首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscle biopsies taken from the musculus quadriceps femoris of man were analysed for pH, ATP, ADP, AMP, creatine phosphate, creatine, lactate and pyruvate. Biopsies were taken at rest, after circulatory occlusion and after isometric contraction. Muscle pH decreased from 7.09 at rest to 6.56 after isometric exercise to fatigue. Decrease in muscle pH was linearly related to accumulation of lactate plus pyruvate. An increase of 22mumol of lactate plus pyruvate per g of muscle resulted in a fall of 0.5pH unit. The apparent equilibrium constant of the creatine kinase reaction (apparent K(CK)) increased after isometric contraction and a linear relationship between log(apparent K(CK)) and muscle pH was obtained. The low content of creatine phosphate in muscle after contraction as analysed from needle-biopsy samples is believed to be a consequence of an altered equilibrium state of the creatine kinase reaction. This in turn is attributed mainly to a change in intracellular pH.  相似文献   

2.
The relationship between the apparent equilibrium constant of creatine kinase and intracellular pH was evaluated in CHO and murine FSaII tumor cells. The apparent equilibrium constant, K' = [ATP][Cr]/[ADP][PCr], was determined from acid extracts at variable pH. Intracellular pH (pHi) was determined from the intracellular/extracellular distribution of the weak acid 5,5-dimethyl-2,4-oxazolidinedione. Over the intracellular pH range of 7.2 to 6.1, K' increased by a factor of approximately 10. Intracellular pH was related to the apparent equilibrium constant by the equation pHi = -log K' + log K, where the value of the constant log (log[K'/H+]) was 8.09. Over the same pH range, the concentration of phosphocreatine decreased with pH. Essentially identical results were obtained in CHO and FSaII tumor cells. The similar apparent equilibrium constants in CHO and FSaII cells suggest that assessment of the creatine kinase metabolites will be useful not only for determination of cell energy status but also for the determination of intracellular pH. This information may be useful for the design of therapeutic strategies which are influenced by pH or energy status such as hyperthermia, and drugs which are weak acids or bases, including hypoxic cell radiosensitizers.  相似文献   

3.
The concentrations of phosphorylcreatine (PCr), adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), inorganic phosphate (Pi), pyruvate and lactate were determined in freeze-clamped fast muscle samples from Oreochromis alcalicus grahami a fish adapted to extreme alkalinity (∼ pH 10·0) and high temperatures (Lake Magadi, Kenya). Specimens were analysed from both geothermally heated hotsprings (35–37°C) and from isolated cool pools (28°C) and from stocks acclimated to 20°C in the laboratory. The ratios of (ATP)/(ADP) and (ATP)/(ADP) (Pi) decreased with increasing body temperature consistent with an increase in glycolysis and tissue respiration rates, respectively. The apparent equilibrium constant of creatine kinase (KCK), (creatine) (ATP)/(phosphorylcreatine) (ADP) was found to decrease with increasing temperature: 20·2 (20°C), 13·9 (28°C), 8·0 (37°C). A near constant muscle and blood pH (or slight increase in alkalinity with higher temperatures) was found regardless of body temperature (Blood pH 7·64, 7·74, muscle pH 7·27, 7·51 at 20°C and 35°C, respectively). These results are consistent with an unusual pattern of acid-base regulation in this species.  相似文献   

4.
Magnetic Resonance Spectroscopy affords the possibility of assessing in vivo the thermodynamic status of living tissues. The main thermodynamic variables relevant for the knowledge of the health of living tissues are: DeltaG of ATP hydrolysis and cytosolic [ADP], the latter as calculated from the apparent equilibrium constant of the creatine kinase reaction. In this study we assessed the stoichiometric equilibrium constant of the creatine kinase reaction by in vitro (31)P NMR measurements and computer calculations resulting to be: logK(CK)=8.00+/-0.07 at T=310 K and ionic strength I=0.25 M. This value refers to the equilibrium: PCr(2-)+ADP(3-)+ H(+)=Cr+ATP(4-). We also assessed by computer calculation the stoichiometric equilibrium constant of ATP hydrolysis obtaining the value: logK(ATP-hyd)=-12.45 at T=310 K and ionic strength I=0.25 M, which refers to the equilibrium: ATP(4-)+H(2)O=ADP(3-)+PO(4)(3-)+2H(+). Finally, we formulated novel quantitative mathematical expressions of DeltaG of ATP hydrolysis and of the apparent equilibrium constant of the creatine kinase reaction as a function of total [PCr], pH and pMg, all quantities measurable by in vivo (31)P MRS. Our novel mathematical expressions allow the in vivo assessment of cytosolic [ADP] and DeltaG of ATP hydrolysis in the human brain and skeletal muscle taking into account pH and pMg changes occurring in living tissues both in physiological and pathological conditions.  相似文献   

5.
1. The activity of creatine kinase in intact anaerobic frog muscle at 4 degrees C at rest and during contraction was investigated by using saturation-transfer 31P n.m.r. 2. At rest, the measured forward (phosphocreatine to ATP) reaction flux was 1.7 X 10(-3) M . s-1 and the backward flux was 1.2 X 10(-3) M . s-1. The large magnitude of both fluxes shows that creatine kinase is active in resting muscle, so the observed constancy of [phosphocreatine] demonstrates that the enzyme and its substrates are at equilibrium. 3. The apparent discrepancy between the fluxes must arise largely from an underestimation of the backward flux resulting from interaction of ATP with other systems, e.g. via adenylate kinase. For purposes of further calculation we have therefore adopted 1.6 X 10(-3) M . s-1 as an estimate of both fluxes. 4. During contraction, when the creatine kinase reaction is no longer at equilibrium, the net rate of phosphocreatine breakdown, estimated directly from the change in area of the inorganic phosphate peak, was 0.75 X 10(-3) M . s-1. Saturation transfer indicates that the forward reaction flux remains at approx. 1.6 X 10(-3) M . s-1 and the backward flux decreases to about 0.85 X 10(-3) M . s-1. 5. The activity of creatine kinase during contraction is large enough to account for the well-established observation that, during contraction, the concentration of ATP falls by less than 2-3%. The reaction catalysed by creatine kinase is driven forward during contraction by the large relative increase in the concentration of free ADP, which is more than doubled. 6. The observation that the forward flux does not increase during contraction and that the backward flux decreases can most simply be explained on the basis of competition of reactants for a limited amount of enzyme.  相似文献   

6.
Fluxes catalyzed by soluble creatine kinase (MM) in equilibrium in vitro and by the creatine kinase system in perfused rat hearts were studied by 31P-NMR saturation transfer method. It was found that in vitro both forward and reverse fluxes through creatine kinase at equilibrium were almost equal and very stable to changes in phosphocreatine/creatine ratio (from 0.2 to 3.0) as well as to changes in pH (from 7.4 to 6.5 or 8.1), free Mg2+ concentration and 2-fold decrease of total adenine nucleotides and creatine pools (from 8.0 to 4.0 mM and from 30 to 14 mM, respectively). In the rat hearts perfused by the Langendorff method the creatine kinase-catalyzed flux from phosphocreatine to ATP was increased by 50% when oxygen consumption grew from 8 to 55 mumol/min per g of dry wt. due to transition from rest to high workload. These changes could not be exclusively explained on the basis of the equilibrium model by activation of heart creatine kinase due to some decrease in [phosphocreatine]/[creatine] ratio (from 1.8 to 0.8) observed during transition from rest to high workload. Analysis of our data showed that an increase in the flux via creatine kinase is correlated with an increase in the rate of ATP synthesis with a linearity coefficient higher than 1.0. These data are more consistent with the concept of energy channeling by phosphocreatine shuttle than with that of the creatine kinase equilibrium in the heart.  相似文献   

7.
Fluxes catalyzed by soluble creatine kinase (MM) in equilibrium in vitro and by the creatine kinase system in perfused rat hearts were studied by 31P-NMR saturation transfer method. It was found that in vitro both forward and reverse fluxes through creatine kinase at equilibrium were almost equal and very stable to changes in ratio (from 0.2 to 3.0) as well as to changes in pH (from 7.4 to 6.5 or 8.1), free Mg2+ concentration and 2-fold decrease of total adenine nucleotides and creatine pools (from 8.0 to 4.0 mM and from 30 to 14 mM, respectively). In the rat hearts perfused by the Langendorff method the creatine kinase-catalyzed flux from phosphocreatine to ATP was increased by 50% when oxygen consumption grew from 8 to 55 μmol/min per g of dry wt. due to transition from rest to high workload. These changes could not be exclusively explained on the basis of the equilibrium model by activation of heart creatine kinase due to some decrease in ratio (from 1.8 to 0.8) observed during transition from rest to high workload. Analysis of our data showed that an increase in the flux via creatine kinase is correlated with an increase in the rate of ATP synthesis with a linearity coefficient higher than 1.0. These data are more consistent with the concept of energy channeling by phosphocreatine shuttle than with that of the creatine kinase equilibrium in the heart.  相似文献   

8.
Summary The effect of perfusion temperature and duration of calcium deprivation on the occurrence of the calcium paradox was studied in the isolated frog heart. Loss of electrical and mechanical activity, ion fluxes, creatine kinase and protein release were used to define cell damage. Perfusion was performed at 22, 27, 32, and 37°C, and calcium deprivation lasted 10, 20, 30, or 40 min. At 22°C and 27°C even a prolonged calcium-free perfusion failed to induce a calcium paradox. After 30 min of calcium-free perfusion at 37°C ventricular activity ceased and a major contraction occurred followed by an increase in resting tension. During the 15-min re-perfusion period the release of creatine kinase was 158.24±2.49 IU·g dry wt-1, and the total amount of protein lost was 70.37±0.73 mg·g dry wt–1, while lower perfusion temperatures resulted in a decreased loss of protein and creatine kinase. Ion fluxes in the perfusion effluent indicate that during re-perfusion a massive calcium influx accompanied by a potassium and a magnesium efflux, and an apparent sodium efflux, occur at a perfusion temperature of 37°C after 30 min of calcium deprivation. The results suggest that the basic principles and damaging effects of calcium overloading are common to both mammalian and frog hearts.  相似文献   

9.
While the equilibrium assumption and the validity of using total measured concentrations for near equilibrium indicator reactions have been widely tested in liver, these have not been systematically evaluated in skeletal muscle. Vascularly isolated dog gracilis muscles were stimulated via the nerve at 4 Hz, and tissue was sampled by quick freezing at rest and after 10, 15, 30, 60, and 180 s of stimulation or after stimulation in the presence of glycolytic blockade by iodoacetate. Phosphocreatine, creatine, and several glycolytic intermediates were measured in tissue extracts. The in vivo mass action ratios for triosephosphate isomerase and aldolase were evaluated relative to substrate concentrations and compared with equilibrium constants determined in vitro. Although there was evidence of substrate binding at low substrate levels for the triosephosphate isomerase reaction, the in vivo mass action ratios for both reactions stabilized at a constant value at moderate substrate levels and in glycolytically blocked muscles. It was concluded that both enzymes are in apparent equilibrium in vivo, but the equilibrium constants are lower than those determined in vitro. The mass action ratios of the combined creatine kinase, lactate dehydrogenase, glyceraldehyde-phosphate dehydrogenase and phosphoglycerate kinase reactions were determined for resting muscles. These reactions are also at equilibrium and the equilibrium constants are consistent with in vitro values.  相似文献   

10.
To evaluate the energy-shuttle hypothesis of the phosphocreatine/creatine kinase system, diffusion rates for ATP, phosphocreatine and flux through the creatine kinase reaction were determined by 31P-NMR in resting bullfrog biceps muscle. The diffusion coefficient of phosphocreatine measured by 31P-pulsed gradient NMR was 1.4-times larger than ATP in the muscle, indicating the advantage of phosphocreatine molecules for the intracellular energy transport. The flux of the creatine kinase reaction measured by 31P-saturation transfer NMR was 3.6 mmol/kg wet wt. per s in the resting muscle. The flux is equal to the turnover rate of ATP, ADP, phosphocreatine and creatine molecules, therefore, the life-times of these substrates and the average distance traversed after the life-times by the diffusing molecules were calculated using the diffusion coefficients obtained by 31P-NMR. The mean square length of one-dimensional diffusion was 22 microns in ATP molecules and the minimum diffusion length was 1.8 microns in ADP molecules. The latter was calculated using free ADP concentration, 30 mumol/kg wet wt., obtained from the equilibrium constant of the creatine kinase reaction and the diffusion coefficient assumed to be the same of ATP in muscle. Similar diffusion lengths of ADP were calculated using the reported values for the flux of the creatine kinase reaction in heart and smooth-muscle. The diffusion lengths of all substrates involved in the creatine kinase reaction were larger than the radii of myofibrils. Therefore, in the muscles with an alternating arrangement of mitochondria and myofibrils, such as heart and certain skeletal muscles, ATP and ADP molecules can move freely between myofibrils and mitochondria without the aid of the creatine kinase reaction; thus, we conclude that the energy-shuttle hypothesis is not obligatory for energy transport between the mitochondria and the myofibrils.  相似文献   

11.
Fluxes catalyzed by soluble creatine kinase (MM) in equilibrium in vitro and by the creatine kinase system in perfused rat hearts were studied by 31P-NMR saturation transfer method. It was found that in vitro both forward and reverse fluxes through creatine kinase at equilibrium were almost equal and very stable to changes in phosphocreatinecreatine ratio (from 0.2 to 3.0) as well as to changes in pH (from 7.4 to 6.5 or 8.1), free Mg2+ concentration and 2-fold decrease of total adenine nucleotides and creatine pools (from 8.0 to 4.0 mM and from 30 to 14 mM, respectively). In the rat hearts perfused by the Langendorff method the creatine kinase-catalyzed flux from phosphocreatine to ATP was increased by 50% when oxygen consumption grew from 8 to 55 μmol/min per g of dry wt. due to transition from rest to high workload. These changes could not be exclusively explained on the basis of the equilibrium model by activation of heart creatine kinase due to some decrease in [phosphocreatine][creatine] ratio (from 1.8 to 0.8) observed during transition from rest to high workload. Analysis of our data showed that an increase in the flux via creatine kinase is correlated with an increase in the rate of ATP synthesis with a linearity coefficient higher than 1.0. These data are more consistent with the concept of energy channeling by phosphocreatine shuttle than with that of the creatine kinase equilibrium in the heart.  相似文献   

12.
The effect of temperature on the apparent equilibrium constant of creatine kinase (ATP:creatine N-phosphotransferase (EC 2.7.3.2)) was determined. At equilibrium the apparent K' for the biochemical reaction was defined as [formula: see text] The symbol sigma denotes the sum of all the ionic and metal complex species of the reactant components in M. The K' at pH 7.0, 1.0 mM free Mg2+, and ionic strength of 0.25 M at experimental conditions was 177 +/- 7.0, 217 +/- 11, 255 +/- 10, and 307 +/- 13 (n = 8) at 38, 25, 15, and 5 degrees C, respectively. The standard apparent enthalpy or heat of the reaction at the specified conditions (delta H' degree) was calculated from a van't Hoff plot of log10K' versus 1/T, and found to be -11.93 kJ mol-1 (-2852 cal mol-1) in the direction of ATP formation. The corresponding standard apparent entropy of the reaction (delta S' degree) was +4.70 J K-1 mol-1. The linear function (r2 = 0.99) between log10 K' and 1/K demonstrates that both delta H' degree and delta S' degree are independent of temperature for the creatine kinase reaction, and that delta Cp' degree, the standard apparent heat capacity of products minus reactants in their standard states, is negligible between 5 and 38 degrees C. We further show from our data that the sign and magnitude of the standard apparent Gibbs energy (delta G' degree) of the creatine kinase reaction was comprised mostly of the enthalpy of the reaction, with 11% coming from the entropy T delta S' degree term. The thermodynamic quantities for the following two reference reactions of creatine kinase were also determined. [formula: see text] The delta H degree for Reaction 2 was -16.73 kJ mol-1 (-3998 cal mol-1) and for Reaction 3 was -23.23 kJ mol-1 (-5552 cal mol-1) over the temperature range 5-38 degrees C. The corresponding delta S degree values for the reactions were +110.43 and +83.49 J K-1 mol-1, respectively. Using the delta H' degree of -11.93 kJ mol-1, and one K' value at one temperature, a second K' at a second temperature can be calculated, thus permitting bioenergetic investigations of organs and tissues using the creatine kinase equilibria over the entire physiological temperature range.  相似文献   

13.
In vivo 31P-NMR saturation transfer measurements of the creatine kinase exchange flux in the direction creatine phosphate----ATP were made in the gastrocnemius muscle of rats at rest and during steady-state isometric twitch contraction at frequencies from 0.25 to 2 Hz. There was no correlation between creatine kinase exchange flux and either free [ADP] or oxygen consumption, both of which increase with stimulation frequency. The flux was found to be nearly constant over all conditions at about 16 mM X s-1, 10-times greater than the highest estimated ATP turnover in this study. The kinetic properties of skeletal muscle creatine kinase in vivo are similar to, but not completely predictable from, the equilibrium exchange fluxes measured on the isolated enzyme. These results are not consistent with strong functional coupling between ATP synthesis and mitochondrial creatine kinase.  相似文献   

14.
A synergistic activation of phosphorylase kinase by Ca2+ plus Mg2+ was found to be the primary cause of the hysteresis, or lag, in the phosphorylase kinase reaction. Preincubation of the enzyme for short times with Ca2+ plus Mg2+ resulted in an approximately 7-fold increase in the kinase activity in subsequent assays with phosphorylase b or phosphorylase kinase as substrates, whereas preincubation with each metal ion by itself had no effect. Maximal activation through preincubation with Ca2+ plus Mg2+ occurred in 1 min 45 s and was readily reversed by chelation of both metal ions. As a result of the activation, the progress curve of phosphorylase b conversion at pH 6.8 was found to be nearly linear. Activation by Ca2+ plus Mg2+ was not apparent when subsequent assays were carried out at pH 8.2, or when previously autophosphorylated enzyme was used. Furthermore, the synergistic activation was found to occur significantly slower and/or to decrease in the presence of ATP, phosphorylase b, beta-glycerophosphate, and inorganic phosphate. How the synergistic activation by Ca2+ plus Mg2+ relates to autophosphorylation and the lag in the phosphorylase kinase reaction is discussed.  相似文献   

15.
The subcellular distribution of ATP, ADP, creatine phosphate and creatine has been analyzed by fast detergent fractionation of isolated frog heart cells. Digitonin fractionation (0.5 mg/ml, 10 s at 2 degrees C in 20 mM 4-morpholinepropanesulfonic acid/3 mM EDTA/230 mM mannitol medium) was used to separate mitochondria and myofilaments from cytosol. To separate myofilaments from the other cellular compartments. Triton X-100 was used (2%, 15 s in the same medium as digitonin). For either resting or beating cells the total cellular contents of ATP, ADP, creatine phosphate and creatine was similar, nevertheless the O2 consumption was 6-times higher. The compartmentation of these metabolites was also identical. Myofilaments contain 1.1 nmol ADP per mg total cellular proteins. In the cytosolic compartment the metabolite concentrations, all measured in nmol per mg total cellular proteins, were: ATP, 13; ADP, 0.25-0.05; creatine phosphate, 18.5 and creatine, 14. This indicated that the reaction catalyzed by creatine kinase was in a state of (or near) equilibrium.  相似文献   

16.
To define more clearly the interactions between mitochondrial creatine kinase and the adenine nucleotide translocase, the outer membrane of rat heart mitochondria was removed by digitonin, producing an inner membrane-matrix (mitoplast) preparation. This mitoplast fracton was well-coupled and contained a high specific activity of mitochondrial creatine kinase. Outer membrane permeabilization was documented by the loss of adenylate kinase, a soluble intermembrane enzyme, and by direct antibody inhibition of mitochondrial creatine kinase activity. With this preparation, we documented four important aspects of functional coupling. Kinetic studies showed that oxidative phosphorylation decreased the value of the ternary enzyme-substrate complex dissociation constant for MgATP from 140 to 16 microM. Two approaches were used to document the adenine nucleotide translocase specificity for ADP generated by mitochondrial creatine kinase. Exogenous pyruvate kinase (20 IU/ml) could not readily phosphorylate ADP produced by creatine kinase, since added pyruvate kinase did not markedly inhibit creatine + ATP-stimulated respiration. Additionally, when ADP was produced by mitochondrial creatine kinase, the inhibition of the translocase required 2 nmol of atractyloside/mg of mitoplast protein, while only 1 nmol/mg was necessary when exogenous ADP was added. Finally, the mass action ratio of the mitochondrial creatine kinase reaction exceeded the apparent equilibrium constant when ATP was supplied to the creatine kinase reaction by oxidative phosphorylation. Overall, these results are consistent with much data from intact rat heart mitochondria, and suggest that the outer membrane plays a minor role in the compartmentation of adenine nucleotides. Furthermore, since the removal of the outer membrane does not alter the unique coupling between oxidative phosphorylation and mitochondrial creatine kinase, we suggest that this cooperation is the result of protein-protein proximity at the inner membrane surface.  相似文献   

17.
Muscles sampled from a vascularly isolated autoperfused dog gracilis by fast freezing techniques at 5, 10, 15, 30, 60, and 180 s after the initiation of twitch contractions at 4 Hz were analyzed for phosphocreatine, creatine, ATP, lactate, pyruvate, 3-phosphoglycerate, and dihydroxyacetonephosphate contents. Metabolite concentrations were used with equilibrium constants of triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, lactate dehydrogenase, and creatine kinase to estimate cytosolic pH changes during the rest-to-work transition. Magnesium and hydrogen binding were taken into account. Limits to this approach include errors in the intermediate measurements and uncertainties in values of the equilibrium constants. The former leads to maximum errors of +/- 0.15 pH units, whereas the latter affects the absolute pH value but not estimates of the changes in pH. The estimated pH increases from a resting value of 7.05 to approximately 7.8 by 5 s of stimulation and then falls to a pH value of approximately 6.5 after 3 min of stimulation. The results are consistent with previous studies but permit identification of a larger early alkaline shift. Potential causes for the pH changes are discussed.  相似文献   

18.
Three fish species with different strategies for anoxic survival (goldfish, tilapia, and common carp) were exposed to environmental anoxia (4, 3, and 1 h, respectively). The concentrations of high energy phosphate compounds and inorganic phosphate, besides the intracellular pH in the epaxial muscle were measured during anoxia and recovery by in vivo 31P NMR spectroscopy. The concentration of free ADP was calculated from the equilibrium constant of creatine kinase. During anoxia the patterns of phosphocreatine utilization and tissue acidification are remarkedly similar. Free ADP rises rapidly during the initial period of oxygen deficiency and reaches a plateau in goldfish and tilapia, while it keeps rising in the common carp. At elevated levels of free ADP, the creatine kinase reaction and anaerobic glycolysis are functionally coupled by H+ as a common intermediate. The coupling between both processes disappears upon reoxygenation, when mitochondrial respiration induces a rapid drop of [free ADP]. The removal of ADP shifts the creatine kinase equilibrium toward phosphocreatine synthesis despite the low pH.  相似文献   

19.
Rats were fed a diet containing 1% beta-guanidinopropionic acid (GPA) for 6-10 weeks to deplete their skeletal muscle of creatine. 31P-NMR was used to monitor metabolic changes in the gastrocnemius muscle at rest, during stimulated steady-state isometric contraction at 4 Hz and during recovery from stimulation. In resting muscles, the [creatine phosphate] was reduced to 10% (2.8 mumol X g-1) and the [ATP] to 50% (3.3 mumol X g-1) of those found in rats fed a control diet. The concentration of the phosphorylated form of the analogue (PGPA) was 23 mumol X g-1. There was no significant difference in muscle performance or in the relative changes in the [ATP] during stimulation. Intracellular pH decreased rapidly on stimulation and recovered during the stimulation period to near resting values in both groups. In control rats, the initial decrease in pH was greater and the time to recovery was longer than in GPA-fed rats. The rate at which PGPA supplied energy to the contracting muscle (0.027 mM X s-1) was insignificant relative to the minimum estimated rate of ATP turnover (1 mM X s-1). The rate of PGPA resynthesis during recovery (0.018 mM X s-1) is enzyme-limited and provides an independent estimate of creatine kinase flux during this period (18.9 mM X s-1). The creatine kinase flux (creatine phosphate----ATP) in the resting muscle of GPA-fed rats was 12-fold less than in control animals, 1.3 vs. 15.7 mM X s-1. These results demonstrate that neither the [creatine phosphate] nor the activity of creatine kinase is critical for aerobic metabolism. Skeletal muscle appears to adapt to a diminished creatine pool by enhancing its aerobic capacity.  相似文献   

20.
Properties of human creatine kinase isoenzymes (MM, MB and BB) are investigated. The most pronounced differences in properties of these isoenzymes are found under their urea inactivation, heat denaturation and the inhibition by rabbit antisera to isoenzymes. Differences in values of the Mikhaelis constant and substrate and pH dependencies are much less pronounced. The presence of ADP stabilizes creatine kinase isoenzymes under conditions of urea and heat inactivation. Properties of hybrid MB isoenzymes are found to be intermediate with respect to MM and BB isoenzymes. A mode of the interaction of M and B subunits in dimeric molecules of creatine kinase isoenzymes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号