首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin (0.1 μM) and 1 μM epinephrine each increased the uptake and phosphorylation of 2-deoxyglucose by the perfused rat heart by increasing the apparent Vmax without altering the Km. Isoproterenol (10 μM), 50 μM methoxamine and 10 mM CaCl2 also increased uptake. Lowering of the perfusate Ca2+ concentration from 1.27 to 0.1 mM Ca2+, addition of the Ca2+ channel blocker nifedipine (1 μM) or addition of 1.7 mM EGTA decreased the basal rate of uptake of 2-deoxyglucose and prevented the stimulation due to 1 μM epinephrine. Stimulation of 2-deoxyglucose uptake by 0.1 μM insulin was only partly inhibited by Ca2+ omission, nifedipine or 1 mM EGTA. Half-maximal stimulation of 2-deoxyglucose uptake by insulin occurred at 2 nM and 0.4 nM for medium containing 1.27 and 0.1 mM Ca2+, respectively. Maximal concentrations of insulin (0.1 μM) and epinephrine (1 μM) were additive for glucose uptake and lactate output but were not additive for uptake of 2-deoxyglucose. Half-maximal stimulation of 2-deoxyglucose uptake by epinephrine occurred at 0.2 μM but maximal concentrations of epinephrine (e.g., 1 μM) gave lower rates of 2-deoxyglucose uptake than that attained by maximal concentrations of insulin. The addition of insulin increased uptake of 2-deoxyglucose at all concentrations of epinephrine but epinephrine only increased uptake at sub-maximal concentrations of insulin. The role of Ca2+ in signal reversal was also studied. Removal of 1 μM epinephrine after a 10 min exposure period resulted in a rapid return of contractility to basal values but the rate of 2-deoxyglucose uptake increased further and remained elevated at 20 min unless the Ca2+ concentration was lowered to 0.1 mM or nifedipine (1 μM) was added. Similarly, removal of 0.1 μM insulin after a 10 min exposure period did not affect the rate of 2-deoxyglucose uptake, which did not return to basal values within 20 min unless the concentration of Ca2+ was decreased to 0.1 mM. Insulin-mediated increase in 2-deoxyglucose uptake at 0.1 mM Ca2+ reversed upon hormone removal. It is concluded that catecholamines mediate a Ca2+-dependent increase in 2-deoxyglucose transport from either α or β receptors. Insulin has both a Ca2+-dependent and a Ca2+-independent component. Reversal studies suggest an additional role for Ca2+ in maintaining the activated transport state when activated by either epinephrine or insulin.  相似文献   

2.
Adult rat brain capillaries were isolated by a simplified procedure and showed an enrichment of the marker enzyme, γ-glutamyltranspeptidase. The uptake of [35S]cystine at 37°C by this preparation can be divided into two components, a sodium- and energy-dependent transport process for the free amino acid pool, with an apparent Km of 36 μm , and a binding process, with an apparent Km of 1.13 mm . Chemical analysis of the amino acid pool indicates that cystine is the major form of intracapillary 35S. Cystine transport was not inhibited by lysine, but glycine, α-methylaminoisobutyric acid and β-2-aminobicyclo-[2,2,1]-heptane-2-carboxylic acid were inhibitory to a small extent.  相似文献   

3.
d-glucose, but not l-glucose, was found to readily enter the cells of 5- to 6-day chick embryo heart. This suggests the operation of a specific transport system for glucose. The rate of glucose uptake was found to decrease as development proceeds from 5 to 15 days of development, but no further decrease was found between 15 and 20 days. Uptake of glucose is a saturable process, from 5–6 days of embryonic life on. The large decrease in glucose uptake between 5 and 10 days of development is found to be associated with a fourfold increase in the apparent Km of the uptake process. From 10 days of development onward, the apparent Km remains about 40 mM. The rate of 2-deoxyglucose uptake also decreased from 5 to 15 days of embryonic life with no further decrease from 15 to 20 days. Glucose competitively inhibits the uptake of 2-deoxyglucose with a Ki close to the Km for glucose uptake. The uptake of 2-deoxyglucose is stimulated by physiological levels of insulin as early as 5–6 days, although the extent to which insulin enhances uptake is not quite as great as at 15 days of development.  相似文献   

4.
Abstract— Uptake of 2-deoxy-d-glucose (2-DG) was investigated in capillaries isolated from rat brain. A high affinity, carrier-mediated transport system was defined with an apparent Km for 2-DG of 93 μM. Uptake was temperature-dependent and markedly inhibited by phloretin and selected hexose isomers. The apparent Ki for d-glucose inhibition of 2-DG uptake was 98 μM. Essentially all of the 2-DG retained by the capillary preparation could be released by sonication and 95% was recovered as free unphosphorylated 2-DG. Uptake was not sodium-dependent and not altered by insulin. These results suggest that movement of glucose across the blood-brain barrier through endothelial cells probably is not rate-limiting unless blood glucose levels are extremely low.  相似文献   

5.
The active transport of d-glucose by membrane vesicles prepared from Azotobactervinelandii strain O is coupled to the oxidation of l-malate. The glucose carrier, but not the energy coupling system of the vesicles, is induced by growth of the cells on d-glucose medium. Vesicles isolated from A. vinelandii grown in the presence of sucrose or acetate accumulate glucose at less than 7% of the rate observed for vesicles from glucose-grown cells. Nevertheless, vesicles from sucrose- or acetate-grown cells transport sucrose or calcium, respectively, in the presence of malate.The transport system expressed in vesicles from glucose-cultured cells is highly specific for d-glucose. Studies of glucose analog uptake and of the competitive effect of analogs reveal that: (i) The glucose carrier is stereospecific. (ii) The affinity of hexoses for the transport system is inversely related to the bulk of substituents on the pyranose ring, especially at the C-1 and C-2 positions, (iii) The most effective competitors, 6-deoxyglucose and 2-deoxyglucose, exhibit affinities only 10–20% that of d-glucose for the transport system, (iv) Phloretin, but not phlorizin, is a competitive inhibitor of glucose transport, having an apparent Ki of 9 μm at pH 7.0. These latter findings suggest a similarity of the glucose transport system of fxA. vinelandii and those of eukaryotes with regard to the glucose carrier.  相似文献   

6.
Transport of uridine by mouse early blastocysts is a saturable process. Kinetic studies of uptake by the blastocysts reveal an apparent Km of 1.6 μM and Vmax of 0.0063 pmole/min/embryo at 37°C. Uridine uptake is reduced when thymidine, adenosine, deoxyuridine, cytidine, or deoxyadenosine is added to the medium. These findings suggest that transport of these compounds may occur at the same or overlapping sites in the cell membrane. Inhibition of transport by dinitrophenol and KCN suggests a coupling of transport to phosphorylation and energy metabolism, probably through the phosphorylation of uridine to form UTP, the principal intracellular metabolite of uridine. However, since phosphorylation of uridine is not measurable separately from the transport process in the intact embryo, it has not been determined whether uridine uptake by the embryos occurs by facilitated diffusion or by active transport.  相似文献   

7.
The actions of a number of sodium channel-specific neurotoxins on the uptake of Na-22 by osmotically sensitive membrane preparations from rat brain were studied using a glass-fiber filter assay. Under control conditions, there was Na-22 uptake that reached saturation within 5 min, and was insensitive to tetradotoxin (10 μM). Batrachotoxin (Kdapp = 0.2 μM), veratridine (Kdapp = 1 μM) and grayanotoxin I (Kdapp = 30 μM), which increase sodium conductance in electrogenic membranes, stimulated Na-22 uptake approximately 2-fold over control levels. This additional Na-22 uptake was markedly dependent on the ionic strength of the media, associated with subfractions of the preparation enriched in plasma membranes, and completely inhibited by tetrodotoxin (10 μM). It was highly labile, showing only a minor decrease in activity within the first 4–6 h after preparation of the membranes, but disappearing within 24 h at 4° C. It is suggested that the toxins-activated Na-22 uptake, which is tetrodotoxin-sensitive, results from the actions of these toxins on the macromolecular channel complex which controls resting and action potential sodium conductance.  相似文献   

8.
In order to get insight into the origin of apparent negative cooperativity observed for F1-ATPase, we compared ATPase activity and ATPMg binding of mutant subcomplexes of thermophilic F1-ATPase, α(W463F)3β(Y341W)3γ and α(K175A/T176A/W463F)3β(Y341W)3γ. For α(W463F)3β(Y341W)3γ, apparent Km's of ATPase kinetics (4.0 and 233 μM) did not agree with apparent Km's deduced from fluorescence quenching of the introduced tryptophan residue (on the order of nM, 0.016 and 13 μM). On the other hand, in case of α(K175A/T176A/W463F)3β(Y341W)3γ, which lacks noncatalytic nucleotide binding sites, the apparent Km of ATPase activity (10 μM) roughly agreed with the highest Km of fluorescence measurements (27 μM). The results indicate that in case of α(W463F)3β(Y341W)3γ, the activating effect of ATP binding to noncatalytic sites dominates overall ATPase kinetics and the highest apparent Km of ATPase activity does not represent the ATP binding to a catalytic site. In case of α(K175A/T176A/W463F)3β(Y341W)3γ, the Km of ATPase activity reflects the ATP binding to a catalytic site due to the lack of noncatalytic sites. The Eadie-Hofstee plot of ATPase reaction by α(K175A/T176A/W463F)3β(Y341W)3γ was rather linear compared with that of α(W463F)3β(Y341W)3γ, if not perfectly straight, indicating that the apparent negative cooperativity observed for wild-type F1-ATPase is due to the ATP binding to catalytic sites and noncatalytic sites. Thus, the frequently observed Km's of 100-300 μM and 1-30 μM range for wild-type F1-ATPase correspond to ATP binding to a noncatalytic site and catalytic site, respectively.  相似文献   

9.
Pseudomonas aeruginosa has a choline uptake system which is expressed in bacteria grown in the presence of succinate and ammonium chloride as the carbon and nitrogen source, respectively. This system obeys Michaelis-Menten kinetics with an apparent Km value of 53 μM; its activity is not inhibited by high osmolarities in the medium but is partially inhibited by choline metabolites such as betaine and dimethylglycine.  相似文献   

10.
Abstract— The uptake into the non-raffinose space of cerebral cortex slices of a number of 14C-labelled glucose analogues has been studied. Evidence on competition with glucose for the transport process has been used to derive information on the substrate specificity of sugar uptake to the brain. The kinetic properties of the uptake of 2-deoxygIucose indicate that the transport is a facilitated process rather than diffusion. Classical competition between glucose and 2-deoxyglucose for transport is shown and arguments are advanced for regarding glucose as a competitive inhibitor of 2-deoxyglucose transport. The apparent Km for deoxyglucose is 10 mM and for glucose is suggested to be of the order of 5 mm , The value of such a kinetic approach to sugar transport in various conditions is discussed.  相似文献   

11.
The characteristics of sulphate uptake into right-side-out plasma-membrane vesicles isolated from roots of Brassica napus L., Metzger, cv. Drakkar, and purified by aqueous polymer two-phase partitioning, were investigated. Sulphate uptake into the vesicles was driven by an artificially imposed pH gradient (acid outside), and could be observed for 5–10 min before a plateau was reached and no further net uptake occurred. The uptake was partially inhibited in the presence of depolarizing agents and little uptake was observed in the absence of an imposed pH gradient. Uptake was strongly pH-dependent, being greatest at more acidic pH. After imposition of a pH gradient, the capacity for uptake decreased slowly (t1/2>10 min). The uptake had a high-affinity component which was strongly dependent on the external proton concentration (K m=10μM at pH 5.0, 64 μM at pH 6.5). The K m for protons varied from 0.4–1.9 μM as the sulphate concentration was reduced from 33 to 1 μM. A low-affinity component was observed which could be resolved at low temperatures (0 °C). Microsomal membranes that partitioned into the lower phase of the two-phase system gave no indication of high-affinity sulphate transport. Sulphate uptake into plasma-membrane vesicles isolated from sulphur-starved plant material was approximately twofold greater than that observed in those isolated from sulphate-fed plant material. Isolated vesicles therefore mirror the well-known in-vivo response of roots, indicating an increase in the number of transporters to be, at least in part, the underlying cause of derepression.  相似文献   

12.
The apparent Km of Rb+ uptake and the zeta potential of yeast cells are appreciably affected by changes in the pH, variation of the concentration of the buffer cation Tris+ and addition of Ca2+ to the suspending medium. Irrespective of the way in which the zeta potential is affected, a direct relationship between the apparent Km of the Rb+ uptake and the zeta potential is observed. A reduction of 8 mV in the zeta potential is accompanied by a 20-fold increase in the apparent Km, which illustrates that electrostatic effects in ion uptake cannot be ignored. Measured zeta potentials are, to a good approximation, linearly related to surface potentials evaluated from a kinetic analysis of the Rb+ uptake. This shows the practical use of the zeta potential as a measure of the surface potential in studies of electrostatic effects in ion uptake by yeast. It is concluded that Tris+ and the aikaline earth cations inhibit the Rb+ uptake in yeast exclusively via a reduction in the surface potential. Protons, in addition, exert a competitive inhibition.  相似文献   

13.
We characterized the uptake of carnitine in brush-border membrane (BBM) and basolateral membrane (BLM) vesicles, isolated from mouse kidney and intestine. In kidney, carnitine uptake was Na+-dependent, showed a definite overshoot and was saturable for both membranes, but for intestine, it was Na+-dependent only in BLM. The uptake was temperature-dependent in BLM of both kidney and intestine. The BBM transporter in kidney had a high affinity for carnitine: apparent Km=18.7 μM; Vmax=7.85 pmol/mg protein/s. In kidney BLM, similar characteristics were obtained: apparent Km=11.5 μM and Vmax=3.76 pmol/mg protein/s. The carnitine uptake by both membranes was not affected within the physiological pH 6.5-8.5. Tetraethylammonium, verapamil, valproate and pyrilamine significantly inhibited the carnitine uptake by BBM but not by BLM. By Western blot analysis, the OCTN2 (a Na+-dependent high-affinity carnitine transporter) was localized in the kidney BBM, and not in BLM. Strong OCTN2 expression was observed in kidney and skeletal muscle, with no expression in intestine in accordance with our functional study. We conclude that different polarized carnitine transporters exist in kidney BBM and BLM. L-Carnitine uptake by mouse renal BBM vesicles involves a carrier-mediated system that is Na+-dependent and is inhibited significantly by specific drugs. The BBM transporter is likely to be OCTN2 as indicated by a strong reactivity with the anti-OCTN2 polyclonal antibody.  相似文献   

14.
Uptake of phosphate ions by 1 mm segments of isolated maize root cortex layers was studied. Cortex segments (from roots of 8 days old maize plants) absorb phosphate ions from 1 mM KH2PO4 in 0.2 mM CaSCO4 at the average rate of 34.3 ±3.2 μg Pi g?1 (fr. m.) h?1,i.e. 0.35± 0.02 μmol Pi g?1 (fr. m.) h?1. Phosphate uptake considerably increases after a certain period of “augmentation”,i.e. washing in aerated 0.2 mM CaSO4. This increase is completely blocked by the presence of 10 μg ml?1 cycloheximide. The relation of uptake rate to phosphate concentration in the medium was shown to have 3 phases in the concentration range of 0.02 - 40 mM. Transition points were found between 0.8–1 mM and 10–20 mM. Following Km and Vmax values were found: Km[mM] : 0.37 - 3.82 - 27.67 Vmax[μg Pi g?1 (fr. m.) h?1] : 3.33 - 39.40 - 66.67 We have found no sharp pH optimum for phosphate uptake. It proceeds at almost constant rate till pH 6.0 and then the uptake rate drops with increasing pH. At low phosphate concentrations (1 mM) the lowest uptake rate was found at 5 and 13 °C, while the uptake is higher at 5 °C than at 13 °C at phosphate concentrations higher than 1 mM. At these concentrations uptake rate at 35 °C is lower than at 25 °C. Phosphate uptake considerably decreased in anaerobic conditions. DNP and iodoacetate (0.1 mM) completely blocked phosphate uptake from 1 mM KH2PO4, while uptake from 5 and 10 mM KH2PO4 was left unaffected by these substances. The inhibitors of active - SH groups NEM and PCMB inhibited phosphate uptake: 10?3 M NEM by 81.6%, 104 M NEM by 42% and 10?4 M PCMB by 42%.  相似文献   

15.
We have examined the uptake of creatine by cultured monolayers of human IMR-90 flbroblasts, human uterine smooth muscle cells, calf aortic smooth muscle cells, and myoblasts and myotubes of the L6E9 rat skeletal muscle cell line. Creatine uptake is dependent on temperature and sensitive to the presence of Na+ in the extracellular medium. It is saturable, apparently concentrative, and inhibited by ouabain and structural analogs of creatine. In these respects, it resembles the process of creatine uptake by isolated preparations of skeletal muscle and brain tissues. Lineweaver-Burk plots of the data for variation in rate of uptake with concentration of creatine in the medium are nonlinear, suggesting that the process of uptake may be heterogeneous. Assuming the operation of two saturable processes of uptake, we calculated two values for apparent Km and V for each cell line. Kinetic parameters of creatine uptake by the different cell types are similar. The lower values of Km (0.02–0.04 mm) are in the physiological range of creatine concentration in mammalian plasma.  相似文献   

16.
《BBA》1987,893(1):7-12
The effect of increasing bilirubin concentrations upon the catalytic activity of a series of dehydrogenases and aminotransferases was examined. The particular enzymes were chosen to examine the effect of bilirubin upon the activity of enzymes responsible for the indirect transfer of reducing equivalents across the inner mitochondrial membrane. Malate dehydrogenase was inhibited at very low concentrations of bilirubin and showed competitive inhibition with respect to coenzyme of 2 μM, while the cytosolic form of this enzyme exhibited a 15 μM inhibition constant. Cytosolic glycerol-3-phosphate dehydrogenase was not appreciably inhibited by bilirubin. Both the mitochondrial and cytosolic forms of aspartate aminotransferase showed moderate competitive bilirubin inhibition with respect to substrates with a Ki of 30 μM with respect to 2-oxoglutarate and a Ki of 80 μM with respect to aspartate. Preincubation studies indicated that inhibition was reversible for all enzymes examined. These results are interpreted in terms of the inhibition of the malate-aspartate shuttle by relatively low concentrations of bilirubin.  相似文献   

17.
L-Amino acid oxidase (L-AAO) was purified from the solid state-grown cultures of A. oryzae ASH (JX006239.1) by fractional salting out, followed by ion exchange and gel filtration chromatography, to its molecular homogeneity, displaying 3.38-fold purification in comparison with the crude enzyme. SDS-PAGE revealed the enzyme to be a homo-dimer with ~55-kDa subunits, with approximate molecular weight on native PAGE of 105–110 kDa. Two absorption maxima, at 280 nm and 341 nm, for the apoproteinic and FMN prosthetic group of the enzyme, respectively, were observed, with no detected surface glycosyl residues. The enzyme had maximum activity at pH 7.8–8.0, with ionic structural stability within pH range 7.2–7.6 and pH precipitation point (pI) 4.1–5.0. L-AAO exhibited the highest activity at 55°C, with plausible thermal stability below 40°C. The enzyme had T 1/2 values of 21.2, 8.3, 3.6, 3.1, 2.6 h at 30, 35, 40, 50, 60°C with Tm 61.3°C. Kinetically, A. oryzae L-AAO displayed a broad oxidative activity for tested amino acids as substrates. However, the enzyme had a higher affinity towards basic amino acid L-lysine (K m 3.3 mM, K cat 0.04 s?1) followed by aromatic amino acids L-tyrosine (K m 5.3 mM, K cat 0.036 s?1) and L-phenylalanine (K m 6.6 mM), with 1ow affinity for the S-amino acid L-methionine (K m 15.6 mM). The higher specificity of A. oryzae L-AAO to L-lysine as substrate seems to be a unique property comparing to this enzyme from other microbes. The enzyme was significantly inhibited by hydroxylamine and SDS, with slight inhibition by EDTA. The enzyme had a little effect on AST and ALT, with no effect on platelet aggregation and blood hemolysis in vivo with an obvious cytotoxic effect towards HepG2 (IC50 832.2 μg/mL) and MCF-7 (IC50, 370.6 μg/mL) tumor cells in vitro.  相似文献   

18.
Transport of succinate by Pseudomonas putida   总被引:9,自引:0,他引:9  
Induced succinate uptake and transport (defined as transport of a compound followed by its metabolism and transport in the absence of subsequent metabolism) by Pseudomonas putida are active processes resulting in intracellular succinate concentrations 10-fold that of the initial extracellular concentration. Uptake was studied with the wild-type strain P. putida P2 and transport with a mutant deficient in succinate dehydrogenase activity. Addition of succinate, fumarate, or malate to the growth medium induces both processes above a basal level. Induction is dependent on protein synthesis and subject to catabolite repression. When extracts of induced and noninduced wild-type cells were assayed for succinate dehydrogenase, fumarase, and malate dehydrogenase only malate dehydrogenase increased in specific activity. Transport is inhibited by iodoacetamide, KCN, NaN3, and 2,4-dinitrophenol and shows pH and temperature optima of 6.2 and 30 °C. Kinetic parameters are: basal uptake (cells grown on glutamate) Km 11.6 μm, v 0.32 nmoles per min per mg dry cell mass; induced uptake (cells grown on succinate plus NH4Cl) Km 12.5 μm, v 5.78 nmoles per min per mg dry cell mass; induced transport (cells grown on nutrient broth plus succinate) Km 10 μm, V 0.98 nmoles per min per mg dry cell mass. It was not possible to determine the kinetic parameters of basal transport. Malate and fumarate were the only compounds exhibiting competitive inhibition of uptake and transport suggesting common transport system for all three compounds. The Ki values for competitive inhibition and the Km for succinate indicate the order of affinity for both uptake and transport are succinate > malate > fumarate. Data from kinetic parameters of uptake and transport and studies on succinate metabolism provide evidence consistent with concurrent increases in transport and metabolism to account for induced succinate uptake by P. putida.  相似文献   

19.
Plasma membranes of rabbit thymus lymphocytes accumulated Ca2+ when a Na+ gradient (intravesicular > extravesicular) was formed across the membranes. Dissipation of the Na+ gradient by the addition of Na+ to the external medium decreased Ca2+ uptake. Ca2+ preloaded into the lymphocytes was extruded when Na+ was added to the external medium. The Ca2+ uptake decreased at acidic pH but increased at alkaline pH (above 8) and the activity was saturable for Ca2+ (apparent Km for Ca2+ was 61 μM and apparent Vmax was 11.5 nmol/mg protein per min). Na+-dependent uptake of Ca2+ was inhibited by tetracaine and verapamil, and partially inhibited by La3+. The uptake was not influenced by orthovanadate.  相似文献   

20.
Four rapid, independent assays of enzymatic pantetheine hydrolysis are described and compared using an enzyme partially purified from pig kidney. Two assays detect specifically the hydrolysis products: cysteamine (2-aminoethanethiol) is measured by the absorbance of its fluoropyruvate adduct at 300 nm and pantothenate is measured by radioimmunoassay. Methods of [14C]pantethine synthesis are discussed and the labeled substrate employed in a third enzymatic assay. A fourth assay continuously monitors the absorbance of mercaptide ion at 240 nm. The mercaptide ion concentration increases proportionally with hydrolysis at a buffered pH because of a difference in pK(-SH) between pantetheine (9.9) and cysteamine (8.1) at 37°C. The enzyme shows a pH optimum of ca. 9 and an apparent Km of 20 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号