sulfate peptides and molecular size determinations of endocytosed dermatan sulfate proteoglycan supported the conclusion that a critical proteolytic step is required before the dermatan sulfate chain becomes accessible to hydrolytic enzymes.  相似文献   

4.
L-iduronidase in cultured human fibroblasts and liver   总被引:13,自引:0,他引:13  
Extracts of normal human livers and skin fibroblasts cultured from normal individuals and patients with the Hurler syndrome released L-iduronic acid when incubated with desulfated dermatan sulfate. Enzyme extracts of normal fibroblasts liberated larger amounts of L-induronic acid, as judged by paper chromatography, than did homogenates from Hurler fibroblasts. Preliminary studies with desulfated heparan sulfate using the same enzyme systems have also shown material with the Rf of iduronolactone on paper chromatography.  相似文献   

5.
The size and immunological reactivity of the primary gene products of a small non-aggregating dermatan sulfate proteoglycan from bovine and monkey arterial smooth muscle cells were examined after cell-free translation of mRNA. Antisera against the dermatan sulfate proteoglycans from bovine articular cartilage, DSPG II [Rosenberg et al. J. Biol. Chem. 260, 6304 (1985)] and human skin fibroblasts [Glossl et al. J. Biol. Chem. 259, 14144 (1984)] were used to show that the unmodified smooth muscle precursor core protein was immunologically related to both the cartilage and fibroblast core proteins. The size of the precursor core proteins within each species was identical regardless of the tissue source. Comparison of the precursor core proteins synthesized by primate and bovine cells revealed that the bovine core proteins were approximately 1500 Da larger than the primate core proteins as determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. A similar size difference was observed when the mature core proteins of monkey smooth muscle cells and bovine articular chondrocytes were compared after removal of the glycosaminoglycan chains. These results indicate that arterial smooth muscle cells synthesize a dermatan sulfate proteoglycan whose core protein is similar to, if not the same as, the cartilage and fibroblast dermatan sulfate proteoglycan core proteins. These core proteins may be encoded by the same gene that has diverged in size during speciation.  相似文献   

6.
Tyrosine O-sulfate ester in proteoglycans   总被引:1,自引:0,他引:1  
Tyrosine O-sulfate residues were detected in the protein core of sulfated proteoglycans. When cultured skin fibroblasts and arterial smooth muscle cells were incubated in the presence of [35S]sulfate, dermatan sulfate proteoglycan and chondroitin sulfate proteoglycan isolated from the culture medium contained tyrosine [35S]sulfate ester which accounted for 0.03%-0.82% of total 35S radioactivity incorporated into the sulfated proteoglycans. This corresponds to a tyrosine sulfation of every second (fibroblasts) and every 10th (smooth muscle cells) dermatan sulfate proteoglycan molecule. [3H]Tyrosine labeling of fibroblast dermatan sulfate proteoglycan gave a similar stoichiometry. However, the relative proportion of tyrosine [35S]sulfate in proteoglycans from arterial tissue was about 10 times higher than in that from cultured arterial cells. Pulse chase experiments with [35S]sulfate revealed that tyrosine sulfation is a late event in the biosynthesis of dermatan sulfate proteoglycan from fibroblasts and occurs immediately prior to secretion. Cultured skin fibroblasts from a patient with a progeroid variant (Kresse et al. 1987, Am. J. Hum. Gen. 41, 436-453) which exhibit a partial deficiency to synthesize dermatan sulfate proteoglycan were shown to form and to secrete a tyrosine-sulfated but glycosaminoglycan-free protein core, thus confirming a selective and independent [35S]sulfate labeling of the protein core.  相似文献   

7.
Adducted thumb-clubfoot syndrome is an autosomal-recessive disorder characterized by typical facial appearance, wasted build, thin and translucent skin, congenital contractures of thumbs and feet, joint instability, facial clefting, and coagulopathy, as well as heart, kidney, or intestinal defects. We elucidated the molecular basis of the disease by using a SNP array-based genome-wide linkage approach that identified distinct homozygous nonsense and missense mutations in CHST14 in each of four consanguineous families with this disease. The CHST14 gene encodes N-acetylgalactosamine 4-O-sulfotransferase 1 (D4ST1), which catalyzes 4-O sulfation of N-acetylgalactosamine in the repeating iduronic acid-α1,3-N-acetylgalactosamine disaccharide sequence to form dermatan sulfate. Mass spectrometry of glycosaminoglycans from a patient''s fibroblasts revealed absence of dermatan sulfate and excess of chondroitin sulfate, showing that 4-O sulfation by CHST14 is essential for dermatan sulfate formation in vivo. Our results indicate that adducted thumb-clubfoot syndrome is a disorder resulting from a defect specific to dermatan sulfate biosynthesis and emphasize roles for dermatan sulfate in human development and extracellular-matrix maintenance.  相似文献   

8.
Chondroitin sulfates, dermatan sulfate, heparan sulfate, heparin, keratan sulfate, and oligosaccharides derived from these sulfated glycosaminoglycans have been used for the measurement of sulfatase activity of rat skin extracts. Chromatographic fractionation of the extracts followed by specificity studies demonstrated the existence of five different sulfatases, specific for 1) the nonreducing N-acetylglucosamine 6-sulfate end groups of heparin sulfate and keratan sulfate, 2) the nonreducing N-acetylgalactosamine (or galactose) 6-sulfate end groups of chondroitin sulfate (or keratan sulfate), 3) the nonreducing N-acetylgalactosamine 4-sulfate end groups of chondroitin sulfate and dermatan sulfate, 4) certain suitably located glucosamine N-sulfate groups of heparin and heparan sulfate, or 5) certain suitably located iduronate sulfate groups of heparan sulfate and dermatan sulfate. Two arylsulfatases, one of which was identical in its chromatographic behaviors with the third enzyme described above, were also demonstrated in the extracts. These results taken together with those previously obtained from studies on human fibroblast cultures suggest that normal skin fibroblasts contain at least five specific sulfatases and diminished activity of any one may result in a specific storage disease.  相似文献   

9.
The proteoglycans synthesized by fibroblasts derived from healthy human gingivae were isolated and characterized. The largest medium proteoglycan was excluded from Sepharose CL-4B but not from Sepharose CL-2B; it was recovered in the most-dense density gradient fraction and identified as a chondroitin sulfate proteoglycan. The medium contained two smaller proteoglycans; one contained predominantly chondroitin sulfate proteoglycan, while the other was comprised predominantly of dermatan sulfate proteoglycan and was quantitatively the major species. The largest proteoglycan in the cell layer fraction, excluded from both Sepharose CL-2B and Sepharose CL-4B, was found in the least-dense density gradient fraction and contained heparan sulfate and chondroitin sulfate proteoglycan. It could be further dissociated by treatment with detergent, suggesting an intimate association with cell membranes. Two other proteoglycan populations of intermediate size were identified in the cell layer extracts which contained variable proportions of heparan sulfate, dermatan sulfate, or chondroitin sulfate proteoglycan. Some small molecular weight material indicative of free glycosaminoglycan chains was also associated with the cell layer fraction. Carbohydrate analysis of the proteoglycans demonstrated the glycosaminoglycan chains to have approximate average molecular weights of 25,000. In addition, N- and O-linked oligosaccharides which were associated with the proteoglycans appeared to be sulfated in varying degrees.  相似文献   

10.
Human plasma heparin cofactor II (HCII) inhibits thrombin by rapidly forming a stable, equimolar complex in the presence of heparin or dermatan sulfate. Cultured human hepatoma-derived cells (PLC/PRF-5) secreted (approximately equal to 200 ng/ml in 3 days) a protein of MW - 72 kD that was immunoisolated and immunoblotted with anti-HCII, co-migrated on SDS-PAGE with human plasma HCII, and formed covalent complexes with thrombin (MW - 101 kD) in the presence but not absence of heparin or dermatan sulfate; these complexes co-migrated with those obtained by incubating thrombin with human plasma under the same conditions. HCII was not detectable (less than 0.13 ng/ml) in post-culture medium from cultured human umbilical vein endothelial cells or human foreskin fibroblasts.  相似文献   

11.
A new discontinuous agarose-gel electrophoresis in 0.05 M HCl/0.04 M barium acetate combined with the highly sensitive visualization technique using toluidine blue/Stains-All has been developed for the simultaneous assaying of hyaluronic acid (HA) and dermatan sulfate (DS) with a detection limit at submicrogram level greater than other conventional procedures. Furthermore, this procedure also separates and reveals chondroitin sulfate (CS). The densitometric analysis of bands resulted in a linear response between 0.01 and 0.5 microg of glycosaminoglycans (GAGs) with correlation coefficients greater than approximately 0.94. Hyaluronic acid and dermatan sulfate extracted and purified from the abdominal skin of six rats were separated and quantified in comparison with the evaluation made by treatment of chondroitin ABC lyase and separation of Delta-disaccharides from hyaluronic acid (DeltadiHA) and dermatan sulfate/chondroitin sulfate (Deltadi4s and Deltadi6s) by HPLC. The total amount of rat skin polysaccharides (hyaluronic acid and dermatan sulfate) was 1.24+/-0.26 microg/mg of tissue by discontinuous agarose-gel electrophoresis and 1.20+/-0.33 microg/mg by HPLC with hyaluronic acid and dermatan sulfate percentages of 50.32+/-2.38 and 49.66+/-2.53, respectively. The analyses also confirmed that hyaluronic acid and dermatan sulfate are the main rat abdominal skin polysaccharides with chondroitin sulfate present in trace amounts. This new agarose-gel electrophoresis could be particularly useful in the study of the distribution of glycosaminoglycans in the skin from different body sites of animals and normal human subjects and may be of importance in understanding the changes that occur in the skin, especially the metabolism of extracellular matrix constituents, in connective tissue disorders.  相似文献   

12.
Glycosaminoglycans were isolated from the eel skin (Anguilla japonica) by actinase and endonuclease digestions, followed by a beta-elimination reaction and DEAE-Sephacel chromatography. Dermatan sulfate was the major glycosaminoglycan in the eel skin with 88% of the total uronic acid. The content of the IdoA2Salpha1-->4GalNAc4S sequence in eel skin, which shows anticoagulant activity through binding to heparin cofactor II, was two times higher than that of dermatan sulfate from porcine skin. The anti-IIa activity of eel skin dermatan sulfate was determined to be 2.4 units/mg, whereas dermatan sulfate from porcine skin shows 23.2 units/mg. The average molecular weight of dermatan sulfate was determined by gel chromatography on a TSKgel G3000SWXL column as 14 kDa. Based on 1H NMR spectroscopy, the presence of 3-sulfated and/or 2,3-sulfated IdoA residues was suggested. The reason why highly sulfated dermatan sulfate does not show anticoagulant activity is discussed. In addition to dermatan sulfate, the eel skin contained a small amount of keratan sulfate, which was identified by keratanase treatment.  相似文献   

13.
Biosynthesis of proteodermatan sulfate in cultured human fibroblasts   总被引:18,自引:0,他引:18  
Biosynthesis and secretion of proteodermatan sulfate produced by cultured human skin fibroblasts were investigated employing immunological procedures. During an incubation period of 10 min in the presence of [3H]leucine, two core protein forms of Mr = 46,000 and 44,000, respectively, were synthesized. They were converted to mature proteodermatan sulfate with a half-time of approximately 12 min. Fifty per cent of total mature proteodermatan sulfate were found in the culture medium after a 35-min chase. Six to eight per cent remained associated with the cell layer after a chase of 6 h. In the presence of tunicamycin, fibroblasts synthesized a single core protein of Mr = 38,000 that was converted to mature proteodermatan sulfate and secreted with similar kinetics as the N-glycosylated species. Subtle differences in the molecular size of core proteins were noted when cell-associated and secreted proteodermatan sulfate were degraded with chondroitin ABC lyase, but core proteins free of N-linked oligosaccharides were identical. Labeling with [3H]mannose revealed that secreted proteodermatan sulfate contains two or three complex-type or two complex-type and one high-mannose-type N-linked oligosaccharide chains. The N-glycans are bound to a 21-kDa fragment of the core protein. After incubation in the presence of [3H]glucosamine, the [3H]galactosamine/[3H]glucosamine ratio was 3.76 and 3.30 for secreted and cell-associated proteodermatan sulfate, respectively. Evidence for the presence of O-linked oligosaccharides could not be obtained. Small amounts of core protein free of dermatan sulfate chains were secreted when the cultures were treated with p-nitrophenyl-beta-D-xyloside.  相似文献   

14.
The copolymeric structure of dermatan sulfate chains synthesized by skin fibroblasts has been examined. Chains initiated onto exogeneousp-nitrophenyl--D-xylopyranoside or attached to protein in a large proteoglycan, PG-L, and two small proteoglycans, PG-S1 and PG-S2, have been compared by using high resolution electrophoresis and gel chromatography of oligosaccharides generated by specific enzymatic or chemical degradations. The results confirm that chains attached to PG-L are glucuronate-rich, whereas novel findings indicate that chains attached to either of the two PG-S variants yield closely similar oligosaccharide maps, have approximately equal glucuronate and iduronate content and contain over 90% 4-sulfated disaccharide repeating units. Dermatan sulfate chains built onto xyloside at concentrations of 50 µm and below have a copolymeric structure similar to that of chains from the two PG-S variants. These findings indicate that the polymer-modifying machinery can generate chains with extended iduronate-containing repeats also when the xylose primer is not linked to core protein.  相似文献   

15.
16.
Studies using lysosomal membrane vesicles have suggested that efflux of the sulfate that results from lysosomal glycosaminoglycan degradation is carrier-mediated. In this study, glycosaminoglycan degradation and sulfate efflux were examined using cultured skin fibroblasts and lysosomes deficient in the lysosomal enzymeN-acetylgalactosamine-4-sulfatase. Such fibroblasts store dermatan sulfate lysosomally, which could be labelled biosynthetically with Na 2 35 SO4. The addition of recombinantN-acetylgalactosamine-4-sulfatase to the media of35S labelled fibroblasts degraded up to 82% of the stored dermatan [35S] sulfate over a subsequent 96 h chase and released inorganic [35S] sulfate into the medium. In the presence of 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (SITS), sulfate was reused to a minor extent in newly synthesized proteoglycan. Isolated granules from recombinant enzyme supplemented fibroblasts degraded stored dermatan [35S]sulfate to sulfate which was rapidly released into the medium at a rate that was reduced by the extra-lysosomal presence of the lysosomal sulfate transport inhibitors SITS, Na2SO4 and Na2MoO4. SITS also inhibited dermatan sulfate turnover, although it had no effect on the action of purified recombinant enzymein vitro. These data imply that sulfate clearance occurred concomitantly with dermatan sulfate turnover in the lysosome even at high substrate loading, and that lysosome-derived sulfate, while available, is reutilized minimally in synthetic pathways.Abbreviations SITS 4-acetamido-4-isothiocyanatostilbene-2,-2-disulfonic acid - GAG glycosaminoglycan - 4S N-acetylgalactosamine-4-sulfatase - r4S recombinant humanN-acetylgalactosamine-4-sulfatase - PBS phosphate buffered saline - BME basal modified Eagle's medium - FBS fetal bovine serum - GalNAc4S-GlcA-GalitolNAc4S -(N-acetyl-d-galactosamine-4-sulfate)-(1–4)--d-glucuronic acid)-(1–3)-N-acetyl-d-[1-3H]galactosaminitol-4-sulfate - DS dermatan sulfate - MPS mucopolysaccharidosis  相似文献   

17.
18.
WISP-1 binds to decorin and biglycan   总被引:6,自引:0,他引:6  
Wnt-1-induced secreted protein 1 (WISP-1) is a member of the CCN (connective tissue growth factor, Cyr61, NOV) family of growth factors. Structural and experimental evidence suggests that CCN family member activities are modulated by their interaction with sulfated glycoconjugates. To elucidate the mechanism of action for WISP-1, we characterized the specificity of its tissue and cellular interaction and identified binding factors. WISP-1 binding was restricted to the stroma of colon tumors and to cells with a fibroblastic phenotype. By using a solid phase assay, we showed that human skin fibroblast conditioned media contained WISP-1 binding factors. Competitive inhibition with different glycosaminoglycans and treatment with glycosaminoglycan lyases and proteases demonstrated that binding to the conditioned media was mediated by dermatan sulfate proteoglycans. Mass spectrometric analysis identified the isolated binding factors as decorin and biglycan. Decorin and biglycan interacted directly with WISP-1 and inhibited its binding to components in the conditioned media. Similarly, WISP-1 interaction with human skin fibroblasts was inhibited by dermatan sulfate, decorin, and biglycan or by treatment of the cell surface with dermatan sulfate-specific lyases. Together these results demonstrate that decorin and biglycan are WISP-1 binding factors that can mediate and modulate its interaction with the surface of fibroblasts. We propose that this specific interaction plays a role in the regulation of WISP-1 function.  相似文献   

19.
Transforming growth factor beta (TGF-beta) increases up to 20-fold the expression of various forms of chondroitin/dermatan sulfate proteoglycan, the major type of sulfated proteoglycan present in the extracellular matrix and culture medium of various human, rodent, and mink cell types including kidney and lung fibroblasts, lung epithelial cells, preadipocytes, and skeletal muscle myoblasts. TGF-beta regulates the level and molecular size of these proteoglycans by acting simultaneously at two levels: it elevates the biosynthetic rate of the 45-kDa proteoglycan core protein in a cycloheximide- and actinomycin D-sensitive manner, and it induces an increase in the molecular mass of the glycosaminoglycan chains. These cellular responses correlate with occupancy of type III TGF-beta receptors by TGF-beta 1 and TGF-beta 2 and are not induced by other growth factors tested. The parameters of this effect of TGF-beta in kidney fibroblasts and myoblasts are ED50 = 5-10 pM TGF-beta 1 or TGF-beta 2, and t 1/2 = 6-8 h. These results identify the chondroitin/dermatan sulfate proteoglycans as a major component of mammalian mesenchymal and epithelial extracellular matrices whose expression and structure are regulated by TGF-beta.  相似文献   

20.
An early step in the biosynthesis of dermatan sulfate is polymerization to chondroitin, which then is modified by the D-glucuronyl C5-epimerase and mainly 4-O-sulfotransferase. The final structure of the dermatan sulfate side chains varies and our aim was to identify, which of the two enzymes that are crucial to generate dermatan sulfate copolymeric structures in tissues. Dermatan sulfate side chains of biglycan and decorin were prepared from fibroblasts and nasal and articular chondrocytes and characterized regarding detailed structure. Microsomes were prepared from these cells and the activities of D-glucuronyl C5-epimerase and 4-O-sulfotransferase were determined. Chondrocytes from nasal cartilage synthesized biglycan and decorin containing 10%, articular chondrocytes 20--30%, and fibroblast 80% of the uronosyl residues in the l-iduronyl configuration. All three tissues contained high amount of 4-O-sulfotransferase activity. The activity of d-glucuronyl C5-epimerase showed different relationships. Fibroblasts contained a high level of the epimerase activity, articular chondrocytes intermediary activity, and in nasal cartilage it was barely detectable. The data indicate that the activity of the d-glucuronyl C5-epimerase is the main factor for formation of dermatan sulfate in tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号